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The HEDGEHOG-GLI (HH-GLI) signalling is a key pathway critical in embryonic
development, stem cell biology and tissue homeostasis. In recent years,
aberrant activation of HH-GLI signalling has been linked to several types of
cancer, including those of the skin, brain, lungs, prostate, gastrointestinal tract
and blood. HH-GLI signalling is initiated by binding of HH ligands to the
transmembrane receptor PATCHED and is mediated by transcriptional
effectors that belong to the GLI family, whose activity is finely tuned by a
number of molecular interactions and post-translation modifications. Several
reports suggest that the activity of the GLI proteins is regulated by several
proliferative and oncogenic inputs, in addition or independent of upstream HH
signalling. The identification of this complex crosstalk and the understanding
of how the major oncogenic signalling pathways interact in cancer is a crucial
step towards the establishment of efficient targeted combinatorial treatments.
Here we review recent findings on the cooperative integration of HH-GLI
signalling with the major oncogenic inputs and we discuss how these cues
modulate the activity of the GLI proteins in cancer. We then summarise the
latest advances on SMO and GLI inhibitors and alternative approaches to
attenuate HH signalling through rational combinatorial therapies.

Introduction
The HEDGEHOG-GLI (HH-GLI) signalling plays
a critical role in embryonic development, stem
cell biology and tissue homeostasis, cellular

metabolism, synapse formation and nociception
(Refs 1, 2, 3, 4, 5). Aberrant activation of the HH
signalling has been linked to different aspects of
cancer development, from initiation to metastasis
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(Ref.6).CanonicalHHpathwayactivationisinitiated
by the binding ofHH ligands to the transmembrane
receptor PATCHED (PTCH), which relieves its
inhibition on the transmembrane protein
SMOOTHENED (SMO). Consequently, active
SMO triggers an intracellular signalling cascade
leading to the formation of activator forms of the
GLI zinc finger transcription factors GLI2 and
GLI3, which directly induce GLI1. Both GLI1 and
GLI2 act as main mediators of HH signalling in
cancer by controlling the expression of target genes.
Recent evidence suggests that GLI proteins can

be directly and indirectly modulated by
proliferative and oncogenic inputs, in addition
or independent of upstream HH signalling.
These mechanisms of aberrant, non-canonical
HH-GLI pathway activation, apparently without
known driver mutations in components of the
pathway, have been associated with several
types of human cancer (Ref. 7). In this review,
we focus on the cooperative interaction between
HH-GLI and other oncogenic signalling
pathways. We first address the functions and
post-translational modifications of the three GLI
transcription factors, and the mechanisms that
regulate their activity in cancer. We then review
latest advances on SMO and GLI inhibitors and
discuss approaches to attenuate HH signalling
through rational combinatorial therapies.

Overview of the HEDGEHOG-GLI
signalling

The Hh signalling has been initially identified in
Drosophila melanogaster, where it is required for
determining proper embryonic patterning
(Ref. 8). Smo protein is conserved and maintains
its function in mammals, whereas there are two
Ptch proteins in vertebrates. Hh ligand has
diversified into Sonic (SHH), Indian (IHH) and
Desert (DHH) Hedgehog, and the function of
the downstream transcription factor Cubitus
interruptus (Ci) has evolved into three GLI
proteins: GLI1, GLI2 and GLI3. Here we focus
on the function and regulation of the three GLI
transcription factors and we present only a brief
introduction of the key steps and components of
vertebrate HH-GLI signalling upstream of GLI.
The initiation of the HH signalling begins with

the binding of one of the three HH ligands, each
with distinct spatial and temporal expression
patterns, to the 12-pass transmembrane protein
receptor PTCH, which resides in the primary
cilium, a non-motile structure that functions as a

sensor and coordinator centre for the HH
signalling (Refs 9, 10, 11). Binding of HH
ligands to PTCH relieves its inhibitory effect on
the G-protein-coupled receptor-like SMO, which
moves into the tip of the cilium and triggers a
cascade of events that promote the formation of
GLI activator forms (GLI-A). GLI2/3-A
translocate into the nucleus and induce HH
pathway target genes, including GLI1 (Refs 12,
13, 14) (Fig. 1). In absence of HH ligands, PTCH
inhibits pathway activation by preventing
SMO to enter the cilium. This results in the
phosphorylation and proteasome-mediated
carboxyl cleavage of GLI3 and, to a lesser
extent, of GLI2 to their repressor forms (GLI2/3-
R; Refs 15, 16). GLI1 is degraded by the
proteasome and is transcriptionally repressed,
with consequent silencing of the pathway. GLI1
acts exclusively as an activator, whereas GLI2
and GLI3 display both positive and negative
transcriptional functions (Refs 15, 17, 18) (Fig. 1).

The HH target genes include GLI1, which
further amplifies the initial HH signalling at
transcriptional level and, therefore, is a reliable
and robust read-out of an active pathway
(Ref. 19). Other HH target genes are PTCH1 and
HH interacting protein (HHIP1), which both
mediate negative feedback by limiting the extent
of HH signalling. The outcome of the HH
signalling varies according to the receiving cell
type, and includes a number of cell-specific
targets mediating a variety of cellular responses:
proliferation and differentiation (Cyclin D1 and
D2, E2F1, N-Myc, FOXM1, PDGFRα, IGFBP3
and IGFBP6, Hes1, Neogenin), cell survival
(BCL-2), self-renewal (Bmi1, Nanog, Sox2),
angiogenesis (Vegf, Cyr61), cardiomyogenesis
(MEF2C), epithelial–mesenchymal transition
(Snail1, Sip1, Elk1 and Msx2) and invasiveness
(Osteopontin). (Ref. 20). The strength of HH
signalling is tuned by a number of post-
transcriptional and post-translational modifications
of the three GLI transcription factors.

The GLI transcription factors and their
modifications
The three GLI transcription factors are members of
the Kruppel family. They share five conserved
C2–H2 zinc-finger DNA-binding domains and a
consensus histidine/cysteine linker sequence
between the zinc fingers, and bind to the
consensus motif GACCACCCA in the promoter of
their target genes (Ref. 21). The sequence
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specificityof theGLI transcription factors, although,
is not absolute, because they can recognise variant
GLI-binding sites with relatively low affinity, still
leading to strong transcriptional transactivation
(Ref. 22).
GLI1 is a transcriptional target of GLI2 and GLI3

(Refs 17, 23) and a strong transcriptional activator.
In both human and mouse cells, GLI1 protein is

translated from alternative mRNAs that differ in
their 5′ untranslated region and that are
generated by exon skipping. The shorter mRNA
shows the highest translation efficiency and it is
the predominant transcript in proliferating cells
and in basal cell carcinoma (BCC; Ref. 24). GLI1
mRNA also undergoes adenosine deamination
acting on RNA (ADAR)-dependent A-to-I editing
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Key components of the mammalian HH signaling pathway

