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Simple Summary

Artificial intelligence (Al) has emerged as a transformative tool in oncology, offering inno-
vative solutions to mitigate cancer disparities by integrating social determinants of health
(SDOH) into predictive analytics, screening, treatment optimization, and prognostic mod-
eling. This review explores Al-driven methodologies, including machine learning, deep
learning, and natural language processing, to enhance early cancer detection and personal-
ized treatment and improve patient outcomes, particularly in underserved populations.
Al-powered medical imaging and histopathological analysis have improved the diagnos-
tic accuracy, while predictive models facilitate precision oncology by tailoring therapies
based on genetic, clinical, and socioeconomic factors. Al-driven geospatial analysis and
telehealth solutions have also expanded cancer screening accessibility in resource-limited
areas. Despite its potential, challenges such as algorithmic bias, the underrepresentation
of minority groups in Al training datasets, and ethical concerns regarding data privacy
remain. Addressing these barriers through fairness-aware Al models, federated learning,
and regulatory oversight is critical in achieving equitable cancer care.

Abstract

Background: Social determinants of health (SDOH) are critical contributors to cancer dis-
parities, influencing prevention, early detection, treatment access, and survival outcomes.
Addressing these disparities is essential in achieving equitable oncology care. Artificial
intelligence (Al) is revolutionizing oncology by leveraging advanced computational meth-
ods to address SDOH-driven disparities through predictive analytics, data integration,
and precision medicine. Methods: This review synthesizes findings from systematic re-
views and original research on Al applications in cancer-focused SDOH research. Key
methodologies include machine learning (ML), natural language processing (NLP), deep
learning-based medical imaging, and explainable AI (XAI). Special emphasis is placed on
Al’s ability to analyze large-scale oncology datasets, including electronic health records
(EHRs), geographic information systems (GIS), and real-world clinical trial data, to enhance
cancer risk stratification, optimize screening programs, and improve resource allocation.
Results: Al has demonstrated significant advancements in cancer diagnostics, treatment
planning, and survival prediction by integrating SDOH data. Al-driven radiomics and
histopathology have enhanced early detection, particularly in underserved populations.
Predictive modeling has improved personalized oncology care, enabling stratification based
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on socioeconomic and environmental factors. However, challenges remain, including Al
bias in screening, trial underrepresentation, and treatment recommendation disparities.
Conclusions: Al holds substantial potential to reduce cancer disparities by integrating
SDOH into risk prediction, screening, and treatment personalization. Ethical deployment,
bias mitigation, and robust regulatory frameworks are essential in ensuring fairness in
Al-driven oncology. Integrating Al into precision oncology and public health strategies
can bridge cancer care gaps, enhance early detection, and improve treatment outcomes for
vulnerable populations.

Keywords: artificial intelligence (Al); social determinants of health (SDOH); cancer; precision
oncology; machine learning; explainable AI (XAI)

1. Introduction

Cancer is a complex and multifaceted disease influenced by a combination of genetic,
environmental, and social factors, making its prevention, diagnosis, and treatment a sig-
nificant global challenge. Despite advancements in precision medicine, early detection,
and targeted therapies, disparities in cancer incidence, treatment accessibility, and survival
rates persist across different populations [1]. Biological determinants do not solely drive
these disparities but are deeply rooted in systemic inequities within healthcare infrastruc-
ture, socioeconomic status, environmental exposures, and social determinants of health
(SDOH). Social determinants of health (SDOH), including economic stability, education,
healthcare accessibility, and geographic location, play a pivotal role in shaping cancer-
related outcomes (Figure 1) [2]. Marginalized and underserved communities often face
financial, geographic, and institutional barriers that delay cancer detection and limit access
to optimal treatment strategies. Individuals from lower socioeconomic backgrounds, racial
and ethnic minorities, and rural populations experience higher cancer mortality rates due
to reduced access to screening programs, late-stage diagnoses, and disparities in treatment
adherence [3].

Artificial intelligence (AlI) has emerged as a transformative tool in oncology, offering
novel approaches to mitigating these disparities through predictive analytics, big data
integration, and precision medicine strategies. Al-powered models, including machine
learning (ML), deep learning (DL), and natural language processing (NLP), have shown
promising results in enhancing early cancer detection, optimizing personalized treatment
plans, and improving prognostic predictions. Integrating Al with large-scale datasets, such
as electronic health records (EHRs), genomic profiles, imaging modalities, and geospatial
data, enables a more comprehensive understanding of cancer disparities and facilitates
targeted interventions [4,5].

This review explores the intersection of Al and SDOH in addressing cancer inequities.
It examines how Al-driven technologies enhance cancer screening, improve treatment
accessibility, and refine predictive modeling for personalized oncology care. Additionally,
it highlights challenges related to Al biases, ethical considerations, data privacy, and the
regulatory landscape governing Al implementation in oncology. By integrating Al-driven
innovations into public health strategies and precision medicine frameworks, this review
aims to provide insights into how Al can bridge the existing gaps in cancer care and
contribute to equitable healthcare outcomes.



Cancers 2025, 17, 2866

30f23

Figure 1. Al integration with SDOH factors (human health, environmental health, and social factors)
to address cancer health disparities.

2. Methodology

A structured literature search was conducted to ensure the comprehensive coverage of
relevant studies and developments in the field (Figure 2). The search strategy incorporated
multiple reputable biomedical and interdisciplinary databases, including PubMed, Scopus,
Web of Science, IEEE Xplore, and Google Scholar. A search was conducted to capture the
research on artificial intelligence (Al), social determinants of health (SDOH), and cancer
disparities. The core search terms included combinations of keywords such as “artificial
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intelligence”, “machine learning”, “deep learning”, “natural language processing”, “ex-
plainable AI”, “social determinants of health”, “cancer disparities”, “oncology precision
medicine”, “health equity”, and “clinical trial diversity”. The literature search covered
peer-reviewed articles published between January 2014 and June 2025, focusing on stud-
ies reporting on Al methodologies and applications in oncology that explicitly address
or incorporate SDOH-related variables. Emphasis was placed on high-impact journals
in oncology, public health, digital medicine, and biomedical informatics. Articles were
selected based on their methodological rigor, relevance to Al integration in cancer care,
representation of diverse populations, and contributions to addressing disparities. The
reference lists of key articles and systematic reviews were manually screened to identify
additional pertinent publications.

The literature selection process was iterative and thematic, ensuring the balanced
inclusion of foundational concepts, current applications, and emerging directions in Al-
driven oncology disparity research. This approach enhanced the transparency while
preserving the narrative scope required to synthesize multidisciplinary perspectives in this
evolving field.
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Figure 2. Research framework methodology to address cancer disparities through Al integration.

3. The Role of Social Determinants of Health (SDOH) in Cancer Disparities
3.1. Socioeconomic, Healthcare, and Environmental Determinants of Cancer Disparities

Cancer remains one of the most significant global health burdens, yet the outcomes of
cancer diagnosis and treatment are not uniform across all populations. In their cohort study,
Pinheiro, L.C. et al. reported that, while genetic predisposition and lifestyle choices are
major contributors to cancer risk, social, economic, and environmental factors, collectively
known as social determinants of health (SDOH), play a fundamental role in shaping cancer
incidence, early detection, treatment accessibility, and survival rates (Table 1) [6]. These
non-medical factors create structural barriers that disproportionately affect marginalized
and underserved populations, leading to disparities in healthcare access and outcomes [6].

