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Assessing organ-level
immunoreactivity in a
rat model of sepsis using
TSPO PET imaging
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William Schreiber-Stainthorp1, Falguni Basuli2,
Dragan Maric3, William Reid1, Swati Shah1

and Dima A. Hammoud1*

1Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center, National
Institutes of Health, Bethesda, MD, United States, 2Chemistry and Synthesis Center, National Heart,
Lung, and Blood Institute, National Institutes of Health, Rockville, MD, United States, 3Flow and
Imaging Cytometry Core Facility, National Institute of Neurological Disorders and Stroke, National
Institutes of Health, Bethesda, MD, United States
There is current need for new approaches to assess/measure organ-level

immunoreactivity and ensuing dysfunction in systemic inflammatory

response syndrome (SIRS) and sepsis, in order to protect or recover organ

function. Using a rat model of systemic sterile inflammatory shock (intravenous

LPS administration), we performed PET imaging with a translocator protein

(TSPO) tracer, [18F]DPA-714, as a biomarker for reactive immunoreactive

changes in the brain and peripheral organs. In vivo dynamic PET/CT scans

showed increased [18F]DPA-714 binding in the brain, lungs, liver and bone

marrow, 4 hours after LPS injection. Post-LPS mean standard uptake values

(SUVmean) at equilibrium were significantly higher in those organs compared to

baseline. Changes in spleen [18F]DPA-714 binding were variable but generally

decreased after LPS. SUVmean values in all organs, except the spleen, positively

correlated with several serum cytokines/chemokines. In vitro measures of

TSPO expression and immunofluorescent staining validated the imaging

results. Noninvasive molecular imaging with [18F]DPA-714 PET in a rat model

of systemic sterile inflammatory shock, along with in vitro measures of TSPO

expression, showed brain, liver and lung inflammation, spleen monocytic

efflux/lymphocytic activation and suggested increased bone marrow

hematopoiesis. TSPO PET imaging can potentially be used to quantify SIRS

and sepsis-associated organ-level immunoreactivity and assess the

effectiveness of therapeutic and preventative approaches for associated

organ failures, in vivo.

KEYWORDS

sepsis, TSPO (18 kda translocator protein), 18F-DPA-714, whole body PET/CT, organ-
level immunoreactivity
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Introduction

Sepsis is an abnormal response by the host immune system to

microbial infections which frequently results in multi-organ

dysfunction and death. As reported by the CDC, 1.7 million

adults develop sepsis and more than 200,000 die in the USA

every year in addition to millions of adults and children around

the world (1, 2). Globally, sepsis is responsible for 20% of all-cause

deaths and since 2017 it has been recognized by the World Health

Organization as a global health concern (3, 4). Despite the vast

improvement in septic patient outcomes over the last few decades,

physical and psychological post-sepsis symptoms persist and

remain a major problem affecting the quality of life of recovered

patients (5, 6). The exact etiologies underlying neurocognitive and

other systems’ dysfunctions in this patient population, including

more recently, the survivors of moderate to severe COVID-19

infection, have been difficult to pinpoint (7).

Although an inflammatory circulatory process is an

established manifestation of systemic inflammatory response

syndrome (SIRS) and sepsis, the degree of direct organ-level

inflammation is not easily inferred until late in the disease

process when irreversible organ failure is impending (8). In

2016, the society of Critical Care Medicine and the European

Society of Intensive Care Medicine prioritized organ dysfunction

in their new definition of sepsis (Sepsis-3) which uses a

sequential organ failure assessment (SOFA) score as an index

(9). This led to calls for a new direction of research where

assessing organ level inflammation and ensuing dysfunction

becomes a priority along with attempts to protect or recover

organ function (10). In this context, imaging studies using pre-

clinical models of sepsis and biomarkers of peripheral

immunoreactivity can be used to detect and gauge organ-level

inflammation and consequently the effectiveness of various

therapeutic and preventative approaches for SIRS/sepsis in vivo.

The 18kDa translocator protein (TSPO), formerly known as

peripheral benzodiazepine receptor (PBR), is an outer

mitochondrial membrane receptor expressed in many cell types,

but especially known to be expressed in brain microglia (11, 12).

Due to increased expression in activated microglia, TSPO is widely

used as a PET imaging target in the detection and in vivo

quantification of neuroinflammation in a variety of

neuropathologies, and as therapeutics (13–20). However, as we

have recently shown, TSPO is expressed not just in microglia,

monocytes, and macrophages but also in dendritic cells,

neutrophils, B- and T-cells, both in humans and macaques (21,

22). Extracranially, TSPO is also expressed in various cell types in

the bone marrow (23) and other peripheral tissues (24) including

heart (25), colon (26), liver (27), and lungs (28). Nevertheless, TSPO

targeting in PET has been sparsely used to evaluate peripheral

inflammation in preclinical and clinical models, with only a handful

of published studies (26, 28–32), none of which focus on sepsis-

induced inflammation in peripheral organs, beyond the lungs.
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In this study, we evaluated the well-known TSPO PET ligand