Figure 1. Key components of the mammalian HH signalling pathway. In absence of HH ligands (a), PTCH
inhibits SMO by preventing its entry into the primary cilium. GLI proteins are phosphorylated by PKA, GSK3β
and CK1, which create binding sites for the E3 ubiquitin ligase β-TrCP. GLI3 and, to a lesser extent, GLI2
undergo partial proteasome degradation, leading to the formation of repressor forms (GLI3/2R, red), that
translocate into the nucleus where they inhibit the transcription of HH target genes. Full-length GLI may
also be completely degraded by the proteasome. This process can be mediated by Spop and Cullin 3-
based E3 ligase for GLI2 and GLI3, whereas GLI1 can be degraded by β-TrCP, the Numb-activated Itch E3
ubiquitin ligase and by PCAF (see text for details). Upon HH ligand binding (b), PTCH is displaced from the
primary cilium, allowing accumulation and activation of SMO. Active SMO promotes a signalling cascade
that ultimately leads to translocation of full length (FL) activated forms of GLI (GLIA, green) into the nucleus,
where they induce transcription of HH target genes. Abbreviations: CK1, casein kinase 1; GSK3β, glycogen
synthase kinase 3β; HH, Hedgehog; PCAF, p300/CREB-binding protein (CBP)-associated factor; PKA,
protein kinase A; PTCH, Patched; SMO, Smoothened; Spop, speckle-type POZ protein; SUFU, Suppressor
of Fused; β-TrCP, β-transducin repeat-containing protein.
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at position 2179. The consequent arginine-to-
glycine amino acidic change at position 701
produces a GLI1 protein less sensitive to the
inhibitory effect of Suppressor of Fused (SUFU)
and with higher transcriptional activity (Ref. 25).
The subcellular localisation of GLI1 is tightly

controlled. GLI1 nuclear localisation is observed
upon HH stimulation and correlates with high
transcriptional activity, whereas in absence of
HH pathway activation GLI1 is retained in the
cytoplasm and degraded by the proteasome.
SUFU, one of the main negative regulators of
HH signalling, interacts with GLI1 both at the
N-terminal (amino acids 116–125) (Ref. 26) and
at the C-terminal region (Refs 27, 28) and
inhibits GLI1 both by retaining it in the
cytoplasm and by repressing its transcriptional
activity in the nucleus (Refs 29, 30).
GLI1 stability and proteasomal degradation is

controlled by multiple factors. In absence of
HH ligands, β-transducin repeat-containing
protein (β-TrCP) E3 ubiquitin ligase recognises
two sequences on GLI1 (degron N and C) and
induces its proteasome-dependent degradation
(Ref. 31). Likewise, NUMB targets GLI1 for
proteasome degradation through the recruitment
of the HECT-type E3 ubiquitin ligase ITCH
(Ref. 32). Upon genotoxic stress, p53 induces the
acetyltransferase p300/CREB-binding protein
(CBP)-associated factor (PCAF), identified as a
novel E3 ubiquitin ligase targeting GLI1 for
proteasomal degradation (Ref. 33). At the same
time, PCAF itself is required for the expression of
HH target genes, because it acetylates histone
H3K9 on promoters of HH targets (Ref. 34).
Recently, the pro-apoptotic protein Fem1b has
been found to interact with mammalian Gli1 and
to promote its proteasomal degradation, leading to
Hh signalling inhibition (Ref. 35).
GLI1 undergoes several post-translational

modifications that modulate its activity.
Deacetylation of GLI1 at Lys518 by histone
deacetylase 1 (HDAC1) increases its transcriptional
activity (Ref. 36). The serine/threonine unc-51-like
kinase 3 (ULK3) enhances GLI1 (and GLI2)
transcriptional activity and promotes GLI1 nuclear
localisation (Ref. 37). Protein kinase A (PKA)
phosphorylates GLI1 at Thr374, near the nuclear
localisation signal, retaining it in the cytoplasm and
inhibiting its transcriptional activity (Ref. 38). PKA
also phosphorylates GLI1 on Ser640, and Gli2 and
GLI3 on homologous sites, allowing their
interaction with 14-3-3e and leading to suppression

of HH signalling (Ref. 39). Activation of GLI1 is
observed upon phosphorylation on Ser243 and
Thr304 by atypical protein kinase C (aPKC) ι/λ
(Ref. 40) and on Ser84 by ribosomal protein S6
kinase 1 (S6K1) (Ref. 41). The dual specificity Yak-1
related kinases 1 (DYRK1) and 2 (DYRK2)
modulate HH pathway in opposite ways. DYRK1
phosphorylates GLI1 in its N- and C-terminal
regions, increasing its nuclear retention and
transcriptional activity (Ref. 42), whereas DYRK2
reduces Gli1 transcriptional activity (Ref. 43).

GLI2 protein has the repressor domain at the
N-terminus and the activator domain at the C-
terminus. It acts as an activator or, in its
C-terminal deleted form, as a repressor (Ref. 44).
In absence of HH ligands, Gli2 is sequentially
phosphorylated by PKA on a cluster of sites in
its C-terminal domain. These modifications
work as priming events for multiple adjacent
casein kinase 1 (CK1) and glycogen synthase
kinase 3β (GSK3β) phosphorylations (Refs 16,
45). The consequent Gli2 hyperphosphorylation
allows the recruitment of β-TrCP, which targets
Gli2 for proteasome-dependent cleavage
generating the repressor form (Refs 16, 46). Gli2
is also phosphorylated by DYRK2 (Ser385 and
Ser1011), which induces its degradation by the
proteasome (Ref. 43). Stabilisation of GLI2
protein is observed upon activation of mitogen-
activated protein/extracellular signal-regulated
kinase 1 (MEK1)/extracellular signal-regulated
kinase (ERK)/ribosomal S6 kinase 2 (RSK2)
cascade. RSK2-mediated phosphorylation of
GSK3β reduces its activity, leading to reduced
GLI2 ubiquitination and processing, and to
increased GLI2 nuclear localisation and
activation (Ref. 47).

Gli2 subcellular localisation is controlled by
SuFu, which binds to and retains Gli2 in the
cytoplasm and inhibits its transcriptional activity
in the nucleus (Ref. 30). SuFu also controls the
protein stability of Gli2 by competing with
speckle-type POZ protein (Spop), which binds to
Gli2 and acts as an adaptor for Cul3-based E3
ubiquitin ligase, leading to Gli2 proteasomal
degradation (Ref. 48). The interaction between
SuFu and Gli2 is inhibited by Kif7, which acts as
a positive regulator of Gli activity (Ref. 49). Kif7
itself, on the other hand, behaves as a negative
regulator of Hh signalling, by binding to Gli2 and
Gli3 and contributing to the efficient processing
of Gli2 to its repressor forms (Ref. 50). GLI2
activity is also modulated by sumoylation and

expert reviews
http://www.expertreviews.org/ in molecular medicine

4
Accession information: doi:10.1017/erm.2015.3; Vol. 17; e5; February 2015

© Cambridge University Press 2015. This is an Open Access article, distributed under the terms of the Creative
Commons Attribution licence (http://creativecommons.org/licenses/by/3.0/), which permits unrestricted re-use,

distribution, and reproduction in any medium, provided the original work is properly cited.

C
o
o
p
er
at
iv
e
in
te
g
ra
ti
o
n
b
et
w
ee

n
H
E
D
G
E
H
O
G
-G

LI
si
g
na

lli
ng

an
d
o
th
er

o
nc

o
g
en

ic
p
at
hw

ay
s:

im
p
lic

at
io
ns

fo
r
ca

nc
er

th
er
ap

y



acetylation. PKA-dependent phosphorylation of
Gli2 enhances conjugation of small ubiquitin-like
modifier (SUMO) at Lys630 and Lys716. This
results in the recruitment of HDAC5 with the
consequent reduction of GLI2 transcriptional
activity (Ref. 51). In absence of HH stimulation,
p300 acetylates GLI2 at Lys757, reducing its
chromatin recruitment and thus its
transcriptional activity (Ref. 52).
GLI3 acts mostly as a repressor in its C-terminal

cleaved form (Ref. 44). Nevertheless, in its full-
length unprocessed form, it can mediate GLI1
induction upon Shh stimulation by interacting
with the transcriptional activator CBP (Ref. 17).
Gli3 processing is similar to that occurring to
Gli2 and it is triggered by PKA-dependent
phosphorylations, which are required for
subsequent CK1 and GSK3β phosphorylations and
recruitment of the β-TrCP ubiquitin ligase (Refs 15,
45, 53, 54). In this context, Kif7 plays a regulatory
role in controlling the efficient relocalisation of Gli3
to the cilium in response to Shh and its processing
to Gli3-R (Ref. 55). Like Gli1 and Gli2, Gli3 is also
bound by Sufu (Ref. 29), which stabilises Gli3 and
prevents Spop from promoting Gli3 degradation
and processing to its repressor form (Ref. 48). The
Gli3-dependent transcriptional repression involves
the corepressor Ski, which interacts with Gli3 and
likely recruits mSin3A, N-CoR/SMRT repressors
leading to gene silencing (Ref. 56).