Socioeconomic status (SES) is a critical determinant of health, influencing an individ-
ual’s ability to access preventive screenings, timely diagnosis, and appropriate treatment.
Individuals from low-income communities often face financial barriers that prevent them
from undergoing routine cancer screenings, receiving early diagnoses, and adhering to
prescribed treatments. In 2022, Fnu, N. et al. reported that the costs of cancer therapies,
hospital visits, and post-treatment care can be prohibitive, leading to delayed intervention
and increased mortality rates [7]. Timely cancer detection is essential in improving survival
rates, yet access to high-quality oncology care remains unevenly distributed [7]. Many
rural and underserved urban communities lack specialized cancer centers, trained oncol-
ogists, and state-of-the-art diagnostic technologies, making early detection challenging.
This geographic disparity in healthcare infrastructure significantly delays diagnosis and
treatment initiation, leading to higher incidences of late-stage cancers among historically
marginalized populations [8].

In the United States, Zavala, V.A. et al. found that specific ethnic groups, such as
African American, European American, or Hispanic populations, were disproportionately
diagnosed with advanced-stage breast, colorectal, and lung cancer, largely due to reduced
access to screening programs such as mammograms, colonoscopies, and low-dose CT scans
for lung cancer [9]. The lack of routine screenings in these populations directly correlates
with higher mortality rates, demonstrating the urgent need for targeted interventions to
increase screening accessibility [10]. Furthermore, in their study, Larsen, K. et al. reported
that environmental factors also play a crucial role in cancer disparities, as exposure to
industrial pollutants, carcinogens, and inadequate living conditions can elevate cancer
risk. Communities situated near industrial zones, landfills, or high-traffic areas are often
exposed to higher levels of air pollution, heavy metals, and chemical toxins, increasing
their likelihood of developing cancers such as lung, bladder, and liver cancer [11].
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Table 1. Social determinants of health (SDOH) factors and their impacts on cancer outcomes.

SDOH Factor

Impact on Cancer Outcomes

Most Associated
Cancer Types

Socioeconomic Status (SES)

Low SES is linked to delayed diagnosis, reduced access to
cancer screenings, financial constraints affecting treatment
adherence, and lower participation in clinical trials.

Breast, Colorectal,
Lung, Prostate

Healthcare Access and
Insurance Coverage

Limited access to health insurance leads to fewer preventive
screenings, higher out-of-pocket costs for cancer treatment,
and disparities in the availability of advanced oncology care.

Breast, Cervical,
Colorectal, Lung

Education Level

Lower education levels correlate with reduced awareness of
cancer risk factors, decreased screening participation, and
lower adherence to recommended treatments.

Colorectal, Cervical,
Breast, Lung

Geographic Location

Rural populations have reduced access to specialized
oncology care, fewer early detection programs, and longer

Lung, Colorectal, Skin,

(Urban vs. Rural) travel distances to treatment centers, leading to Breast
later-stage diagnoses.
Higher exposure to air pollution, industrial chemicals,
. and carcinogens increases risks for lung, bladder, and liver Lung, Bladder, Liver,
Environmental Exposure . . . .
cancers, particularly in low-income and Mesothelioma

minority communities.

Housing Stability

Unstable housing conditions contribute to inconsistent
healthcare access, missed oncology appointments, and
increased exposure to environmental carcinogens.

Lung, Colorectal,
Cervical

Employment and
Occupational Hazards

Occupational exposure to carcinogens (e.g., asbestos,
radiation, pesticides) is linked to higher incidences of lung,
mesothelioma, and skin cancers, particularly among
blue-collar workers.

Lung, Mesothelioma,
Skin, Leukemia

Food Security and Nutrition

Poor nutrition and food insecurity lead to obesity-related
cancers (e.g., colorectal, breast, pancreatic cancer) and
deficiencies that impair immune function during
cancer treatment.

Colorectal, Breast,
Pancreatic, Liver

Psychosocial Stress and
Mental Health

Chronic stress, depression, and a lack of social support
negatively affect immune responses, treatment adherence,
and overall survival outcomes in cancer patients.

Breast, Ovarian,
Colorectal, Lung

Healthcare Literacy and
Cultural Barriers

Language barriers, mistrust in medical institutions, and a
lack of culturally competent healthcare limit participation in
cancer prevention programs and impact treatment decisions.

Breast, Cervical,
Prostate, Colorectal

3.2. Al's Potential in Addressing SDOH-Driven Cancer Inequities

Artificial intelligence (AI) has emerged as a transformative tool in healthcare, provid-

ing data-driven solutions to mitigate disparities in cancer care. Al can process large-scale,

multidimensional datasets, allowing researchers and clinicians to identify cancer risk fac-

tors, predict disease progression, and develop tailored treatment plans based on individual

genetic, clinical, and socioeconomic characteristics. Al technologies such as machine learn-
ing (ML), deep learning (DL), natural language processing (NLP), and predictive analytics
can enhance early cancer detection, optimize treatment decisions, and bridge healthcare

gaps for underserved populations (Figure 3) [12].
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Figure 3. Workflow demonstrating Al integration in healthcare, from clinical data acquisition via EHR
systems to SDOH-based predictive modeling and NLP, resulting in personalized cancer treatment
predictions and pharmaceutical process optimization.

Tiwari, A. et al. reported that Al-powered screening tools have revolutionized cancer
diagnostics by integrating advanced computational techniques such as computer vision,
radiomics, and deep learning models to enhance the detection accuracy and efficiency [13].
These Al-based imaging solutions analyze mammograms, computed tomography (CT)
scans, magnetic resonance imaging (MRI), and histopathological slides with high precision,
allowing for the earlier and more accurate identification of malignant lesions [13]. In a
recent study in 2025, Yao, I.Z. et al. showed that, by leveraging deep learning algorithms, Al
models can detect subtle tumor markers, microcalcifications, and abnormal tissue patterns
that might be imperceptible to human radiologists, significantly reducing false-negative
rates and improving early cancer diagnosis [14].

In 2020, Chan, H.P. et al. reported that Al-driven computer-aided detection (CAD)
systems have demonstrated remarkable capabilities in identifying abnormalities across
various imaging modalities [15]. In mammography, Al models assist in distinguishing
between benign and malignant breast lesions, improving the diagnostic accuracy and
supporting radiologists in detecting early-stage breast cancer [15]. In one study, Cellina, M.
et al. showed that, in lung cancer screening, Al-powered low-dose CT (LDCT) analysis en-
hances the detection of pulmonary nodules, reducing unnecessary biopsies while ensuring
timely intervention for high-risk patients [16]. Similarly, in 2025, Makar, J. et al. reported
that, in colorectal cancer, Al-assisted colonoscopy systems equipped with real-time polyp
detection algorithms significantly improved the adenoma detection rate, leading to better
patient outcomes [17]. Meanwhile, Wang, J. et al.’s study outlined that histopathological
analysis has also benefited from Al-driven automation, where deep learning-based whole-
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slide imaging (WSI) models assist pathologists in identifying cancerous cells with greater
speed and consistency [18]. Moreover, Rituraj et al. mentioned that precision oncology has
revolutionized cancer treatment by tailoring therapies based on an individual’s genetic
profile, tumor characteristics, and SDOH factors. Al-driven multi-omics analysis enables
oncologists to identify genetic mutations, drug response biomarkers, and immune system
interactions, allowing personalized treatment regimens [19]. In their study, Rafique, R.
et al. indicated that machine learning models can also predict chemotherapy resistance,
immunotherapy responses, and radiotherapy effectiveness based on biological and social
health determinants [20]. For example, the Al-driven stratification of African American vs.
European American colorectal cancer patients revealed key differences in tumor biology,
drug metabolism, and immune response, influencing treatment efficacy. Integrating these
insights into personalized cancer care plans can help to reduce disparities in treatment
outcomes [20].