[18F]DPA-714 to quantify organ level immunoreactivity in vivo,

after intravenous LPS injection. We corroborated our imaging

findings with ex-vivo assessment of TSPO gene expression and

correlated binding with various biomarkers of disease

and inflammatory changes. Tissue sections of the brain, lung,

and spleen were also assessed by immunofluorescence staining

to explain our in vivo findings. Only one time point after LPS

injection was used since our study is meant as a proof of concept.
Methods

Animals

Male Fisher rats were purchased from Charles River

Laboratory (Wilmington, MA) and were housed in a

temperature-controlled environment with free access to food

and water with a 12-hour dark/light cycle. A total of 13 animals

(Age range: 3.7-4.2 months, mean age: 3.96 ± 0.17 months;

Weight range: 0.29-0.36 kg, mean weight 0.32 ± 0.01 kg) were

used for all PET imaging experiments. An additional set of 15

animals (5 controls and 10 LPS-treated) were used to increase

sample size for molecular experiments including cytokines/

chemokines panels, qPCR, and immunohistochemistry (IHC).
LPS administration

The LPS was extracted from E. coli serotype O111:B4 and

purified by gel filtration (Sigma Aldrich #L3012). This serotype can

stimulate B-cells and other cells of the immune system mainly via

activation of Toll-like receptor 4 (TLR4), a receptor that recognizes

Pathogen-associated molecular patterns (PAMPs).

The administration of either intraperitoneal (IP) or

intravenous (IV) injection of LPS in rodents is commonly used

to induce a systemic sterile inflammatory shock and organ failure

that simulates sepsis. Although IP injections are easier and more

convenient, IV injections allow for more consistent levels of LPS

in the blood as well as faster induction of an immune response and

neuroinflammation (33). Acute LPS injections in rats have shown

to induce significant systemic and central inflammation, including

different regions of the brain, as early as 2 hours after inoculation

(34, 35). In human studies, the typical route of LPS injection is IV

as well. In our study, we used the IV injection method in rats as

described by others (36, 37), using 5mg/kg LPS dose. Since the

main focus of our study was to evaluate organ level inflammation,

LPS injection of rats via the IV route was deemed a suitable model

to induce an immune response with increased cytokine levels in

serum and tissues. In our hands, this resulted in all animals

developing a measurable systemic and organ-level inflammatory

syndrome within 4 hours.
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[18F]DPA-714 radioligand synthesis

[18F]DPA-714 was synthesized as previously reported (38).

In a typical reaction, starting with 9600 MBq of fluorine-18, we

obtained 3100 MBq of the product with a radiochemical purity

> 99%. The molar activity was 125000 MBq/μmol.
[18F]DPA-714 PET imaging

Prior to each scan, the animal was anesthetized (3-4%

isoflurane) and the lateral tail vein was cannulated with a

butterfly catheter connected to a heparin lock. Once the

animal was properly positioned, [18F]DPA-714 was injected

slowly through the tail vein catheter (mean dose 1.13 ± 0.1

mCi) over a period of 30 seconds as a bolus followed by a quick

saline flush (300 μL). PET imaging using Inveon PET/CT

scanner (Siemens Medical Solutions, USA) with a transaxial

and axial field of view (FOV) of 10 and 12.7 cm, full width at half

maximum spatial resolution at 1.4 mm center FOV, was initiated

immediately after the injection. Dynamic PET scans were

performed for 60 minutes.

Baseline [18F]DPA-714 scans were obtained for each animal.

Two days following the baseline scan, animals received a

prophylactic subcutaneous injection of buprenorphine (0.1 mg/

kg) one hour before LPS was administered via intravenous tail

vein (5mg/kg). After a 4-hour waiting period, [18F]DPA-714

PET/CT imaging was performed. Whole blood was also

collected before and 4 hours after LPS injections. After

completion of the baseline PET imaging session, the animals

were allowed to recover whereas following the post-LPS scans, the

animals were immediately euthanized and perfused with saline for

whole blood and organ collection. Following this, various organs

were collected and immediately snap frozen in liquid nitrogen.

The tissues were stored at -80°C until further use for downstream

procedures such as RNA extraction and lysate preparation. A

separate group of animals (control n=4; LPS n=4) were used for

immunohistochemistry. The detailed procedures for organ

collection and tissue treatments prior to staining are mentioned

below under “multiplex fluorescence immunohistochemistry”.
[18F]DPA-714 PET image analysis