Modes of action of HH-GLI signalling in
cancer

Multiple mechanisms of HH pathway activation
have been proposed in cancer (reviewed in
Ref. 57). The mode of action of HH-GLI
signalling has important implications for the
design of therapeutic antagonists, therefore it is
important to dissect the cellular and molecular
mechanisms of HH activation in human cancers.
Ligand-independent activation (Type I) was the

first type of aberrant HH pathway activation
recognised in cancer, with the finding that patients
with Gorlin syndrome (Ref. 58) harbour mutations
in PTCH1. Tumours with ligand-independent
activation of HH pathway carry genetic aberrations
that confer cell-intrinsic growth properties to the
tumour. The most frequent alterations found are
inactivating mutations of pathway repressors, such
as PTCH1 (Refs 59, 60), SUFU (Refs 61, 62) or REN
(Ref. 63), mutations leading to constitutive
activation of SMO (Ref. 64), or gene amplifications
of GLI1 and GLI2 (Refs 65, 66), that result in

constitutive HH pathway activation. Defining the
molecular mechanisms of ligand-independent
activation of the signalling is crucial to determine
whether a tumour might respond to the treatment
with a HH inhibitor acting at the level of SMO or,
in case the genetic alteration affects downstream
components of the pathway, at the level of the GLI
proteins.

Ligand-dependentautocrine/juxtacrineactivation
of thepathway(TypeII)hasbeen identified inthe last
fewyearsindifferenttypesofcancers,includinglung,
pancreas, gastrointestinal tract, prostate and colon
cancers, glioma and melanoma (Refs 62, 67, 68, 69,
70, 71, 72, 73, 74, 75, 76, 77, 78). In this case,
tumours show increased HH ligand expression, in
absence of genetic aberrations of HH pathway
components, and respond to HH stimulation in
cell-autonomous manner. This concept is
supported by a number of experimental data
showing that: (i) tumour cells, but not the
surrounding stroma, express HH ligands and
downstream HH signalling components (e.g.
PTCH1, GLI1) (e.g. Refs 67, 74, 78); (ii) tumour cell
growth could be inhibited by RNAi-mediated
knockdown of SMO or GLI1 and by treatment
with cyclopamine (a SMO antagonist) in vitro and
in xenograft models in vivo; (iii) metastatic growth
could be prevented in vivo upon RNAi-mediated
knockdown of SMO or GLI1 (Ref. 67). These
effects appear to be specific, because GLI1
epistatically rescues the inhibition of metastatic
colonies obtained with SMO silencing (Ref. 67).

Ligand-dependent paracrine activation of HH
pathway (Type IIIa) is a mode of action that
resembles the physiological HH signalling
occurring during embryo development. In this
case, HH ligands secreted by cancer cells activate
HH signalling in the surrounding stroma rather
than in the tumour itself. The mechanisms by
which the HH signalling pathway and the tumour
stroma interact during paracrine signalling are not
completely understood. However, activation of
HH signalling in the tumour-associated stroma
might lead to the production of growth factors
(e.g. VEGF, IGF) and stimulation of other
signalling pathways (e.g. Wnt, Interleukin-6) that
in turn create a favourable microenvironment
sustaining the growth and progression of the
tumour (Ref. 79). Evidence supporting this
mechanism has accumulated from studies in
human tumour xenograft models of pancreatic
and colorectal cancers that express high levels of
HH ligands, in which increased expression of HH
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targets isdetectedspecifically in tumour-infiltrating
mouse stromal cells (Ref. 79). Interestingly, growth
of mutant Kras-driven tumours is reduced in mice
lacking Gli1 in the pancreatic microenvironment
compared to wild-type mice (Ref. 80).
Similarly, the reverse paracrine HH pathway

activation (Type IIIb) has been described in an
experimental model of glioma (Ref. 81) and in
haematological malignancies such as B-cell
lymphoma and mantle cell lymphoma (MCL;
Refs 82, 83). According to this modality, HH ligands
are secreted by the tumour microenvironment (bone
marrow stromal cells or endothelial cells) and
activate the pathway on tumour cells, thus affecting
its growth.

HH-GLI signalling in cancer stem cells
(CSCs)
Multiple lines of evidence indicate that HH-GLI
pathway plays a role in the maintenance and
regulation of CSCs in several types of cancer. Self-
renewal, survival and tumourigenicity of CD133+

glioblastoma CSCs require SMO and GLI1 activity,
as shown by their inhibition with cyclopamine and
RNA interference (Refs 75, 84). Similarly, inhibition
of SMO reduces epithelial–mesenchymal transition
and self-renewal of glioblastoma-initiating cells
(Ref. 85). CD44+/CD24−/low/Lin− putative breast
CSCs have higher levels of GLI1 and PTCH1
(Ref. 86). Pharmacological blockade of HH
signalling with the SMO antagonist IPI-609 has
shown a significant reduction in tumour
engraftment rates of putative ALDHhigh pancreatic
CSCs (Ref. 87). Furthermore, CSCs with activated
HH pathway have also been identified in multiple
myeloma (MM; Ref. 88). Genetic studies in chronic
myeloid leukaemia (CML) CSCs (Bcr-Abl-driven
Lin−/Sca1+/c-Kit+) show that loss of SMO causes
depletion of CML stem cells, whereas
constitutively active SMO increases CML stem cell
number and accelerates the disease (Refs 89, 90).
Pharmacological inhibition of SMO reduces not
only the propagation of CML driven by wild-type
BCR-ABL, but also the growth of imatinib-resistant
mouse and human CML (Ref. 90). Similarly,
human B-cell acute lymphoblastic leukaemia
(B-ALL) cell lines and clinical samples express HH
pathway components and HH pathway blockade
reduces B-ALL self-renewal in vitro and in vivo
(Ref. 91). Clonogenic CD133+ colon CSCs express
HH pathway components and require HH-GLI
activity for their survival (Ref. 67). Both
pharmacological inhibition of HH signalling with

cyclopamine and GLI antagonist GANT61 and
stable expression of RNAi targeting either
SMO or GLI1 lead to a significant decrease of
ALDHhigh melanoma stem cell self-renewal and
tumourigenicity (Ref. 92). Finally, inhibition of the
HH-GLI pathway by cyclopamine reduces CD133+/
CD15+ cell compartment and the tumourigenic
capability of neuroblastoma cells (Ref. 93).

The critical tumourigenic role of HH pathway is
further highlighted by its activity inCSCs, through
thesubvertedregulationof stemnessgenes, suchas
NANOG and SOX2, which are overexpressed in
certain cancer types. More specifically, the HH
pathway has been shown to directly regulate
NANOG transcription through GLI1 and GLI2 in
neural stem cells (Ref. 94). In line with these
findings, NANOG has been shown to act as a
mediator of the HH-GLI signalling in regulating
in vivo growth of glioblastoma CSCs (Ref. 95).
Similarly, HH-GLI signalling regulates the
expression of SOX2 in neural stem cells and
medulloblastoma (Refs 96, 97). Recently, we
showed that both GLI1 and GLI2 bind to SOX2
promoter in melanoma cells and that SOX2
function is required for HH-induced self-renewal
of melanoma CSCs (Ref. 98). Altogether, these
findings suggest that aberrant HH signalling
induces a number of stemness factors, that might
play a critical role in the acquisition of a more
undifferentiated and aggressive state through a
process similar to reprogramming.