3.3. Al as a Tool to Reduce Cancer Disparities

Artificial intelligence (AI) has emerged as a transformative tool in oncology, offer-
ing innovative solutions to mitigate cancer disparities by leveraging predictive analytics,
geospatial modeling, and community health interventions. Traditional cancer care models
often fail to account for systemic inequities in healthcare access, socioeconomic barriers, and
geographic limitations, which contribute to disparities in cancer screening, treatment, and
survival outcomes. By integrating Al-driven insights into public health strategies and clini-
cal policies, healthcare organizations can enhance screening accessibility, optimize resource
allocation, and improve participation in clinical trials for underrepresented populations.

In their study, Lee, D.C. et al. observed that cancer screening remains one of the most
effective strategies for reducing cancer-related morbidity and mortality, yet inequitable
access to early detection programs persists, particularly in rural, low-income, and racial
minority communities [21]. Many underserved regions lack adequate healthcare infrastruc-
ture, trained oncologists, and diagnostic facilities, leading to delays in cancer detection and
a higher prevalence of late-stage diagnoses [21]. Al-powered public health interventions
aim to bridge these gaps using geospatial analysis and predictive modeling to optimize
cancer screening accessibility and resource allocation [22].

Geospatial analysis, combined with Al-driven geographic information systems (GIS),
machine learning algorithms, and real-time cancer registry data, enables public health
officials to pinpoint geographic disparities in the cancer burden. In a recent work, Zhang,
B. et al. showed that Al models can assess demographic risk factors, healthcare facil-
ity distributions, and population-level cancer incidence rates to identify regions with
disproportionately high cancer mortality and low screening uptake [23]. For example,
deep learning models trained on historical cancer screening data can predict which zip
codes, counties, or urban districts are at a higher risk for undiagnosed cancer cases due to
insufficient medical infrastructure, financial constraints, or cultural barriers to healthcare-
seeking behavior [23]. These Al-powered insights allow policymakers to implement
targeted interventions, such as mobile cancer screening units, community outreach pro-
grams, and digital health initiatives, in areas with the greatest need [24]. Furthermore,
the flowchart below (Figure 4) illustrates how Al leverages SDOH through data analysis,
predictive modeling, and NLP to improve disease management, personalized care, and
public health strategies.
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Figure 4. Al integration framework for SDOH, demonstrating data-driven approaches, predictive
modeling, and NLP for disease management and health outcomes.

3.4. Al for Equitable Cancer Research and Clinical Trial Representation

Equitable representation in clinical research is critical in ensuring that novel cancer
therapies are effective across diverse populations. However, racial and ethnic minorities,
low-income patients, and individuals from rural communities remain underrepresented in
oncology clinical trials, limiting the generalizability of research findings and the efficacy of
precision medicine interventions. Al has the potential to transform clinical trial recruitment
by identifying eligible patients from diverse backgrounds, improving accessibility, and
reducing systemic barriers to participation [25].

Traditional clinical trial recruitment relies on physician referrals, the manual screening
of patient records, and self-enrollment processes, which often result in low participation
rates among minority and socioeconomically disadvantaged patients. Al-driven recruit-
ment platforms automate and streamline patient identification by using natural language
processing (NLP) algorithms and machine learning models to scan electronic health records
(EHRs), cancer registries, and genomic databases for patients who meet trial eligibility
criteria [26]. Ligero, M. et al. demonstrated in their studies that Al-powered NLP models
can extract key clinical and demographic attributes from unstructured EHR data, such
as tumor types, biomarker statuses, treatment histories, and socioeconomic indicators, to
generate personalized recommendations for clinical trial enrollment [27]. These Al-assisted
screening tools reduce the burden on oncologists and research coordinators, increasing the
efficiency and inclusivity of trial recruitment efforts [27].

In their recent work, Sedano, R. et al. showed that Al can also help to mitigate barriers
to clinical trial participation by addressing logistical, financial, and informational challenges
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disproportionately affecting underrepresented populations [28]. Al-driven chatbots and
virtual assistants provide patients with culturally tailored education about clinical trials,
addressing common concerns and misconceptions about participation. These digital tools
help to increase awareness and trust in medical research among communities historically
excluded from clinical studies [28]. Additionally, Yelne, S. et al. described that Al-powered
predictive modeling tools can assess financial barriers, transportation limitations, and
social determinants of health to identify patients who may require additional support to
participate in clinical research. By integrating SDOH-driven Al insights into trial recruit-
ment strategies, research institutions can offer targeted interventions such as transportation
assistance, financial reimbursements, and language translation services, ensuring that
participation is equitable and accessible for all patient populations [29].

4. AI Applications in Cancer Care and Disparities
4.1. AI-Driven Advances in Cancer Diagnostics and Screening

Early cancer detection is critical in improving patient outcomes and reducing mortality
rates. Al can expand cancer screening accessibility in low-resource settings by reducing
the reliance on highly specialized radiologists and oncologists (Table 2). Goel, I. et al.
reported that Al-powered mobile screening units equipped with cloud-based AI models
can facilitate early breast and cervical cancer detection in rural areas, where access to
specialized oncology services is limited [30]. Al-based telepathology platforms enable the
remote analysis of biopsy samples, allowing for the efficient triaging of high-risk cases and
timely interventions [30]. Additionally, the studies performed by Broggi, G. et al. reported
that Al-driven natural language processing (NLP) can analyze electronic health records
(EHRs) and demographic data to identify populations at a higher risk for late-stage cancer
diagnosis, prompting targeted outreach programs [31].

Table 2. Al-driven interventions in different cancer types.