The images were reconstructed using OSEM-3D and were

analyzed using PMOD 3.8 (PMOD Technologies, Ltd., Zurich,

Switzerland). The PET images were co-registered to the CT

image, and volumes of interest (VOIs) were drawn for the whole

brain, liver, lungs, spleen, and bone marrow. Time activity

curves (TACs) were derived from the dynamic images for each

VOI. The mean standardized uptake at equilibrium was

averaged from 26-40 min and reported as the SUVmean.
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It is known that TSPO is expressed in the kidneys and can be

upregulated in inflammatory conditions. These changes can

usually be quantified by PET when kidney function is

otherwise intact. In our study, however, we did not assess

kidney binding, mainly because many of our animals showed

decreased kidney function after LPS administration, a

commonly seen phenomenon in SIRS and sepsis patients

(sepsis-induced acute kidney injury (AKI)) (39). As a result of

the secondary reduced glomerular filtration rate and tubular

dysfunction in the kidneys, the effective excretion of our ligand

and its metabolites was delayed, resulting in ligand retention in

the parenchyma of the kidneys, as has been described with

99mTc-Mag3 scans (40). We thus assumed that the increased

radioactivity in the kidneys four hours post-LPS likely reflects a

combination of upregulated TSPO expression (due to

inflammatory changes) and ligand retention within the renal

parenchyma, and as such is unreliable as a measure of immune

activation after LPS administration.
Serum and lysate preparation

Serum from whole blood, as well as liver, brain, spleen, and

lung lysates were collected from 13 LPS injected rats and 5

control rats. Pre- and post-LPS inoculation serum was collected

for 8 animals and only post-LPS serum was collected for 10

animals. Sectional tissues with a total weight of 50 mg were

obtained from each organ (lung, liver, spleen, and basal ganglia

of the brain) and homogenized to perform RNA and protein

extraction. Total cellular RNA from LPS treated rats and

controls were isolated using the Zymo ZR-Duet DNA/RNA

MiniPrep Plus Kit (Catalog No. D7003) according to the

manufacturer’s instructions. The RNase-Free DNase Set

(Qiagen No.79254) was used to remove genomic DNA from

the RNA samples. The protein lysates were obtained by

homogenizing the tissues in a protein extraction buffer and

then collecting the supernatants after centrifugation. Total

protein concentrations of the lysates were measured using the

BCA assay (Pierce cat#23225) prior to performing enzyme-

linked immunoassay (ELISA).
Enzyme-linked immunoassay

Cytokine/chemokine levels were measured in the brain,

liver, spleen, lung lysates, and in the serum of LPS treated

and control rats. A multiplex ELISA kit (Millipore Sigma

#RECYMAG65K27PMX) for 27 analytes was used following

the manufacturer’s instructions. The panel included G-CSF,

Eotaxin, GM-CSF, IL-1a, Leptin, MIP-1a, IL-4, IL-1B, IL-2,
IL-6, EGF, IL-13, IL-10, IL-12p70, IFNg, IL-5, IL-17, IL-18,
MCP-1, IP-10, GRO/KC, VEGF, Fractalkine, LIX, MIP-2,
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TNFa, and RANTES analytes. The protein concentrations for

the organ lysates were adjusted to 2mg/ml before analysis by

ELISA. The serum samples were not diluted before the run. The

plates were read on Bioplex 200™ (Bio-Rad) and the analyte

concentrations were determined for all the organs and serum.
Quantitative polymerase chain reaction
of organ tissues

Synthesis of first-strand cDNA from total RNA was

performed using RT2 First Strand Kit and the cDNA was

amplified with RT² SYBR®Green qPCR Mastermix (Qiagen,

Hilden, Germany). The housekeeping gene for the ribosomal

protein lateral stalk subunit P1, Rplp1 (Qiagen #PPR42363C-

200) was used as an internal control. Samples for the gene of

interest, Tspo (Qiagen #PPR06787A-200), were run in

triplicates. Using CFX96 Real-time qPCR System (Bio-Rad,

Hercules, CA), relative changes in mRNA expression levels

were quantified. The Ct values were normalized to the

housekeeping gene.
Multiplex fluorescence
immunohistochemistry

Animals were perfused with saline followed by 4% PFA. Tissues

were cryoprotected using 10-30% sucrose gradient before being

embedded in optimal cutting temperature compound (OCT),

frozen, and cut in 10 mm-thick sections. Tissue slices from the

brain, spleen, and lungs of a group of LPS injected animals (n=4)

and control animals (n=3) were stained using different

combinations of up to 5 primary antibodies to detect specific

immunoinflammatory cell types using MF-IHC. These antibodies

respectively included CD3 for T-cells (Thermo Fisher Scientific #

MA1-7630), B220 for B-cells (Thermo Fisher Scientific # 14-0460-

82), granulocyte marker for neutrophils (Thermo Fisher Scientific #

14-0570-82), CD68 for monocytes/macrophages (Abcam #

ab125212), MHCII for dendritic cells (Thermo Fisher Scientific #

14-0920-82), and Iba1 formicroglia (Cedarlane Labs # 234006(SY)).