Activation of HH-GLI signalling in human
cancers

The initial link between HH signalling and cancer
came from the finding that loss of function
mutations in PTCH1 gene are associated with a
rare and hereditary form of BCC, basal cell
nevus syndrome (BCNS) (also known as Gorlin
syndrome) (Refs 59, 60, 99). BCNS is an
autosomal dominant disorder with two distinct
sets of phenotypes; increased risk of developing
cancers such as BCC, medulloblastoma,
rhabdomyosarcoma and meningioma, as well as
developmental defects, including bifid ribs and
ectopic calcifications (Ref. 58), that reflect the
involvement of HH pathway in many
developmental processes.

Consistent with the risk for specific cancers in
Gorlin syndrome, sporadic BCCs and at least a
subset of medulloblastomas (MBs), are the
tumour types that show the strongest association
with aberrant HH pathway activation, both in
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humans and in experimental mouse models.
Activation of HH pathway in BCC and MB
occurs through direct genetic alterations of HH
pathway genes. Sporadic BCC and MB, a
malignant brain tumour in children, harbour
high frequency of inactivating mutations in
PTCH1 (Refs 99, 100, 101, 102, 103) or, to a lesser
extent, activating mutations in SMO (Refs 64,
104), both leading to the constitutive activation of
HH pathway. In addition, MBs also show
mutations in SUFU (Ref. 61) and GLI1 and GLI2
amplifications (Ref. 105). Deletion of 17p region,
which produces loss of the negative HH
modulator REN(KCTD11), also leads to
unrestrained HH signalling and uncontrolled
proliferation of immature cerebellar granule
neuron precursors cells (Ref. 106).
Thegenetic equivalentmousemodelofBCNS, is a

mouse heterozygous for a loss-of-function allele of
Ptch1. Many of the BCNS features are
recapitulated in this model, including occurrence
of MB (Ref. 107), rhabdomyosarcoma (Ref. 108)
and developmental aberrations. Notably, full-
blown BCCs are rarely seen in Ptch1+/− mice
maintained in normal conditions, but lesions
resembling BCCs develop when mice are exposed
to ultraviolet (UV) or ionising radiations (Ref. 109).
This observation is in agreement with the clinical
course of BCC in BCNS patients, where BCCs
occur preferentially on sun-exposed areas of the
body (Ref. 110). BCNS patients are predisposed to
BCC, MB and rhabdomyosarcoma, but they are
not at increased risk to develop other cancer types,
such as glioma, breast or prostate cancers. Genetic
mouse models and identification of genetic
mutations in BCC and MB have suggested that
aberrant activation of HH signalling is required
and sufficient for the development of these
cancers. In other types of cancer activation of HH
signalling might require additional alterations/
mutations in other signalling pathways to
contribute to tumour development.
Glioma is the most frequent tumour of the

central nervous system and can be classified into
four grades, with glioblastoma multiforme (GBM)
being the most aggressive. GLI1 was originally
identified as a gene amplified in malignant GBM
(Ref. 65), although its amplification is detected in a
small fraction of gliomas (Refs 111, 112). The
landscape of driver genomic alterations in
glioblastoma has been recently revealed,
suggesting that ligand-independent activation of
the HH pathway is not frequent (Ref. 113).

Nevertheless, several reports support a role for HH
signalling in gliomas. For instance, expression of
components of HH signalling is observed in
gliomas of different grades, with SHH expression
mostly confined to the surrounding endothelial
cells and astrocytes. Activation of the pathway
sustains growth, survival and stemness of glioma
cells and progenitors (Refs 75, 77, 84). Consistently,
inhibition of HH signalling by cyclopamine
treatment or by overexpression of miR-326, which
targets SMO, decreases glioma growth, stemness
and tumourigenicity (Refs 75, 84, 114).

There are strong indications that the HH
pathway is involved also in human breast cancer
(BC), the leading cause of cancer death among
women. High expression of components of HH
pathway, including GLI1, is associated with a
higher risk of recurrence after surgery and poorer
prognosis (Refs 115, 116, 117). Consistently,
transgenic mice that conditionally express GLI1
in the mammary epithelium develop mammary
tumours (Ref. 118). Activation of HH signalling
in BC results from genetic alterations, such as
loss of PTCH1 or GLI1 amplification (Refs 119,
120) or from ligand-dependent stimulation.
Indeed, invasive BC, but not normal breast
epithelium, shows high expression of SHH,
PTCH1 and GLI1 (Ref. 121). The elevated
expression of HH ligands is associated with the
development of a basal-like BC phenotype and to
a poor prognosis (Ref. 115), and may result from
hypomethylation of SHH promoter (Refs 122,
123) or from HH up-regulation mediated by
transcription factors, such as nuclear factor
kappa-light-chain-enhancer of activated B cells
(NF-kB) (Ref. 123), p63 (Ref. 124) or Runx2
(Ref. 125). In addition, other cellular pathways
contribute to directly activate the downstream
effectors of the pathway. In oestrogen receptor
(ER)-positive BC cells, oestrogen stimulation
induces GLI1, which promotes CSC self-renewal
and invasiveness (Ref. 126). In tamoxifen-
resistant ER positive BC cells, ligand-
independent activation of HH pathway results
from phosphoinositide 3-kinase (PI3K)/AKT
pathway (Ref. 127). Several reports point out the
importance of paracrine HH signalling in BC,
whose occurrence is associated to poor prognosis
(Ref. 115). HH ligands are often expressed by the
tumour epithelium, whereas the highest levels of
SMO, GLI1 and GLI2 are found in the stroma
(Ref. 128). GLI1 promotes vascularisation by
inducing the pro-angiogenic factor CYR61
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(cysteine-rich angiogenic inducer 61) (Ref. 129),
which influences the tumour microenvironment.
In addition, the alternatively spliced, truncated
tGLI1 that is frequently expressed in BC, but not
in normal tissue, induces the migration-
associated genes VEGF-A and CD24 (Ref. 130).
Pancreatic ductal adenocarcinoma (PDAC) is an

aggressive tumour that develops from pancreatic
intraepithelial neoplasia (PanIN), characterised by
frequent mutations of KRAS, CDKN2A, TP53 and
SMAD4 (Ref. 131). A comprehensive genomic
analysis revealed few missense mutations in GLI1
and GLI3, whose oncogenic function remains to be
determined (Ref. 132). Nevertheless, HH signalling
is involved in pancreatic development (Ref. 133)
and cooperates with oncogenic KRAS during the
early stages of PDAC formation (Ref. 134). The
ligands SHH and IHH are expressed in the duct
epithelium of PanIN lesions and in PDAC, but not
in normal human pancreas (Refs 70, 72). Human
pancreatic cell lines produce SHH, IHH and show
detectable level of the target genes GLI1, PTCH1
and HHIP, indicating HH pathway activity.
Moreover, proliferation and metastatic behaviour
of some of these cell lines can be blocked by
cyclopamine both in vitro and in vivo (Refs 70, 71,
72), supporting a ligand-dependent autocrine
mode of action. Multiple evidence indicates the
presence of paracrine HH signalling in pancreatic
cancer. HH ligands produced by tumour cells
activate HH pathway in the surrounding stroma,
thus inducing the expression of HH targets that
promote perineural invasion and metastasis
(Refs 79, 135, 136, 137). Paracrine HH signalling
also promotes the formation of desmoplasia,
which contributes to the failure of the standard
therapy (Ref. 138); indeed, chemical inhibition of
HH pathway enhances the efficacy of
chemotherapy (Ref. 139). However, recent data
obtained in murine models of PDAC propose a
controversial role for HH signalling in PDAC. In
fact, activation of HH signalling has been shown
to induce stromal hyperplasia and reduce
epithelial growth, thus restraining tumour.
Conversely, HH pathway inhibition accelerates
tumour progression because, although reducing
desmoplasia, it promotes proliferation and
vascularisation of the tumoural epithelium, which
exhibits a more undifferentiated phenotype
(Refs 140, 141).
HH signalling is involved in prostate cancer (PC).