Cancer Al-Powered AI-]?nven . Al-Based Treatment Clinical Application e ey .
Type Diagnostic Tools Prognostic and Risk Optimization and Benefits Limitations
yp Assessment Models
. AI.—gulded Earlier detection in .
Deep learning-based . . radiotherapy - . Underperform in
Machine learning . high-risk women, .
mammography . planning for dose women with
. . models predicting - reduced false .
Breast analysis, Al-driven precision, .. . atypical tumor
tumor recurrence b positives in
Cancer ultrasound for dense reinforcement patterns due to
. and response to : mammography, and . -
breast tissue learning models for . . biased training
. chemotherapy improved survival
detection chemotherapy datasets
. . outcomes
regimen selection
Al-based risk Enhanced
sciiéeﬁagﬁd 1(1:1 Ffl stratification for Machine early-stage lung
nodule deteZtiong smokers and learning-based cancer detection, Risk of false
Lung deep learnin -base, d high-risk radiation therapy improved positives, leading
Cancer PET ima iﬁ for individuals, adaptation, radiotherapy to unnecessary
metas%as;(;s predictive modeling Al-powered drug precision, and better biopsies
ovaluation for immunotherapy  resistance prediction immunotherapy
response patient selection
Al-powered Deep learning AI.-ng?n nghe.r adenoma .
. . robotic-assisted detection rates in High
colonoscopy with algorithms for . .
. - surgery for tumor colonoscopy, implementation
real-time polyp prediction of . .
Colorectal . resection, predictive reduced colorectal costs; dependency
detection, deep colorectal cancer g . .
Cancer analytics for cancer recurrence, on high-quality

learning-based
histopathology for
tumor grading

metastasis, Al-based
survival prediction
models

personalized
chemotherapy
selection

and optimized
chemotherapy
regimens

imaging and
trained personnel
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Table 2. Cont.
Al-Driven .. S
Cancer Al-Powered oven Al-Based Treatment Clinical Application P
Type Diagnostic Tools Prognostic and Risk Optimization and Benefits Limitations
yp 8 Assessment Models P
. . Improved .
MRI-based AI Al-driven genomic . prove Limited
. - . . differentiation of . s
models for lesion profiling to stratify Al-assisted focal . interpretability of
I . . aggressive vs. L
classification, aggressive vs. therapy decision . Al decisions;
. . . . L indolent tumors, .
Prostate Al-driven biomarker indolent tumors, making, predictive enhanced potential
Cancer detection in predictive modeling modeling for radiothera overtreatment or
prostate-specific for active hormone therapy - Py undertreatment
. . . targeting, and better
antigen (PSA) surveillance responsiveness ) . due to model
screenin eligibilit patient selection for uncertaint
& & y active surveillance y
Increased early
Al-powered liver . . .
powere © Al-enhanced liver Al-driven detection rates for .
elastography for . o . N Inconsistent
. . cirrhosis risk radioembolization hepatocellular .
. fibrosis assessment, L . . . ! performance in
Liver . prediction, machine  planning, predictive carcinoma (HCC), - .
deep learning . : . . . patients with
Cancer learning models for analytics for liver improved surgical 1
models for HCC hepatic tumor transplant success lanning, and better comorbid liver
detection in MRI and P P planning, anc diseases
recurrence rates liver function
CT scans .
preservation
. . T r . -
Al-driven Al-assisted Al-enhanced More accurate Risk of overfitting
. . . . melanoma .
dermoscopy image prognosis of image-guided e to fair-skinned
e L classification, ..
. classification for melanoma surgery for . datasets; limited
Skin . . . personalized .
melanoma detection, progression, melanoma excision, . accuracy in
Cancer . e . . immunotherapy . .
convolutional neural ~ predictive modeling  deep learning-based - detecting atypical
. . strategies, and . K
networks (CNNs) for  for immunotherapy immunotherapy L . or rare skin lesions
. . L L earlier intervention -
lesion differentiation outcomes response prediction S . in dark skin tones
for high-risk patients
Better tumor
. Al-powered survival Al-powered localization in
Al-assisted MRI powered st P . . .
. prediction in neurosurgical surgical planning,
segmentation for . . o - .
. L glioblastoma planning for optimized radiation Limited data
Brain tumor localization, . . . o1l
) patients, machine precision tumor dose for availability for rare
Tumors deep learning for . . . . .
- learning models for  resection, Al-driven glioblastoma brain tumors
glioblastoma ) . L
radin radiotherapy adaptive radiation treatment, and
& & response assessment therapy improved long-term
survival prediction
. . Improved earl
Al-based ultrasound Al-driven ovarian N pr y Early-stage
. . Al-based monitoring ovarian cancer . .
screening for cancer risk . detection remains
. e of treatment detection, .
early-stage ovarian stratification based . . . challenging due to
. . response in ovarian personalized
Ovarian tumors, deep on genetic and . . vague symptoms;
. K cancer patients, therapeutlc R
Cancer learning models for lifestyle factors, . Al models require
. - . Al-driven drug approaches, and
histopathology- predictive analytics . large-scale
repurposing for enhanced e
based tumor for targeted i validation across
- . personalized therapy chemotherapy .
characterization therapies . populations
effectiveness

4.2. Al in Personalized Cancer Therapy and Treatment Optimization

Personalized cancer treatment integrates molecular, clinical, and social determinant

of health (SDOH) data to optimize therapy selection. Al models leveraging multi-omics

data (genomics, proteomics, and transcriptomics) could predict tumor responsiveness to

chemotherapy, immunotherapy, and targeted drugs with higher precision. Banumathi, K.

et al. reported in their studies that reinforcement learning (RL)-based Al systems have been
developed to suggest adaptive treatment regimens that are dynamically adjusted based on
tumor progression, patient responses, and socioeconomic factors [32]. These Al frameworks
analyze real-world evidence from clinical trials, patient registries, and population-level
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health disparities to personalize therapy recommendations [32]. Many Al-driven predictive
models have shown promise in forecasting chemotherapy toxicity, patient responses to
immunotherapy, and radiation sensitivity (Table 3). Machine learning models incorporating
patient comorbidities, treatment history, genetic biomarkers, and SDOH variables can predict
the likelihood of adverse reactions to chemotherapy agents. For radiotherapy planning, Fu,
Y. et al. showed that Al-based dose optimization algorithms analyze tumor radiosensitivity
to customize treatment regimens while minimizing radiation exposure to healthy tissues [33].
Al-driven adaptive radiotherapy systems continuously adjust treatment parameters based
on real-time tumor volume changes, enhancing precision in radiation oncology [33].

Table 3. Al applications in personalized cancer treatment.

Precision Medicine

Al Model Type Clinical Applications Key Benefits Limitations
yP Strategy 144 y
Analyzing histopathology, Prgdlgtlng tumor Increases accuracy of .
. . . . behavior in breast, lung, tumor classification; Requires large
Deep Learning (DL) genomic, and imaging data
o . and colorectal cancer; enhances early labeled datasets; poor
for Tumor Profiling  to classify tumor subtypes L o - : s
; . assisting pathologists in detection and risk explainability.
and predict aggressiveness. .2 . . P
precision diagnosis. stratification.
Based on molecular and Optimizing
. . .. - . Reduces treatment
Machine Learning clinical data to predict chemotherapy regimens - - . .
. . . toxicity and improves Limited validation
(ML) for Drug patient response to for ovarian, pancreatic, . L
survival rates through across minority
Response chemotherapy, targeted and blood cancers; R ) .
L . individualized drug populations.
Prediction therapy, and reducing adverse drug .
. . selection.
immunotherapy. reactions.
Integrating genomic, Developing targeted Provides a holistic view = High computational
Al-Powered transcriptomic, proteomic,  liver, prostate, and brain of disease biology, cost and complexity;
Multi-Omics and metabolomic datato  cancer therapies; refining leading to more challenges in data
Integration tailor individualized immunotherapy effective precision harmonization across
treatment plans. eligibility. oncology interventions. omics platforms.
. . . . i il
Extracting key clinical Supporting oncologists S . L m.lted.by variability
Natural Language L . . - Minimizes clinician in clinical note
. insights from electronic with real-time .
Processing (NLP) . workload; accelerates formats; risk of
.2, health records (EHRs) and  evidence-based treatment . . .
for Clinical . . treatment planning for ~ misinterpretation or
.. literature to recommend suggestions for rare and .
Decision Support . . complex cancer cases. loss of context in
optimal treatments. aggressive cancers. EHRSs

Reinforcement
Learning (RL) for
Adaptive Therapy

Personalizing radiation
therapy plans for
glioblastoma and

prostate cancer;
optimizing drug dosage
in leukemia.