TSPO antibody (Abcam #ab109497) was used to stain for the

protein. Each of the above primary immunoreactions was visualized

using appropriate fluorophore-conjugated secondary antibodies

obtained either from Jackson ImmunoResearch (DyLight 405 #

115-475-075) or Thermo Fisher Scientific/Invitrogen (Alexa Fluor

546 # A21123, Alexa Fluor 594 # A21145, Alexa Fluor 488 #

A21151, Alexa Fluor 430 # A11064, Alexa Fluor 555 # A21435,

Pacific Orange # P31584) and all antibodies were diluted based on

the manufacturer’s recommendation. The cell nuclei were

counterstained using 1 mg/ml DAPI to facilitate cell counting. All

fluorescence signals were imaged using an Axio Imager.Z2 upright

scanning wide field fluorescence microscope (Zeiss) equipped with

Orca Flash 4.0 high resolution sCMOS camera (Hamamatsu),
Frontiers in Immunology 04
200W X-cite 200DC broadband light source (Lumen Dynamics)

and standard DAPI, and various Alexa Fluor filter sets (Semrock).

After imaging, the multichannel image datasets were processed for

image stitching, illumination correction, and the images were

imported into Adobe Photoshop CS6 to produce pseudo-colored

multi-channel composites.
Staining quantification

Quantification of percent fluorescence intensities was performed

using NIH ImageJ 1.53a software. For the lungs, a single ROI

encompassing the whole tissue region was drawn. For the spleen,

the white pulp and red pulp were analyzed with four ROIs drawn on

each region and then combined. In the brain, ROIs were also drawn

by region, including either the striatum, cortex, or corpus callosum;

with multiple small ROIs drawn in each region. Liver IHC could not

be performed due to high levels of autofluorescence prohibiting

meaningful staining of different cell markers.

ImageJ was also used to quantify microglial length using the

free hand lines tool to measure 80 ramifications per animal and

the free hand selections tool to delineate 20 somas per animal

from different ROIs of brain tissues.
Statistics

Paired t-test was used to evaluate the differences in average

[18F]DPA-714 binding (SUVmean) at baseline and post LPS

administration for each organ. Unpaired t-test was used to

compare TSPO mRNA expression between controls and LPS

groups and to analyze the differences in TSPO and various cell

marker stains by IHC. For those tests, p-values <0.05 were

considered statistically significant. Even though we found

colocalization of TSPO with different cell markers, we felt that

our histopathology sample size was too small (controls n=3, LPS

n=4) for an accurate and reliable Pearson analysis of

TSPO binding.

Non-parametric Mann Whitney test was used to compare

cytokine expression in serum and organ lysates between controls

and LPS groups since many datasets were not normally distributed.

p-values <0.01 were considered statistically significant.

Repeated measures correlations between SUV values and

serum cytokine levels were performed using the rmcorr program

in R (version 3.5.1). In order to account for multiple

comparisons in this analysis, correlations with p-values < 0.01

were considered to reflect positive or negative associations.
Study approval

All procedures were approved by the Animal Care and Use

Committee (ACUC) of the Clinical Center (CC) at the National
frontiersin.org
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Institutes of Health (NIH) and were performed in an AAALAC

International accredited facility in accordance with relevant NIH

policies and the Animal Welfare Act and Regulations.
Results

Assessment of whole body TSPO
distribution by [18F]DPA-714 PET imaging

The animals underwent PET/CT scans at baseline and 4

hours post-LPS injection. Post-LPS inoculation, the rats

displayed reduced physical activity and slower respiratory rate

(avg 30-35 breaths per minute) during the scan compared to

baseline scans (breath rate 40-50 breaths per minute) under

similar levels of anesthesia (1.5- 2% isoflurane-O2 mixture).

Some of the animals also had diarrhea after LPS treatment.

The post-LPS scans showed increased [18F]DPA-714 binding in

the brain, lungs, liver, and bone marrow as demonstrated in the

time activity curves (TACs) (Figure 1). In the spleen, most animals

(10 out of 13) showed decreased binding rather than increased

binding. On average, binding was decreased compared to baseline

on the mean TAC. Mean TACs for whole brain, liver, lungs, and

bone marrow showed higher [18F]DPA-714 binding in the post-

LPS rats when compared to baseline. Post-LPS SUVmean were

significantly higher for brain (p =0.007), lungs (p=0.023), liver

(p<0.0001), and bonemarrow (p=0.002) with an average of 2-3-fold

increase. There were no significant differences in spleen SUVmean

values with most animals instead showing decreased SUVmean

compared to baseline (Figures 1A-C).
Changes in blood cell counts and
cytokine levels reflect systemic
inflammation

In our animals, there were significant decreases in platelets,

white blood cells counts as well as monocytes, eosinophils and

lymphocyte counts (Supplementary Figure 1).

It has been demonstrated that both pro- and anti-

inflammatory cytokines play an important role during sepsis

and that serum levels increase in patients with sepsis. In our

model, serum cytokine levels increased in the LPS group when

compared to controls (Figure 2). The following list of serum

cytokines showed significantly increased expression after LPS

exposure: IL-1b, IL-4, IL-6, MIP-1a, MIP-2, IL-10, IL-17A, IL-

18, GRO/KC, IFNg, Fractalkine, VEGF, TNFa, MCP-1,

RANTES, and IP-10 (all p<0.0001). Rats that did not have

baseline measures also showed increased cytokine levels when

compared to controls. At the organ level, increased expression of

various cytokines in organ lysates from brain, lungs, liver, and

spleen was also observed in the LPS group when compared to

controls (Figure 3).
Frontiers in Immunology 05
Multiple serum cytokine levels positively correlated with

SUVmean of the brain, lungs, liver, and bone marrow (Figure 4).