Aberrant activation of HH signalling in PC might
result from loss of SUFU or by ligand-dependent

activation of the pathway due to high expression
of SHH (Ref. 62). However, it is not clear whether
HH activation occurs in a paracrine and/or
autocrine/juxtacrine manner. Evidence suggests
that the PC cells secrete HH ligands that activate
the pathway in the surrounding stromal cells,
which in turn produce factors promoting cancer
cells proliferation (Refs 142, 143, 144). Conversely,
other reports indicate the presence of a cell-
autonomous activation of HH signalling in PC
cells, whose proliferation is greatly decreased by
cyclopamine treatment. The expression of HH
ligands and of target genes in the tumour
epithelium is higher than in the normal adjacent
tissue and correlates with Gleason score,
metastasis and poor prognosis (Refs 62, 73, 74,
145). The HH effector GLI2 is highly expressed in
PC where it enhances proliferation, cell survival
and tumourigenicity (Refs 146, 147). Multiple
evidence suggests an interplay between HH and
androgen signalling. Long-term androgen
deprivation in PC leads to a strong up-regulation
of HH signalling, which is also observed in
androgen-independent (AI) PC cells (Refs 145,
148, 149). Overexpression of GLI1 and GLI2
enhances androgen-specific gene expression,
indicating that HH signalling supports androgen
signalling even in absence of androgen and in AI
prostate cancer cells (Ref. 150).

HH pathway plays a role also in the most lethal
formof skin cancer,malignantmelanoma.A recent
global genomic screening of 100 melanomas
revealed few missense mutations in the core
genes of the HH pathway (PTCH1, SMO, SUFU,
GLI1, GLI2 and GLI3) (Ref. 151), although their
potential oncogenic function remains to be
determined. Several studies report an active role
for HH signalling in melanoma. Human
melanomas express components of HH pathway
(Ref. 78) and about half of melanoma cell lines
express high levels of SMO, GLI2 and PTCH1 and
low levels of the negative regulators PKA and
DYRK2 compared to melanocytes (Ref. 152).
Interestingly, high HH pathway activity is
associated with decreased post-recurrence
survival in metastatic melanoma patients
(Ref. 152). Moreover, we previously showed that
growth and metastasis of human melanomas
xenografts in nude mice can be blocked by local
or systemic treatment with cyclopamine.
Cyclopamine treatment drastically reduces
tumour growth also in melanomas induced by
oncogenic NRAS in a Tyrosinase-NRASQ61K;
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Ink4a−/−mousemodel (Ref. 78). Two recent studies
confirmed and extended these findings; the SMO
antagonist sonidegib has shown to reduce
proliferation of human melanoma cell lines and
to decrease human melanoma xenograft growth
in nude mice (Refs 152, 153). Interestingly, one of
the two studies showed a stronger inhibition of
proliferation in BRAF mutant cell lines than in
BRAF wild-type cells and a modest but
significant effect combining BRAF and Hedgehog
inhibitors (Ref. 152), suggesting that a combined
therapy targeting both mutant BRAF and HH
pathway could be beneficial in patients with
mutated BRAF and activated HH signalling.
Activation of HH pathway might also play a role
in melanoma progression, by contributing to the
acquisition of an invasive behaviour. Melanoma
cells with high GLI2 expression are characterised
by an invasive and metastatic phenotype,
associated with loss of E-cadherin and secretion of
metalloproteases, and metastasise to bone more
quickly than cells with low GLI2 expression
(Ref. 154). Furthermore, GLI1-mediated induction
of Osteopontin correlates with tumour progression
and metastasis of human melanomas (Ref. 155).
High expression of components of HH pathway

isobserved in colon cancer,where it correlateswith
poorprognosis andoverall survival (Refs 156, 157).
AutocrineHH signalling in colon cancer promotes
cell growth, self-renewal of CSCs and metastatic
behaviour (Ref. 67). Consistently, inhibition of
GLI1 and GLI2 function induces apoptosis and
DNA damage response in colon cancer cell lines
(Ref. 158). Gastric cancers express high levels of
PTCH1 and SHH (Refs 72, 159) and active HH
signalling correlates with metastatic behaviour
and poor prognosis (Refs 160, 161, 162, 163).
Activation of the pathway results from SMO and
PTCH1 mutations (Ref. 164) or methylation of
the promoter of the negative regulators PTCH1
and HHIP (Refs 165, 166). Direct activation of
GLI1 may also result from MAPK signalling,
which leads to the induction of HH targets
(Ref. 167), such as Bcl-2 (Ref. 168). HH signalling
promotes gastric cancer cell growth and
proliferation in vitro and in vivo (Ref. 169) and is
highly active in gastric CSCs, where it is required
for their self-renewal and resistance to
chemotherapy (Refs 170, 171).
Lung cancer is the malignancy with the highest

mortality and includes small-cell lung cancer
(SCLC) and non-small-cell lung cancer (NSCLC).
In a fraction of SCLC, ligand-dependent

activation of HH signalling drives tumour
growth in vivo and in vitro (Ref. 68). In NSCLC
the expression of HH signalling components is
higher than in the non-tumoural parenchyma
and associates with high grade, poor survival
and metastases (Refs 172, 173). In NSCLC, GLI1
regulates cell proliferation in cell-autonomous
manner. Moreover, increased production of
SHH by tumour cells leads to activation of
fibroblasts in the tumour-associated stroma,
indicating the presence of paracrine HH
signalling (Refs 69, 174).

Aberrant activation of HH signalling has been
observed in ovarian cancer (Refs 175, 176, 177)
and high expression of its components correlates
with poor clinical outcome (Refs 175, 178, 179).
HH pathway has been shown to be involved in
different aspects of ovarian carcinogenesis, by
controlling proliferation and survival of ovarian
carcinoma (Ref. 175), growth of cancer spheroid
forming cells (Ref. 180), cell migration and
invasion, through integrin β4-mediated activation
of focal adhesion kinase (FAK; Ref. 181), and
drug sensitivity, through regulation of the ATP-
binding cassette transporter ABCB1 and ABCG2
(Ref. 182).

HH signalling is involved also in haematological
malignancies. Increased HH activity has been
reported in different haematological diseases,
including CML (Ref. 183), acute myeloid
leukaemia (AML) (Ref. 184), acute lymphocytic
leukaemia (ALL) (Ref. 91), MM (Ref. 88), chronic
lymphocytic leukaemia (CLL; Ref. 185),
Hodgkin’s lymphoma (Ref. 186), MCL (Ref. 83),
diffuse large B-cell lymphoma (DLBCL) (Ref. 187)
and ALK+ anaplastic large cell lymphoma
(ALCL) (Ref. 188). The activation of HH
signalling in these diseases likely results from the
integration of deregulated oncogenic inputs that
contribute to the direct activation of the GLI
proteins. Different haematological malignancies
also show different modalities of HH signalling
activation, which has been proposed to be
paracrine mainly in CLL and plasma cell
myeloma, both paracrine and autocrine in DLBCL
and autocrine in ALL, AML and ALK+ALCL.

Modulation of HH-GLI signalling by
oncogenic pathways

The activity of HH-GLI signalling observed in
human cancer is the result of its functional
interaction with other pathways and of the direct or
indirect regulation of the final effectors of the HH
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signalling by oncogenes and tumour suppressors
(Fig. 2). Multiple lines of evidence support an
interplay between HH-GLI and PI3K/AKT or RAS/
RAF/MEK signalling. PI3K/AKT negatively
regulates the degradation of GLI2 by interfering
with PKA/GSK3β-mediated phosphorylation of
GLI2, which targets the protein to proteasome-
mediated degradation (Ref. 189). In zebrafish, a
constitutively active form of Akt1 synergises with
activated Smo in tumour formation (Ref. 190).

AKT1 potentiates GLI1 transcriptional activity and
nuclear localisation in melanoma cells (Ref. 78). In
contrast, GLI1 function is inhibited by PI3K/AKT2
signalling in neuroblastoma; AKT2 phosphorylates
GSK3β and prevents the destabilisation of SUFU,
resulting in reduced GLI1 nuclear localisation and
transcriptional activity (Ref. 191).