Enhances therapeutic
outcomes by adjusting
treatment in response
to evolving cancer
mutations.

Developing dynamic,
patient-specific treatment
regimens that adapt based

on tumor evolution and
real-time response.

Complex to train and
validate; requires
long-term real-time
patient data.

Federated Learning

Training AI models across
global healthcare
institutions without data

Improving personalized =~ Maintains patient data
treatment for rare cancers  privacy while enabling  Technical challenges

for Global Precision sharine. improvin by leveraging Al-driven global in model
Medicine & 1mp & multi-institutional collaborations in synchronization.
personalized therapy datasets oncolo
. gy.
models.
Enhancing the Increases trust in
. interpretability of Providing transparent Al-driven decisions; Trade-off betwe.e n
Explainable Al ; . . . . model complexity
Al-driven treatment risk-benefit analysis of facilitates regulatory . e
(XAI) for Treatment . and interpretability;
recommendations to Al-generated treatment approval of Al-based
Transparency . .. . XAI outputs are not
improve clinician trust and recommendations. treatment

. . clinically intuitive.
patient adherence. recommendations. y
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Precision Medici . N . T
AI Model Type recision Medicine Clinical Applications Key Benefits Limitations
Strategy
Identifying novel Advancing targeted drug ~ Enables discovery of . .
. . . - - Requires extensive
Al-Driven prognostic and predictive discovery for next-generation S
. . . . . validation and
Biomarker biomarkers for early cancer triple-negative breast biomarkers for early T
. . ) replication in diverse
Discovery detection and treatment cancer, melanoma, and cancer detection and cohorts
selection. lung adenocarcinoma. precision medicine. '

4.3. Al for Cancer Prognosis and Survival Prediction

Machine learning (ML) and deep learning (DL) advancements have significantly im-
proved cancer prognosis by enabling accurate predictions of tumor recurrence, metastasis,
and survival outcomes. Supervised and unsupervised ML models, including gradient
boosting algorithms, deep neural networks (DNNs), and ensemble learning techniques,
have been used to analyze longitudinal patient data, clinical biomarkers, genomic alter-
ations, and treatment responses to generate individualized risk assessments. These models
facilitate the quantitative evaluation of recurrence probabilities, optimize survival predic-
tions under different therapeutic regimens, and assess the influence of social determinants
of health (SDOH) on long-term outcomes [34].

Integrating these Al-driven predictive models into oncology decision support systems
(DSS) allows oncologists to stratify patients into high-risk and low-risk cohorts, guiding
personalized follow-up strategies, early intervention planning, and adaptive post-treatment
monitoring. In a similar study, Russo, V. et al. indicated that, by leveraging real-world
evidence from electronic health records (EHRs), imaging datasets, and multi-omics profiles,
Al'models enhance precision oncology, ensuring proactive and data-driven clinical decision
making to improve patient outcomes and overall cancer care efficiency [35].

4.4. Al-Powered Real-Time Monitoring for Treatment Adherence in Low-Income Patients

Treatment adherence remains a significant challenge, particularly in low-income and
underserved populations, where patients often face financial barriers, transportation lim-
itations, and social support deficiencies. Al-powered remote monitoring systems, incor-
porating wearable devices, smartphone applications, and telehealth platforms, enable the
real-time tracking of treatment adherence. Cunha Reis, T. reported that Al-based natu-
ral language processing (NLP) tools analyze patient-reported symptoms and healthcare
utilization patterns to identify those at risk of non-adherence or treatment discontinua-
tion [36]. These insights facilitate early interventions, personalized support programs, and
tele-oncology follow-ups, improving overall treatment outcomes [36].

4.5. Al-Based Multi-Omics Integration for Personalized Prognostics

Integrating multi-omics data with artificial intelligence (AI) has revolutionized per-
sonalized prognostics in oncology, enabling data-driven risk assessment, treatment opti-
mization, and real-time clinical decision making. A recent study performed by Verlingue,
L. et al. showed that Al-driven deep reinforcement learning (DRL) and machine learning
(ML) models can analyze electronic health records (EHRs), genomic profiles, transcriptomic
signatures, and proteomic biomarkers to predict tumor progression, therapy responses,
and long-term survival outcomes [37].

Al-enhanced multi-omics integration strengthens the predictive power of oncology
models, enabling the more precise stratification of patients based on tumor heterogeneity,
genetic predispositions, and environmental influences. The synergy between Al, predictive
analytics, and real-time patient monitoring supports early cancer detection, individualized
treatment selection, and improved survival rates. However, addressing key challenges such
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as algorithmic bias, limited diversity in training datasets, and disparities in Al accessibility
is crucial in ensuring equitable Al-driven oncology care. Future advancements should focus
on developing bias-free, interpretable Al frameworks incorporating social determinants
of health (SDOH), ensuring that precision oncology strategies benefit all populations
regardless of socioeconomic status, race, or geographic location [38].

5. Addressing Challenges in AI-Driven Cancer Care
5.1. Underrepresentation of Minority Groups in Al Training Datasets

Al models rely on large-scale datasets to train deep learning algorithms, improve
pattern recognition, and generate accurate predictions. However, a major limitation in
oncology-focused Al systems is the underrepresentation of racial and ethnic minority
groups in these training datasets. Most publicly available cancer imaging, genomics, and
clinical datasets are skewed towards populations of European ancestry, leading to dispari-
ties in Al models’ generalizability and accuracy [39]. Al models trained predominantly on
breast cancer imaging datasets from Caucasian women have demonstrated higher sensitiv-
ity and specificity for tumor detection in White patients compared to African American
and Hispanic patients. This results in misclassification, increased false-negative rates, and
delayed diagnoses for minority populations, exacerbating existing healthcare disparities.
In lung cancer detection, Al models trained on non-diverse imaging datasets have shown
lower performance in detecting lung nodules in Asian and African American patients [40].

5.2. Al Limitations in Capturing Non-Clinical SDOH Factors Affecting Cancer Care

While Al has shown remarkable progress in cancer diagnostics and treatment planning,
it remains limited in capturing the full scope of non-clinical SDOH factors that influence
patient outcomes. Traditional Al models primarily rely on biological markers, imaging
data, and clinical histories, often neglecting socioeconomic barriers, environmental expo-
sures, healthcare accessibility, and psychosocial determinants, which significantly impact
cancer progression and survival rates [41]. Furthermore, Al-driven predictive models for
chemotherapy adherence often focus on molecular and pharmacogenomic data and fail to
integrate real-world factors such as transportation challenges, financial toxicity, caregiver
availability, and language barriers. Similarly, cancer recurrence prediction models trained
only on clinical variables overlook stress levels, nutrition, housing conditions, and access
to follow-up care, all of which play a pivotal role in patient outcomes [4].