Some of the most relevant and frequently expressed cytokines

that showed significant associations include IL-2, IL-17A, TNFa,
IL-6, IL-1b, MCP-1, and IL-4. These cytokines have been

associated with severity of sepsis, organ dysfunction, and

mortality in septic shock patients (41). Additional serum

cytokines that correlated with SUVs in specific organs

included EGF (brain); GM-CSF, IL-10, IL-18, VEGF (lungs);

IL-1a, Leptin, MIP-1a, IL-12p70, IFNg, IP-10, GRO/KC,

Fractalkine, LIX, MIP-2, and RANTES (liver); and MIP-1a,
MIP-2, IL-5, IL-10, IFNg, IP-10, GRO/KC, VEGF, and

Fractalkine (bone marrow). No correlations were observed

between cytokine levels in serum and spleen SUVmean values.
Ex-vivo assessment of organ level
changes in TSPO expression

Real time PCR performed to assess the changes in TSPO

expression at the transcriptional level showed one to two-fold

upregulation of TSPO mRNA expression in the lung (p=0.0497),

liver (p=0.0121), and brain (p=0.0462) when compared to

controls, but not in the spleen (p=0.5529), which is consistent

with the PET imaging results (Figure 5).

Based on immunohistochemistry, there was significantly

increased expression of TSPO (p=0.0361), CD68 (macrophage

marker) (p=0.001) and CD3 (T cell marker) (p=0.0305) in the

lungs of LPS treated animals when compared to controls (Figure 6).

Additionally, the expression of B cells -B220 (p=0.1510),

neutrophils -granulocytes (p=0.0626), and dendritic cells -MHCII

(p=0.1018) was also higher compared to controls, although the

differences did not reach statistical significance (Figure 6).While co-

localization of TSPO staining with macrophages was the most

noticeable, we also found co-localization of TSPO staining with

dendritic cells, neutrophils (Supplementary Figure 2) and

lymphocytes (Supplementary Figure 3).

We also analyzed the spleen by IHC using combined ROIs

equally distributed between the red pulp and white pulp. There

was decreased expression of monocytes/macrophages -CD68

(p=0.0121) and increased expression of B cells -B220

(p=0.0256) (Figure 7). Due to mixed response patterns, there

were no statistically significant differences in the expression of

TSPO, neutrophils -granulocytes, or T cells -CD3 in the spleen

of LPS rats when compared to controls (Figure 7). Increased

proliferating B cells in the lymphoid white pulp most likely

represents the initiation of immune responses. This increase

could have offset the loss of monocytes, resulting in no

appreciable change in total TSPO expression in two out of

four animals. The other two animals showed increased TSPO

staining despite decreased CD68 staining. At the same time, they

showed increased granulocyte and lymphocyte staining, possibly

offsetting the decreased monocyte staining (Figure 7).
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1010263
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Martinez-Orengo et al. 10.3389/fimmu.2022.1010263
In the brain, while there was generally higher expression of

TSPO protein in the LPS treated animals when compared to

controls in the striatum (mean 2.334 vs 0.6130) and corpus

callosum (mean 1.783 vs 0.54) regions, it did not achieve

statistical significance possibly due to the limited sample size.

However, we observed distinct changes in the morphological

characteristics of the microglia such as the length of the glial

processes and the size of the soma (Figure 8). The microglial

processes were shorter and the cell bodies were larger in LPS

treated rats (p<0.0001) indicating there was early microglial

activation in these animals.

Discussion

The sequential organ failure assessment (SOFA) or the

shorter bedside clinical tool quickSOFA, have been
Frontiers in Immunology 06
implemented to evaluate groups of patients with SIRS/sepsis

and better predict the severity of resulting organ dysfunction,

morbidity, and mortality (42, 43). However, these tools are still

limited in sensitivity and performance (44, 45), creating the need

for more accurate measures of organ-level inflammation in

septic patients. The effectiveness of [18F]DPA-714 as a

biomarker of peripheral inflammation has previously been

validated in different diseases (46–49). In this study, we used

[18F]DPA-714 in a rat model of LPS-induced systemic

inflammation, showing that in vivo whole-body PET imaging

with the TSPO biomarker [18F]DPA-714 can be used to quantify

organ-level immunoreactivity. As expected, [18F]DPA-714 PET

imaging indicated increased expression of TSPO in the brain,

lungs, bone marrow, and liver, and a variable change in TSPO

expression in the spleen when compared to baseline (prior to

LPS treatment) (Figure 1).
A

B

C

FIGURE 1

[18F]DPA-714 binding in the brain and peripheral organs of LPS-treated rats. Representative PET/CT scans (top), average time activity curves
(TACs) (bottom left) and mean standardized uptake values (SUVs) of [18F]DPA-714 averaged from 26-40 minutes (bottom right) are shown in the
brain (A), bone marrow (B), and peripheral organs- lungs, liver and spleen (C). Representative PET images and mean TACs show increased
binding in brain, lungs, liver, and bone marrow, but not in spleen, compared to baseline (n=13). Statistical analysis was performed using paired t-
test to evaluate the differences in average [18F]DPA-714 binding by PET at baseline and post-LPS for each organ. p-values <0.05 are considered
statistically significant. *p<0.05, **p<0.01, ****p<0.0001.
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Sepsis is initially associated with an overwhelming release of