An interplay between RAS/RAF/MEK and HH
signalling has been described in various systems.
For instance, oncogenic H- or N-Ras increase GLI1

Expert Reviews in Molecular Medicine © 2015 Cambridge University Press

Cooperative integration between HH-GLI signaling and other oncogenic 
pathways
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Figure 2. Cooperative integration between HH-GLI signalling and other oncogenic pathways. (a)
Schematic diagram of the basic components of the HH-GLI signalling (filled circles) and their positive
(in green) and negative regulators (in red) (unfilled circles). (b) Direct transcriptional regulators of GLI1, GLI2
and SHH. See text for further details. Abbreviations: AKT, v-akt murine thymoma viral oncogene
homologue; aPKCι/λ, atypical protein kinase C-ι/λ; β-CAT, β-catenin; DYRK1/2, dual specificity Yak-1
related kinase 1/2; ERα, oestrogen receptor α; EWS/FLI1, Ewing’s sarcoma/friend leukaemia integration 1
transcription factor fusion gene; HES1, hairy and enhancer of split-1; HH, Hedgehog; mTOR, mammalian
target of rapamycin; MEF2C, myocyte enhancer factor 2C; MEK, mitogen-activated protein/extracellular
signal-regulated kinase; NF-kB, nuclear factor kappa-light-chain-enhancer of activated B cells; NRP1/2,
neuropilin; PI3K, phosphoinositide-3-kinase; PKA, protein kinase A; PTCH, Patched; PTEN, phosphatase
and tensin homologue; RACK1, receptor for activated C kinase 1; RTK, receptor tyrosine kinase; S6K1,
ribosomal protein S6 kinase 1; SHH, Sonic hedgehog; SMO, Smoothened; SUFU, Suppressor of Fused;
TNFα, tumour necrosis factor α; TSC1/2, tuberous sclerosis 1/2; WIP1, wild-type p53-induced phosphatase 1.
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function inmelanomacells andHH-GLI signalling
is required for N-Ras-induced mouse melanoma
growth (Ref. 78). Active K-Ras potentiates GLI1
activity in gastric cancer (Ref. 167) and in PDAC
contributing to tumour progression (Ref. 192).
K-Ras and activated HH signalling cooperate
in vivo to initiate PDAC development (Ref. 193).
An additional mouse model of K-Ras-induced
PDAC shows that Smo-independent Gli1
activation is required for survival of tumour
cells and K-Ras-mediated transformation.
Interestingly, K-Ras and TGF-β were shown to
regulate Gli1 expression in absence of Smo
(Ref. 194). K-Ras also contributes to a shift from
autocrine-to-paracrine signalling in PDAC: it
induces SHH expression, thus leading to HH
stimulation of adjacent cells, and negatively
modulates canonical HH signalling through its
effector DYRK1B (Ref. 195).
The ERK pathway positively modulates HH-

GLI signalling. MEK1 increases GLI1 and GLI2
transcriptional activity (Ref. 196) and the ERK5
target myocyte enhancer factor 2C (MEF2C)
directly regulates the expression of and
cooperates with GLI2 during cardiomyogenesis
in vitro (Ref. 197). Biochemical studies identified
GLI1 and GLI3 as new MAPK substrates,
because they can be phosphorylated in vitro by
JNK1/2 and ERK2 (Ref. 198).
A crosstalk between epidermal growth factor

receptor (EGFR) signalling and HH-GLI
pathway has also been reported. In normal
keratinocytes, EGFR signalling modulates HH-
GLI target gene expression (Ref. 199) and during
their transformation it induces activation of
JUN/AP1, which cooperates with GLI1 and GLI2
(Ref. 200). Interestingly, a group of HH-EGFR
cooperation response genes – SOX2, SOX9, JUN,
CXCR4 and FGF19 – has been shown to
determine the oncogenic phenotype of BCC and
pancreatic CSCs (Ref. 201).
HH signalling is differently modulated by

distinct members of the PKC family.
Upregulation of aPKC ι/λ potentiates HH
signalling by directly phosphorylating and
activating GLI1. Because aPKC ι/λ is also an HH
target gene, it sustains a positive feedback loop
contributing to HH activation (Ref. 40).
Similarly, PKCα increases GLI1 transcriptional
activity in a MEK/ERK-dependent manner
(Ref. 202). Conversely, PKCδ reduces GLI1
nuclear localisation and transcriptional activity,
leading to suppression ofHH signalling (Ref. 202).

Receptor for activated C kinase 1 (RACK1)
interacts with and activates SMO, enhancing
GLI1 function and increasing cell proliferation
and survival in NSCLC (Ref. 203). A positive
feedback regulation fuelling Hh signalling
activation involves Neuropilin1 (Nrp1) and 2
(Nrp2). Activated Hh pathway induces Nrp1
and Nrp2, which in turn potentiate Hh
signalling transduction acting between Smo
and SuFu (Ref. 204). Activation of tumour
necrosis factor alpha (TNF-α)/mammalian
target of rapamycin (mTOR) pathway in
oesophageal carcinoma activates HH-GLI
signalling through phosphorylation of GLI1 by
S6K1, which induces its release from SUFU
(Ref. 41).

Activation of HH-GLI signalling due to direct
induction of GLI1 expression is observed after
activation of WNT/β-catenin signalling (Ref. 205)
and in Ewing Sarcoma Family Tumours (ESFT),
where the oncogenic transcription factor EWS/
FLI1, resulting from the chromosomal
translocation t(11;22), directly induces GLI1
expression (Refs 206, 207) (Fig. 2b). Likewise,
transforming growth factor β (TGF-β)
stimulation leads to a SMAD3-dependent
induction of GLI2, which in turn increases GLI1
expression (Ref. 208). TGF-β also induces
Kindlin-2, which increases GLI1 protein levels
by inhibiting GSK3β. GLI1, in turn, represses
Kindlin-2 creating a regulatory loop (Ref. 209)
(Fig. 2b). Activation of HH pathway in some
tumours results from the increase of HH
ligands. For instance, ERα pathway in gastric
cancer (Ref. 210) or NF-kB in pancreatic cancer
cells (Refs 211, 212) directly increase SHH
expression, leading to enhanced proliferation
and resistance to apoptosis. Direct induction of
SHH is also mediated by p63β, p63γ and
TAp73β, which bind to SHH promoter (Ref. 124)
(Fig. 2b).

Although HH signalling activation is regulated
by many phosphorylation events, only few
phosphatases have been described to modulate
the pathway. In Drosophila PP4 and PP2A act
as negative and positive modulators of HH
signalling, acting at the level of Smo and Ci,
respectively (Ref. 213). Recently, the oncogenic
wild-type p53-induced phosphatase 1 (WIP1)
has been described to cooperate with SHH to
enhance tumour formation in SHH-dependent
medulloblastoma (Ref. 214). Our group showed
that WIP1 phosphatase activity enhances GLI1
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function in melanoma by increasing GLI1
nuclear localisation, protein stability and
transcriptional activity, whereas its inhibition
reduces self-renewal and tumourigenicity of
melanoma cells with activated HH signalling
(Ref. 215).
A negative reciprocal regulation is observed

between GLI1 and the tumour suppressor p53.
p53 inhibits the activity, nuclear localisation and
protein levels of GLI1 in neural stem cells and
glioblastoma cells (Ref. 216). Conversely, HH
signalling inhibits p53 by inducing activating
phosphorylations on MDM2, thus enhancing
p53 degradation (Ref. 217). Inhibition of HH
signalling results from activation of NOTCH
pathway observed in glioblastoma and
melanoma. The NOTCH target hairy and
enhancer of split-1 (HES1) binds to the first
intron of GLI1, repressing its expression
(Ref. 218) (Fig. 2b). In BC, high levels of liver
kinase B1 (LKB1) are associated with low levels
of HH signalling activation (Ref. 219). Another
suppressor of HH signalling is RENKCTD11,
which is often deleted in medulloblastoma and
it has been shown to retain GLI1 in the
cytoplasm, reducing its transcriptional activity
(Ref. 63).
Regulation of HH signalling occurs also at

epigenetic level. Menin, the gene mutated in
multiple endocrine neoplasia type 1, recruits the
protein arginine methyltransferase 5 (PRMT5) to
growth arrest-specific 1 (Gas1) promoter. The
consequent Gas1 repression prevents the
binding of Shh to Ptch1, thus resulting in
reduced HH pathway activity (Ref. 220).
Different components of HH signalling are also
targets of micro-RNAs (miR). miR-125b and
miR-326, which target SMO, and miR-324-5p,
which targets both SMO and GLI1, are
downregulated in HH-driven MB and contribute
to sustain tumour growth (Ref. 221). In
glioblastoma the miR-302-367 cluster inhibits
clonogenicity and stemness of glioblastoma stem
cells, through downregulation of CXCR4/SDF1
and consequent reduction of SHH, GLI1 and
NANOG levels (Ref. 222).