5.3. Strategies for Bias Mitigation, Model Fairness Testing, and Federated Learning

Fairness, transparency, and impartiality in Al-driven oncology require robust bias
mitigation strategies, fairness-aware Al models, and decentralized learning approaches.
Bias auditing is a critical step in Al model validation, involving continuous fairness assess-
ments to detect performance disparities across racial, ethnic, and socioeconomic subgroups.
These audits facilitate the recalibration of prediction thresholds for high-risk populations,
ensuring that Al-based cancer screening and diagnostic tools maintain clinical reliability
across diverse patient cohorts [42]. A pivotal innovation in equitable Al development is
federated learning. This decentralized approach enables Al models to be trained across
multiple institutions, geographic regions, and demographic groups without directly shar-
ing sensitive patient data. Unlike traditional centralized training methods, federated
learning preserves data privacy and security while ensuring model robustness across het-
erogeneous populations. This technique is particularly effective in mitigating racial and
socioeconomic biases in Al-driven cancer screening, diagnosis, and treatment planning by
fostering cross-institutional knowledge integration and ethical AI deployment in precision
oncology [43].
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5.4. Challenges in Clinical Trials and Oncology Decision Making

One of the major challenges in Al-driven oncology is the underrepresentation of racial
and ethnic minorities in clinical trials, which has profound implications for cancer treatment
personalization and drug efficacy assessment. Traditional clinical trials have historically
excluded or under-enrolled African American, Hispanic, and Indigenous populations,
leading to limited data on treatment responses and adverse effects for these groups [42].
When Al models are trained on clinical trial data that lack diversity, their ability to predict
drug efficacy, toxicity risks, and survival probabilities in minority patients is significantly
compromised. For instance, Al-driven precision medicine algorithms trained on genomic
data predominantly from individuals of European ancestry may not accurately predict tar-
geted therapy responses in African and Asian populations, leading to suboptimal treatment
recommendations [44].

6. AI-Enabled Interventions to Reduce Cancer Disparities
6.1. Al for Public Health and Cancer Screening Accessibility

Geospatial analysis and Al-powered geographic information systems (GIS) have rev-
olutionized public health surveillance and cancer screening accessibility. Al-driven GIS
models analyze demographic, environmental, and healthcare infrastructure data to iden-
tify cancer hotspots—regions with higher-than-expected cancer incidence and mortality
rates [45]. Al-based spatial epidemiology models integrate real-time cancer registry data,
electronic health records (EHRs), and environmental exposure metrics to determine regions
with low cancer screening participation and high numbers of late-stage cancer diagnoses.
For example, in Wang, L.’s study, the utilization of deep neural networks (DNNs) and
reinforcement learning algorithms has demonstrated how Al can predict areas with insuffi-
cient mammography and colorectal cancer screening coverage [46]. These models factor
in transportation barriers, healthcare provider density, and socioeconomic indicators to
pinpoint at-risk populations that require targeted screening interventions [46].

6.2. AlI-Driven Policy Recommendations for Equitable Oncology Care

Al-powered healthcare policy modeling enables evidence-based funding allocation
and cancer control program design. Machine learning algorithms analyze epidemiolog-
ical trends, healthcare costs, and SDOH data to predict the future cancer burden and
recommend targeted policy interventions. Predictive modeling tools integrate real-world
cancer incidence rates with healthcare utilization metrics to help policymakers to allocate
resources to high-need areas. Al-driven simulations provide insights into the long-term
impacts of different cancer prevention strategies, such as screening expansions, genetic
testing availability, and tobacco control policies [47]. Al-based policy recommendation
systems also play a vital role in addressing racial and socioeconomic disparities in cancer
outcomes. Al-driven impartial audits assess whether healthcare policies disproportionately
benefit specific groups while neglecting underserved populations. By analyzing historical
disparities in cancer care delivery, Al helps policymakers to implement bias-free, inclusive
cancer care policies [47].

6.3. Al-Driven Strategies to Improve Access to Clinical Trials and Precision Medicine

Clinical trials are the foundation of oncology research and precision medicine, yet
the underrepresentation of racial and ethnic minorities remains a persistent challenge.
Al transforms clinical trial recruitment by identifying eligible participants from diverse
demographic backgrounds, ensuring greater inclusivity in cancer research. Smiley, A. et al.
showed that natural language processing (NLP) algorithms could analyze unstructured
clinical notes, genomic databases, and patient registries to match underrepresented popu-
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lations with relevant cancer trials [48]. Al-driven real-time patient recruitment platforms
streamline eligibility screening and trial enrollment, expanding access for low-income and
rural patients who may otherwise be excluded from cutting-edge cancer treatments [48].
Machine learning models also predict barriers to trial participation, such as transportation
difficulties, language barriers, and financial constraints. Al-based solutions address these
challenges by integrating telemedicine consultations, remote monitoring technologies, and
financial assistance programs into clinical trial designs [49].

7. Ethical Considerations in AI-Driven Cancer Care
7.1. Ensuring Patient Data Protection and Regulatory Compliance

Al-driven cancer models rely on large-scale datasets, including electronic health
records (EHRs), genomic sequences, imaging scans, and patient-reported outcomes, to train
and optimize predictive algorithms. However, the uncertainty regarding data security and
the utilization of sensitive personal health information (PHI) in Al models raise serious
concerns about data privacy, security, and ethical handling (Table 4). Furthermore, medical
data breaches can have severe consequences, including identity theft, unauthorized access,
discrimination, and loss of patient trust in Al-driven healthcare innovations [50]. The
Health Insurance Portability and Accountability Act (HIPAA) in the United States and
the General Data Protection Regulation (GDPR) in Europe set strict guidelines aimed at
protecting patient data, ensuring consent, and limiting data sharing. However, Al-driven
oncology applications require continuous compliance with these regulatory frameworks to

mitigate potential ethical risks (Table 5) [51].

Table 4. Al data security techniques in cancer models.

Use Case in
Security Technique Description AI-Driven Cancer Key Benefits Limitations/Challenges
Models
. Ensures that f:lata remam Secure transmission  Prevents data leaks and High Computanonz.al
Encryption encrypted during Al model . . o cost and latency during
. e . of genomic data in ensures security in LS
(Homomorphic training and computation, .. . encrypted operations;
. . Al-based precision  cloud-based Al training . -
Encryption) preventing exposure of limited scalability for

patient information.

oncology.

environments.

large datasets.

Anonymization and

Removes personally
identifiable information (PII)
from datasets, allowing Al

Protecting patient
identities in

Enhances compliance
with GDPR and HIPAA

Risk of re-identification

e . - o h
De-Identification models to use data without AI. pqwered camncer by minimizing data t}}roug d.ata
.. : registries and clinical . triangulation.
compromising patient trials exposure risks.
privacy. '

A decentralized secu}rity . Ma.intaining the. It prevents data High energy

framework that provides integrity and security tamperine and consumption,
Blockchain-Based tamper-proof records of of Al-driven perng scalability, and

increases trust in

Data Security Al-driven medical oncology . interoperability issues
. .. . Al-driven cancer .
transactions and ensures decision-making . . in large-scale
. . diagnostics.
data integrity. systems. healthcare systems.
Enables Al model training Collaborative Al Allows Al models to be Requires complex

Federated Learning

across multiple institutions
without sharing raw patient

data, maintaining privacy
while improving Al accuracy.

training for
multi-institutional
cancer research while
preserving patient
confidentiality.

trained on diverse
datasets without
breaching patient
confidentiality.

model coordination;
variations in local data

quality may reduce

model performance.
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Table 4. Cont.