cytokines and later on a phase of immune suppression with

substantial immune cell depletion as a result of constant

exposure to pro- and anti-inflammatory cytokines (50, 51).

The production of IL-6, TNFa, IL-18, and IL-1 pro-

inflammatory cytokines along with IL-10 (anti-inflammatory

cytokine) is a hallmark response to sepsis. Our model of systemic

sterile inflammatory shock follows this characteristic cytokine

profile of sepsis showing increased expression of cytokines in

the serum (Figure 2) and organ lysates (Figure 3). More

importantly, we found a significant positive correlation

between TSPO SUVmean values in brain, lungs, bone marrow,

and liver with the expression of these inflammatory cytokines in

serum (Figure 4).

Our findings in the lungs are consistent with the current

understanding of acute respiratory distress syndrome (ARDS) in

severe SIRS and sepsis. In these patients, higher plasma levels of

anti-inflammatory IL-10 during early course of disease correlate

with severity of illness regardless of the use of oxygen support

(52, 53) while higher expression of pro-inflammatory cytokines

IL-1 and IL-6 at the onset of ARDS predicts unfavorable

outcomes (54). After initial recovery from sepsis, continuous

deployment of functionally impaired macrophages from

lymphoid reservoirs to the lungs can further prevent lung

recovery and increase negative outcomes during secondary

infections (55, 56). In a previous study, [18F]FDG PET lung
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uptake was found to precede increased CT attenuation (lung

edema) in a model of sepsis and ARDS, which was accompanied

by neutrophil influx reflected by increased myeloperoxidase

activity (57). In our model, we showed increased [18F]DPA-

714 binding in the lungs of the LPS rats when compared to

controls (Figure 1C) which correlated with systemic cytokines

and was accompanied by increased staining for immune cell

markers, namely macrophages, neutrophils, dendritic cells and

lymphocytes (Figure 6), even though some of the differences in

staining did not reach statistical significance. The latter however

could be attributed to the small sample number used for IHC

staining. As expected, TSPO staining colocalized mainly with

macrophages (CD68), and to a lesser extent with other activated

myeloid and lymphoid immune cells (Supplementary Figures 2,

3). Our imaging findings thus support an inflammatory reaction

induced in the lungs through the systemic administration of LPS,

similar to what occurs in sepsis, that is measurable using [18F]

DPA-714.

SIRS and sepsis can also affect the cell components of the

bone marrow in the early stages, making it susceptible to

inflammation, and showing increased proliferating cells in

response to peripheral immune cell depletion (58). Using a

repeated measures correlation to analyze bone marrow

SUVmean with serum cytokines, we showed a positive

correlation with IL-6, IL-10, IL-1b, and VEGF, among others

(Figure 4). The correlation between SUV and VEGF is most
FIGURE 2

Expression of serum cytokines and chemokines. Increased expression (pg/mL) of various cytokines and chemokines is seen after LPS treatment
(Control n=12, LPS n=17). Statistical analysis was performed using unpaired Mann Whitney test to evaluate changes in serum cytokines and
chemokines between controls and LPS groups. Mean with SEM are shown. p-values <0.01 are considered statistically significant. ****p<0.0001,
not significant (ns).
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relevant as increased expression of this cytokine mediates

morbidity and mortality in patients with severe sepsis. IL-18

shares similar characteristics with IL-1b and is increased in

septic patients, particularly in those with thrombocytopenia (59,

60). In addition, we found negative correlations between bone

marrow SUVmean values and white blood counts (WBC (K/uL

r= -0.86, p= 0.003), platelets (K/uL; r= -0.97, p= 0.00001) and

lymphocytes (K/uL; r= -0.87, p= 0.002). Increased TSPO

expression in the bone marrow is thus likely to reflect a

combination of inflammation and increased hematopoiesis in

response to peripheral leukopenia and thrombocytopenia, which

were seen in our animal model and are commonly encountered

in septic patients (Supplementary Figure 1).

Another peripheral organ evaluated in this study was the

liver where we found an agreement between the PET imaging

results and TSPO gene expression changes (Figures 1, 5).
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Similarly, the imaging data correlated with increased Leptin

and MIP-2 in serum which is an important finding since

increased levels of Leptin and MIP-2 in septic patients also

correlate with disease severity (61, 62). We did not assess liver

enzyme levels in our study due to logistical limitations, however

liver dysfunction is a well-known complication of sepsis. The

association between the degree of liver inflammation and acute/

chronic dysfunction is thus an important potential use for our

quantitative noninvasive in vivo imaging approach.