Inhibitors of HH-GLI signalling
Current HH pathway antagonists can be classified
according to what level of the pathway they
modulate: (i) HH/PTCH interaction; (ii) SMO
translocation and activation; (iii) GLI nuclear

translocation and transcriptional activation
(Fig. 3).

Acting at the level of SMO
The development of strategies targeting the HH
signalling pathway began with the discovery
that cyclopamine, a steroidal alkaloid derived
from Veratrum californicum with teratogenic
properties (Ref. 223), inhibits SMO (Refs 224,
225). Cyclopamine has been extensively used to
study HH signalling and found to inhibit
tumour growth in multiple in vitro and in vivo
models. For instance, oral cyclopamine can
block the growth of UV-induced BCCs in Ptch+/−

mice by 50%, as well as inhibit the formation of
new tumours (Ref. 226). Cyclopamine also
reduces medulloblastoma development in Ptch+/−

mice (Ref. 227) and decreases growth of many
human cancer cell lines in xenotransplantation
(Refs 70, 73, 75, 78, 228). However, cyclopamine
is not suitable for clinical development because
of its poor oral solubility. Efforts to improve the
specificity, potency, and pharmacologic profile of
cyclopamine have led to the synthesis of novel
derivatives such as KAAD-cyclopamine
(Ref. 229), IPI-609 (Ref. 87) and saridegib (IPI-
926) (Ref. 230).

Additional SMO inhibitors are currently
available and many, including vismodegib
(GDC-0449), sonidegib (LDE-225), BMS-833923,
PF-04449913 and LY2940680 are being
investigated in clinical trials in a number of
advanced cancers (Ref. 231) (Table 1). Among
these, vismodegib is the first Hedgehog
signalling antagonist approved by U.S. Food
and Drug Administration (FDA) for treatment of
advanced or metastatic BCC. Two SMO
inhibitors, saridegib and TAK-441, have been
discontinued for lack of efficacy (Refs 232, 233).
A number of additional SMO antagonists have
been used in preclinical studies; they include
Cur-61414 (HhAntag; Refs 234, 235), provitamin
D3 (Ref. 236), Sant1-4 (Ref. 237), Sant-75
(Ref. 238), bis-amide compound 5 (Ref. 239) and
desmethylveramiline (Ref. 240). Glucocorticoids
have recently been proposed as modifiers of HH
signalling and SMO ciliary translocation; one
class promotes ciliary accumulation resulting in
enhanced Hh ligands response, whereas a
second class inhibits SMO ciliary accumulation
and is active against oncogenic and resistant
SMO mutations (Ref. 241). Similarly,
itraconazole, a common antifungal agent, has
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been identified as a potent inhibitor of the HH
pathway by preventing ciliary translocation of
SMO (Ref. 242). Systemic administration of
itraconazole inhibits the growth of HH-
dependent MB and BCC in mice and it is also
active against drug-resistant mutant SMO
D473H and Gli2 overexpression (Ref. 243).

SMO inhibitors in clinical development
SMO inhibitors are being investigated in clinical
trials in a range of advanced cancers (Table 1).
Several of these agents have induced tumour
response in patients with tumours that harbour
mutations in SMO and PTCH1, such as BCC
and MB. Vismodegib drastically reduces the rate
of appearance of new BCCs in patients with

BCNS, without signs of resistance during
treatment, in contrast with HH-dependent MBs.
However, most BCCs have been shown to
regrow after the drug is stopped (Ref. 244). In
sporadic cases, 58% of patients with late
advanced or metastatic BCC showed tumour
regression in phase I clinical trials (Refs 245,
246) and 30% of metastatic and 43% of locally
advanced BCC responded in phase II clinical
trials (Ref. 247). These results suggest that
tumours with low mutation rate such as in
BCNS patients are predicted to respond well to
SMO inhibition, whereas metastatic BCCs with
high mutation rate have a higher likelihood to
develop acquired resistance during treatment.
Similar responses have been observed in BCC

Expert Reviews in Molecular Medicine © 2015 Cambridge University Press

Targeting aberrant HH-GLI pathway

Cyclopamine, IPI-609,
IPI-926, GDC-0449, LDE-225,
BMS-833923, PF-04449913,
LY-2940680, TAK-441,
Cur-61414, provitamin D3,
Sant1-4, Sant-75, bis-amides,
desmethylveramiline,
glucocorticoids, itraconazole Hh antibodies

Robotnikinin
RU-SKI

HH

Primary
cillium

SMO

SUFU

GLI

GLI1

GLI2

Cytoplasm

Lysosomal
degradation

WIP1-i
aPKC-i

mTOR-i
HDAC-i
Imiquimod
BET-i

GANT58
GANT61
HPI-1/4
ATO
Pyrvinium
Glabrescione B

PTCH

Figure 3. Targeting aberrant HH-GLI pathway. HH-GLI antagonists, classified according to what level of the
pathway they inhibit: SMO translocation and activation (blue); HH/PTCH interaction (orange); GLI nuclear
translocation and transcriptional activity (red). Abbreviations: aPKC-i, atypical protein kinase C-inhibitor;
ATO, arsenic trioxide; BET-i, BET bromodomain inhibitor; HDAC-i, histone deacetylase-inhibitors; HH,
hedgehog; HPI-1/4, hedgehog pathway inhibitors 1–4; mTOR-i, mammalian target of rapamycin inhibitors;
PTCH, Patched; SMO, Smoothened; SUFU, Suppressor of Fused; WIP1-i, wild-type p53-induced
phosphatase 1-inhibitors. See the main text for details.
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with sonidegib (Ref. 248). A phase II study
evaluated vismodegib after chemotherapy in
patients with ovarian cancer in second or third
remission. However, the trial did not meet the
primary endpoint and only a modest
improvement in progression free survival was
observed for vismodegib compared to placebo
(7.5 versus 5.8 months). In addition, more than
half of the patients discontinued treatment for
disease progression and adverse effects
(Ref. 249). Similarly, a phase II study of
vismodegib in patients with advanced
chondrosarcoma did not meet the primary
endpoint (Ref. 250).
Tumour responses in MB have been reported

with vismodegib and sonidegib (Refs 248, 251).
Sonidegib has shown anti-tumoural activity in
relapsed MBs associated with activated HH
pathway, with dose- and exposure-dependent
inhibition of GLI1 expression (Ref. 248). A recent
study showed the usefulness of a five-gene HH
signature in formalin-fixed, paraffin-embedded
tumour samples as a preselection tool for HH
inhibitor therapy in MB patients (Ref. 252).
The use of SMO inhibitors has been associated