Security Technique

Description

Use Case in
Al-Driven Cancer
Models

Key Benefits

Limitations/Challenges

Differential Privacy

Adds statistical noise to
datasets before Al
processing, ensuring that
individual data points
cannot be re-identified while
preserving trends.

Ensuring privacy in

Al-driven predictive

modeling for cancer
risk assessment.

Balances privacy
protection with
Al-driven healthcare
advancements.

Introduces accuracy
trade-offs; fine-tuning
the noise level is
complex and
context-dependent.

Access Control and
Role-Based
Authentication

Implements role-based
access controls to restrict Al
model interaction with
sensitive patient data to

Restricting AI model
access in hospitals
and research centers
to prevent
unauthorized use.

Enhances cybersecurity
and prevents
unauthorized access to
patient data in

Requires continuous
monitoring and policy
updates to stay secure.

authorized personnel only.

Al-driven systems.

Table 5. Regulatory frameworks for ethical Al implementation.

Regulatory Framework

Scope

Key Requirements

Impact on AI-Driven Cancer
Models

HIPAA (Health Insurance
Portability and
Accountability Act, U.S.)

Regulates data privacy and
security in Al-driven healthcare
applications in the U.S.

Requires encryption, access
control, and data
anonymization in Al-driven
cancer care.

Ensures patient data security
in Al-powered oncology
registries and diagnostic tools.

GDPR (General Data
Protection Regulation,
Europe)

Provides strict guidelines on Al
data processing, patient consent,
and data minimization in Europe.

Mandates explicit patient
consent for Al data usage and
allows individuals to request

data deletion.

Protects patient rights in
Al-driven cancer research and
clinical trials.

FDA (U.S. Food and Drug

Ensures that Al-powered
diagnostic and therapeutic

Defines validation protocols

Regulates the safety and

Administration) L for Al-driven imaging, efficacy of Al-powered cancer
models undergo validation, . .
AI/ML-Based Software . . pathology, and treatment diagnostics and treatment
. testing, and clinical safety .
Regulations . recommendation systems. systems.
evaluations.
Mandates transparency in Al Improves clinician trust and
. . . . Encourages the use of : . .
Explainable AI (XAI) decision making, ensuring . . patient adoption of Al-driven
. . e : interpretable Al models in .
Guidelines interpretability in Al-driven . . personalized oncology
A healthcare decision making.
oncology applications. treatments.
15O /IEC 27001 Establishes standards for Requires Al-driven oncology Enhances cybersecurity in

(International Data
Security Standard) [52]

information security management
in Al-driven medical research and
clinical applications.

models to follow strict data
security and risk assessment
protocols.

Al-driven cancer data storage
and processing platforms.

7.2. Al-Based Privacy-Preserving Techniques and Federated Learning

The integration of Al in oncology necessitates stringent privacy-preserving techniques

to ensure the security of sensitive patient data while maintaining model performance across

diverse populations. Traditional machine learning models rely on centralized data aggrega-

tion, which poses risks related to data breaches, unauthorized access, and ethical concerns

regarding patient confidentiality [53]. To address these challenges, privacy-preserving Al

techniques, such as federated learning, homomorphic encryption, and differential privacy,

have emerged as robust solutions in Al-driven cancer research. Federated learning (FL) is a

decentralized Al training approach that enables multiple institutions to collaboratively de-

velop predictive oncology models without sharing raw patient data. Instead of transferring

patient records to a central repository, FL allows Al models to be trained locally on institution-

specific datasets, with only encrypted model updates being shared across participating sites.

This approach preserves data confidentiality and facilitates Al model generalizability by
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incorporating multi-institutional and geographically diverse datasets, reducing bias and
enhancing the predictive accuracy for underrepresented populations [54]. Complementary
to FL, homomorphic encryption enables Al models to perform computations on encrypted
data, ensuring that sensitive patient information remains secure throughout the model train-
ing process. Differential privacy further enhances security by injecting controlled statistical
noise into datasets, preventing the re-identification of individual patient records while still
allowing meaningful insights to be extracted. These privacy-preserving Al techniques are
essential for regulatory compliance with frameworks such as HIPAA (Health Insurance
Portability and Accountability Act) and GDPR (General Data Protection Regulation), ensur-
ing ethical Al deployment in oncology. By implementing federated learning and advanced
cryptographic methods, Al-driven cancer research can maximize the predictive power while
upholding data integrity, security, and patient trust in precision medicine initiatives [55].

7.3. Explainable Al (XAI) to Enhance Transparency in Cancer Decision Making

As artificial intelligence (AI) becomes increasingly integrated into oncology, ensuring
transparency and interpretability in Al-driven clinical decisions is paramount. Tradi-
tional deep learning models—particularly black-box algorithms like deep neural networks
(DNNSs) and convolutional neural networks (CNNs)—often lack explainability, making it
difficult for oncologists to trust and validate Al-generated predictions. Explainable AI (XAI)
aims to address this limitation by providing insights into how Al models arrive at specific
conclusions, enhancing the interpretability, physician trust, and regulatory compliance in
cancer diagnostics and treatment planning (Figure 5) [56].

Input Data

Explainable AT (XAT) Health Disparity Models

X
Decision Making  Improving Health
Process Outcome

%

Figure 5. Explainable AI (XAI) framework for health disparity models, integrating machine learning
predictions and explanations to improve decision making and health outcomes for cancer.

XAI techniques, such as Shapley Additive Explanations (SHAP), Local Interpretable
Model-Agnostic Explanations (LIME), and attention mechanisms, enable Al systems to
highlight critical features influencing model predictions, such as tumor morphologies,
genomic alterations, or patient demographics. In terms of medical imaging, in Ayaz, H.
et al.’s work, saliency maps and gradient-weighted class activation mapping (Grad-CAM)
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were used to visualize regions of interest in radiology scans, ensuring that Al models focused
on clinically relevant tumor features [57]. These explainability tools empower oncologists to
validate Al-driven diagnoses, reduce misclassification risks, and improve patient-physician
communication by offering interpretable risk assessments rather than opaque outputs [57].

Moreover, XAl is crucial for bias detection and mitigation in Al-driven oncology. By
revealing model decision pathways, XAl can help to identify disparities in cancer risk pre-
dictions across different demographic groups, ensuring that Al systems do not perpetuate
existing healthcare inequalities. Regulatory bodies such as the Food and Drug Administra-
tion (FDA) and European Medicines Agency (EMA) emphasize the need for explainability in
Al-based medical devices, reinforcing XAl’s role in ethical and accountable Al deployment
in oncology. As Al continues to shape precision medicine, integrating XAI frameworks will
ensure fairness, trust, and the clinical adoption of Al-driven cancer care solutions [58].