When assessing the spleen, our PET data showed generally

mixed change in binding of [18F]DPA-714 in the LPS group,

with most animals showing decreased binding and some animals

showing increased binding (Figure 1). No significant difference

in TSPO gene expression (Figure 5C) were observed in the

spleens of the LPS injected rats when compared to controls.

Similar to PET imaging, IHC showed a mixed picture where two
FIGURE 3

Expression of cytokines and chemokines in organ lysates. Changes in the expression (pg/mL) of various cytokines and chemokines in brain, lung,
liver, and spleen lysates due to LPS treatment is shown (Control n=4, LPS n=14). Statistical analysis was performed using Mann-Whitney test to
evaluate changes in tissue cytokines and chemokines between controls and LPS groups. p-values <0.01 are considered statistically significant.
*p<0.05, **p<0.01, ***p<0.001, not significant (ns).
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out of four animals showed increased TSPO staining. In one

animal with increased TSPO staining despite decreased CD68

staining (Figure 7) we found increased B220+ cells and mixed

changes of granulocytes and CD3+ cells. Increased TSPO

staining in this case could be explained by lymphocytic

proliferation despite migration of monocytes to other organs

such as the lungs.

[18F]DPA-714 PET imaging of TSPO in the brain has been very

well characterized in different models of neuroinflammation (17,

63–72). Our study shows a significant positive correlation between

[18F]DPA-714 brain binding and levels of MCP-1, IL-2, EGF, IL-
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17A, and TNFa in serum. These cytokines are neuroregulatory

molecules that penetrate the blood brain barrier and regulate

interactions between peripheral tissues and the CNS (73, 74).

They promote neutrophil mobilization to sites of inflammation

and are increased in septic encephalopathy (75–77). Furthermore,

IL-17A has been described as a main player in the immunological

dysfunction during sepsis, with increased levels in serum of

pediatric and adult patients during early stage of sepsis, making it

an attractive biomarker and therapeutic target (78). When staining

microglia with Iba1, we did not find differences in staining intensity

between controls and LPS animals. We are aware that, despite being
FIGURE 4

Correlation between organ SUVmean with serum cytokines and chemokines. Repeated measures correlations analysis shows positive correlations
between cytokines in serum and SUVmean values from brain, lungs, liver, and bone marrow (n=8). No correlations were seen with the spleen.
Statistical analysis was performed using the rmcorr package in R. In order to account for multiple comparisons in this analysis, correlations with
p-values < 0.01 were considered to reflect positive or negative association.
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commonly used as a marker of microglial activation, Iba1 protein is

not always specific enough to discriminate between activated and

non-activated microglia, or to distinguish microglia from

macrophages. Instead, we relied on the detection of subtle

morphological changes in Iba1 stained microglia which are

generally believed to specifically reflect stages of microglial

activation. Our LPS animal model shows the morphological

transformation of resting microglia into cells with less complex

ramifications, thickening of the cell body, and presentation of an

amoebic phenotype which are characteristic of microglial activation

and phagocytic stage (Figure 8). This is similar to findings of

microglial activation in the white matter of patients with systemic

sepsis (enlarged and amoebic microglial phenotypes) when

compared to non-septic controls (79). Sepsis survivors also can

show clinical manifestations of delirium or long-term cognitive

decline (5, 80), and other studies correlate these manifestations with

white matter disruption (81). Neuroinflammatory changes in

association with LPS administration and increased cytokine levels
Frontiers in Immunology 10
in the serum in our model could thus simulate brain-specific

inflammatory changes in the setting of SIRS and sepsis. Whether

those changes are associated with permanent damage, however,

remains unclear and requires further evaluation.

In three animals who were imaged with [18F] DPA-714, we

noted that responses were different from the rest of the cohort: one

animal showed decreased TSPO binding both in the brain and

lungs after LPS administration compared to baseline, and

manifested only mild immune activation based on serum

cytokines, one animal had mildly decreased binding in the brain

and one animal showed lower binding in the lungs. The immune

response of those last two animals, however, were within the range

or on the higher end of cytokine expression levels. We thus believe

these findings are due to natural variability in the immune response

to LPS as well as variability in organ response to inflammatory

signals, a phenomenon that has been previously described (82–84).

By using a relatively larger sample number, we have confidence we

have encompassed the whole spectrum of immune activation.
B

C D

A

FIGURE 5

TSPO gene expression in organ lysates. Increased TSPO mRNA levels in the lung. (A) (p=0.0497), liver (B) (p=0.0121), and brain (D) (0.0462) from
LPS treated rats (n=15), but not in the spleen (C) (p=0.5529), when compared to controls (n=3). Statistical analysis was performed using
unpaired t-test. Mean with SEM are shown. p-values <0.05 are considered statistically significant. Tspo is target gene and ribosomal protein
lateral stalk subunit P1 (Rplp1) is the housekeeping gene used for normalization. *p<0.05; not significant (ns).
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LPS

Control

TSPO CD68 MHCII Granulocytes CD3 B220

FIGURE 6

Immunohistochemistry in lung tissue sections. Representative MF-IHC images of a single lung section from control (top panels) and LPS treated rat
(bottom panels). Quantification of the various stains was obtained by measuring whole lung section using Image J. Percentage area values are shown
under each panel for TSPO, CD68 (macrophages), MHCII (dendritic cells), Granulocytes (neutrophils), CD3 (T cells), and B220 (B cells). There is increased
TSPO (p=0.0361), CD68-monocytes/macrophages (p=0.001), and CD3-T cells (p=0.0305) staining in the lungs of LPS-treated rats (n=4) compared to
controls (n=3). In this specific animal, staining for TSPO, macrophages, MHCII, granulocytes and lymphocytes was increased. Statistical analysis was
performed using unpaired t-test. Mean with SEM are shown. p-values <0.05 are considered statistically significant. *p<0.05, **p<0.01, not significant (ns.)
LPS

Control

TSPO CD68 Granulocytes CD3 B220Brigh

WP

RP

WP

RP

FIGURE 7

Immunohistochemistry in spleen tissue sections. Representative MF-IHC images of a single spleen section from control (top panels) and LPS-
treated rat (bottom panels). The regions shown here include both the red pulp (RP) and white pulp (WP) areas as indicated in the brightfield
images. Quantification of the various stains was obtained by measuring multiple ROIs in the red and white pulp spleen section using Image J.
Percentage area values are shown under each panel for TSPO, CD68 (macrophages), MHCII (dendritic cells), Granulocytes (neutrophils), CD3 (T
cells), and B220 (B-cells). No significant statistical difference in TSPO expression between groups is seen with two out of four animals showing
increased staining, as shown. This is seen despite significant decreased immunoreactivity for CD68-monocytes/macrophages (p=0.0003), likely
due to increased lymphocytic expression in the LPS group (n=4) compared to controls (n=3). Statistical analysis was performed using unpaired
t-test. Mean with SEM are shown. p-values <0.05 are considered statistically significant. *p<0.05, not significant (ns).
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It is important to clarify here that although LPS can induce a

systemic sterile inflammatory shock that can be similar in some

aspects to what happens in SIRS and sepsis, direct translation of

rodent findings into human findings in the setting of bacterial sepsis

is not straightforward. LPS is an endotoxin present in the outer

membrane of Gram-negative bacteria and extracted LPS has been

broadly used in animal models and human studies to mimic the

systemic inflammation caused by bacterial infections. There are

however still differences in innate and adaptive responses between

LPS and bacterial induced shock, including variability in serum

cytokines and primary type of circulating leukocytes (85). To this

end, however, our study is meant as a proof of concept that TSPO

imaging can be useful in assessing organ-level inflammation,

irrespective of the type of systemic inflammation.

One limitation of this study is that collection of tissues at

baseline and after LPS administration for further biological

analyses from the same animal is not possible. This forced us

to use another set of animals for additional biological studies to

support the PET data. Also, the small sample size (controls=3,

LPS=4) used for immunohistochemistry could have limited the

statistical analysis. However, with the promising results
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presented herein, additional studies with a larger sample size

are warranted. Although [18F]DPA-714 has shown better affinity

and specificity to TSPO than previous ligands, assessment of

TSPO gene polymorphisms and binding status (86) should be

performed in human studies for accurate quantitative analysis.

This will allow further evaluation of correlations between [18F]

DPA-714 uptake (or other TSPO ligands) and other molecular

and clinical scores.

In conclusion, while the use of blood biomarkers and scoring

systems can help predict organ dysfunction and mortality in

patients with sepsis (87, 88), our study demonstrated that

immunoreactivity in different organs (lung, liver, bone

marrow, brain, and spleen) can be measured in vivo using the

PET radiotracer [18F]DPA-714. Inflammatory changes in the

lungs, liver, brain, and bone marrow correlated with peripheral

inflammation (increased pro- and anti-inflammatory cytokines

in serum such as TNFa, IL-1, IL-6, IL-17A, IL-18, and IL-10).

Our study is a proof of concept of the feasibility of using PET to

assess organ level immunoreactivity in systemic sterile

inflammatory response and the same approach could

potentially be used in sepsis to evaluate the effectiveness of
A BControl

LPS

FIGURE 8

Morphological changes in microglia. (A) Representative images of microglia (Iba1 in red) in the corpus callosum of control and LPS treated rats.
(B) Animals with systemic inflammation (LPS) show shorter microglial processes and thicker cell body compared to controls. Quantification was
performed using the free hand selection tool from Image J to measure the length of 80 microglial processes and to delineate 20 somas from
several ROIs in brain sections for each animal (control n=3; LPS-treated n=4). Statistical analysis was performed using unpaired t-test. Mean
with SEM are shown. ****p <0.0001.
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preventative and therapeutic approaches in decreasing/

controlling organ-level inflammation.
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