Ethical considerations in Al-driven oncology require a multifaceted approach encom-
passing data privacy protection, regulatory compliance, model interpretability, and bias
mitigation strategies. By implementing HIPAA /GDPR-compliant Al frameworks, explain-
able AI (XAI) methodologies, and continuous fairness testing, Al can contribute to more
equitable, transparent, and trustworthy cancer care. Future advancements must focus on
integrating SDOH-driven insights, enhancing physician—Al collaboration, and developing
global Al ethics standards to ensure that Al benefits all cancer patients—regardless of
socioeconomic status, race, or geographic location [59].

8. Future Directions of Al in Cancer Disparity Research
8.1. Advances in Al-Driven Precision Oncology

Integrating artificial intelligence (Al) in oncology has demonstrated significant poten-
tial in enhancing cancer diagnostics, treatment planning, and equitable healthcare delivery.
However, the future of Al in cancer disparities research will be driven by advancements in
precision oncology, multi-omics integration, and the incorporation of social determinants
of health (SDOH) into Al-driven decision-making frameworks. The next generation of
Al-powered oncology models will emphasize longitudinal survival predictions, explainable
AI (XAI), federated learning, and Al-driven community health interventions. Additionally,
the emergence of environmental and lifestyle-based Al prevention strategies will allow
for proactive rather than reactive cancer care, thereby improving population-wide cancer
outcomes while addressing healthcare inequities [60].

Precision oncology has undergone rapid evolution with the advent of multi-omics tech-
nologies, which integrate genomic, transcriptomic, proteomic, epigenomic, and metabolomic
data to develop personalized treatment strategies [61]. Al-driven multi-omics integration
enables comprehensive cancer profiling, allowing oncologists to tailor therapeutic interven-
tions based on an individual’s molecular signature, rather applying than a one-size-fits-all
approach. Deep learning algorithms, particularly Transformer-based neural networks
and graph-based Al models, can process complex multi-omics datasets to identify cancer-
specific biomarkers, drug resistance mechanisms, and tumor microenvironment interactions.
Al-enhanced multi-modal learning models are also being developed to synthesize heteroge-
neous datasets (e.g., genetic mutations, histopathological features, imaging data, and clinical
history) to predict optimal treatment regimens for individual patients [5,62].

Integrating Al into multi-omics oncology research has yielded promising results in iden-
tifying novel drug targets and optimizing immunotherapy selection. For instance, the work
performed by Yang, B. et al. showed that Al-powered deep neural networks can be used
to predict the tumor mutational burden (TMB) and microsatellite instability (MSI) status,
which are key indicators of a patient’s response to immune checkpoint inhibitors (ICIs) [63].
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Future advancements in federated multi-omics learning frameworks will further reduce
algorithmic bias and improve Al models’ generalizability across diverse populations [63].

8.2. Al Models Predicting Long-Term Cancer Survival and Quality of Life

One of the most promising frontiers in Al-driven oncology is the development of
longitudinal survival prediction models that assess cancer recurrence risks, metastasis
probabilities, and post-treatment quality of life (QoL). Traditional survival prediction
models rely on Kaplan-Meier curves and Cox proportional hazard regression, which
have limitations in handling high-dimensional, time-dependent clinical data. Al-driven
recurrent neural networks (RNNs) and Transformer-based time-series models overcome
these limitations by incorporating dynamic patient data over time, enabling real-time risk
stratification and personalized survivorship planning [64].

Al-enhanced QoL prediction models integrate clinical, genetic, and SDOH factors to
estimate post-treatment functional outcomes, mental health effects, and overall well-being
in cancer survivors. By leveraging real-world evidence (RWE) from EHRs, wearable health
devices, and patient-reported outcome measures (PROMs), Al can help clinicians to make
informed decisions regarding survivorship care plans and supportive interventions [65].

Future Al-driven cancer survivorship frameworks will likely incorporate reinforce-
ment learning (RL) models that provide adaptive, patient-specific recommendations for
follow-up care, dietary modifications, and psychological support. Predictive Al-based digi-
tal twins—virtual models that simulate individual patient responses—could revolutionize
personalized post-treatment care strategies [66].

8.3. Emerging Trends in Al for Cancer SDOH Research

As Al becomes increasingly embedded in oncology decision making, the demand for
transparency, accountability, and fairness in Al-driven predictions has led to the rise of
explainable AI (XAI). Unlike traditional black-box deep learning models, XAl provides
human-interpretable explanations for Al-generated cancer diagnoses, risk assessments, and
treatment recommendations. Attention mechanisms, saliency maps, and Shapley Additive
Explanations (SHAP) are among the emerging XAI techniques used to enhance trust in
Al-driven oncology systems [67].

Al-driven community health interventions are also emerging as a pivotal strategy to
reduce cancer disparities. By integrating SDOH variables into predictive models, Al can
identify high-risk geographic regions and marginalized patient groups needing targeted
cancer prevention initiatives. Future Al-powered digital health platforms will likely facili-
tate culturally tailored cancer education programs, mobile screening units, and Al-assisted
telemedicine consultations for underserved populations [68].

Beyond treatment optimization, Al is increasingly deployed for cancer prevention
strategies, incorporating environmental, behavioral, and socioeconomic risk factors. Tradi-
tional epidemiological studies have established that air pollution, occupational exposure
to carcinogens, lifestyle habits (e.g., smoking, diet, physical activity), and socioeconomic
barriers significantly contribute to cancer incidence. Al-powered environmental risk as-
sessment models can now analyze satellite imagery, climate data, and pollution exposure
metrics to predict geospatial cancer risk patterns [56].

9. Conclusions

Artificial intelligence (Al) is revolutionizing oncology by enhancing the diagnostic
accuracy, optimizing treatment pathways, and improving survival outcomes, particularly
for historically underserved populations. By integrating machine learning (ML), deep
learning (DL), natural language processing (NLP), and predictive analytics, Al enables



Cancers 2025, 17, 2866

20 of 23

early cancer detection, personalized therapy selection, and data-driven clinical decision
making. Incorporating social determinants of health (SDOH) into Al-driven oncology
frameworks further strengthens efforts to reduce disparities in cancer screening, treatment
access, and prognostic modeling. However, the ethical and equitable deployment of Al
remains a critical challenge, with algorithmic bias, limited diversity in training datasets,
and regulatory gaps posing significant barriers to fair Al implementation in cancer care.

To ensure that Al-driven oncology benefits all populations, bias mitigation strategies,
fairness-aware machine learning models, and federated learning approaches must be pri-
oritized. Developing explainable AI (XAI) frameworks will enhance their transparency,
ensuring that Al-generated diagnoses and treatment recommendations are interpretable
and clinically reliable. Furthermore, standardized regulatory frameworks must be devel-
oped to ensure data privacy, security, and ethical Al applications in oncology. Increasing
the diversity in Al-driven clinical trials through Al-based recruitment strategies and decen-
tralized learning will improve model generalizability and fairness in precision medicine.

For Al to truly bridge cancer care disparities, a multidisciplinary approach involving
oncologists, Al researchers, policymakers, and bioethicists is essential. Future research
should focus on producing diverse datasets, developing fairness-aware algorithms, and
strengthening ethical oversight to prevent Al from perpetuating healthcare inequities. By
prioritizing inclusivity, transparency, and patient-centered Al development, oncology can
fully harness Al’s potential to advance precision medicine, equitable healthcare delivery,
and improved cancer outcomes for all populations.
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ML Machine Learning
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