with the acquisition of resistance to SMO
inhibitors, mostly described in medulloblastoma,
as a consequence of (i) mutations in human SMO
(D473H) and the matching mutation in mouse
(D477G), observed during vismodegib treatment
(Ref. 253); (ii) amplification of downstream HH
target genes, such as GLI2 and CyclinD1
(Refs 239, 254), reported for both vismodegib and
sonidegib; (iii) upregulation of other oncogenic
signalling, such as PI3K/AKT pathway (Ref. 254),
observed during LDE-225 treatment; (iv)
increased expression of adenosine triphosphate
(ATP)-binding cassette transporter (ABC) such as
P-glycoprotein, leading to increased drug efflux
(Ref. 255), observed during saridegib treatment.
In studies investigating systemic treatments

with SMO inhibitors, a common set of adverse
effects has been observed, including muscle
spasms, loss of taste (dysgeusia), hair loss
(alopecia), fatigue, nausea, diarrhoea, decreased
appetite, weight loss and hyponatraemia
(summarised in Table 1). It is likely that hair
loss, altered taste and diarrhoea are directly
related to the inhibition of the intended
molecular target (SMO), since HH signalling is
known to be active in hair follicle, taste buds
and gastrointestinal tract (Refs 256, 257, 258).
Therefore, these effects are unlikely to be

avoided by modifying the molecular structure of
the agents. Possible strategies to lessen these
effects would be to perform interval dosing of
single agent or lower doses in combination with
other agents (see later). Although most of the
side effects of SMO inhibitors are mild to
moderate (grade 1/2, Table 1), in some cases
their severity has caused 50% of dropouts
(Ref. 244) and raised concerns about long-term
treatment in patients with BCC, typically a non-
life-threatening cancer. One way to avoid or
reduce such effects in BCC might be to use these
inhibitors topically, limiting systemic exposure.
A study employing topical treatment of LDE-
225 for 4 weeks documented an effective
reduction in tumour size or clinical clearing that
correlated with effective inhibition of HH
signalling (Ref. 259).

Acting at the level of HH/PTCH interaction
Interference with the interaction between HH
ligands and PTCH has been shown to attenuate
HH signalling in experimental models. The
monoclonal antibody 5E1 blocks the binding of
HH ligands to PTCH1 with low nanomolar
potency (Ref. 260). This antibody has been
widely used in experimental studies to
demonstrate HH dependency in tumour models,
but it has not advanced to clinical settings.
Recently, a novel neutralising antibody acting on
SHH and IHH with low picomolar affinity has
been reported (Ref. 261). Moreover, two small
molecules have been described; robotnikinin
binds to and inhibits SHH protein (Ref. 262),
whereas RU-SKI, an inhibitor of HH
acyltransferase, hampers SHH palmitoylation
and blocks HH signalling (Ref. 263).

Acting at the level of GLI
The development of molecules able to target
directly the GLI, the final effectors of the HH
signalling, would provide a good approach to
block both canonical and non-canonical HH
pathway activation and perhaps overcome anti-
SMO drug resistance. Unfortunately, so far only
few molecules acting on GLI proteins have been
identified and their use is only limited to
preclinical studies. A cell-based screening for
inhibitors of GLI1-mediated transcription
identified two structurally different compounds,
GANT61 and GANT58. Both are capable of
interfering with GLI1 and GLI2-mediated
transcription and inhibit tumour cell growth in a
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GLI-dependent manner (Ref. 264). A screening of
natural products identified physalins F and B as
inhibitors of GLI-mediated transcriptional
activity (Ref. 265). More recently, HPI-1/4 were
described to act at or downstream of SUFU
through various mechanisms, such as interfering
with GLI processing or GLI activation. In
particular, HPI-1 and HPI-4 have been shown to
increase the proteolytic cleavage of Gli2 to its
repressor form, whereas HPI-4 also decreases
Gli1 stability (Ref. 266).
Arsenic trioxide (ATO), an already approved

therapeutic for acute promyelocytic leukaemia,
inhibits the GLI transcription factors (Refs 267,
268). Mechanistically, ATO directly binds to
GLI1 protein and inhibits its transcriptional
activity (Ref. 268) and blocks HH-induced
ciliary accumulation of GLI2 (Ref. 267). The
in vivo efficacy of ATO was demonstrated in
both studies; it inhibits the growth of Ptch+/−/
p53−/− medulloblastoma allografts and Ewing
sarcoma xenografts and increases survival of
constitutively activated SMO transgenic mice
with MB (Refs 267, 268).
Pyrvinium, an FDA-approved anti-pinworm

agent, has recently been shown to inhibit Gli
activity and enhance Gli degradation in a CK1α-
dependent manner (Ref. 269). Consistent with its
activity on the downstream mediators of the HH
signalling, pyrvinium is able to inhibit the
activity of a vismodegib-resistant SMO mutant
(D473H) and Gli activity resulting from loss of
Sufu, as well as to reduce in vivo growth of
Ptch+/− MB allografts (Ref. 269).
Recently, the structural requirements of Gli1 for

binding to DNA where clarified and a small
molecule (Glabrescione B) that binds Gli1 zinc
finger and interferes with its interaction with
DNA was identified (Ref. 270). Glabrescione B is
an isoflavone naturally present in the seeds of
Derris glabrescens. Remarkably, as consequence of
its strong inhibition of Gli1 activity, Glabrescione
B inhibits growth of Hh-dependent BCC and MB
tumour cells in vitro and in vivo as well as self-
renewal ability and clonogenicity of CSCs
(Ref. 270).
Inhibition of BET bromodomain proteins has

recently emerged as a novel strategy to target
epigenetically the Hh pathway transcriptional
output (Ref. 271). The BET bromodomain protein
BRD4 is a critical regulator of GLI1 and GLI2
transcription through direct occupancy of their
promoter. Interestingly, occupancy of GLI1 and

GLI2 promoters by BRD4 and transcriptional
activation at cancer-specific GLI promoter-
binding sites are markedly inhibited by the BET
inhibitor JQ1. In Ptch-deficient MB and BCC
mouse models and patient-derived tumours with
constitutive HH pathway activation, JQ1
decreases tumour cell proliferation and viability
in vitro and in vivo, even in presence of genetic
alterations conferring resistance to SMO
inhibition (Ref. 271). These findings suggest that
BET inhibition could be effective against tumour
cells that evade SMO antagonists through
mutation of SMO or amplification of GLI2 and
MYCN, although the potential toxicities of BET
inhibitors remain to be elucidated.

Acting on other proteins/pathways that
modulate HH signalling
Other compounds might inhibit HH signalling by
targeting proteins and/or pathways that modulate
GLI transcription factors. For instance, forskolin
inhibits HH signalling by activating PKA, which
in turn is involved in the phosphorylation of GLI2/
GLI3, leading to their proteolytic processing into
C-terminally truncated repressor forms (Ref. 272).
Similarly, imiquimod, a nucleoside analogue of the
imidazoquinoline family approved for treatment
of BCC (Ref. 273), has been shown to induce a
PKA-mediated GLI phosphorylation with
consequent reduction in GLI activator levels
(Ref. 274). Myristoylated aPKC peptide inhibitor
(PSI) inhibits phosphorylation and activation of
GLI1 by aPKC-ι/λ in BCC (Ref. 40). Rapamycin
inhibits TNF-α-induced and mTOR-S6K1,
mediated phosphorylation and activation of GLI1
in oesophageal adenocarcinoma (EAC) cells
(Ref. 41).

Evidence for rational combinations
Combination of SMO inhibitors and other
agents in preclinical studies
Support for combinatorial strategies is derived from
the increasing amount of experimental data
showing evidence of non-canonical HH signalling
activation in tumours (summarised in Table 2).
Combined inhibition of HH and MEK or AKT has
been shown to yield additive/synergistic effects in
reducing melanoma and cholangiocarcinoma cell
proliferation in vitro (Refs 78, 275). Combination of
EGFR and SMO inhibitors has been described in
several preclinical models. In pancreatic cancer cells,
treatment with cyclopamine and EGFR inhibitor
gefinitib decreased tumour growth rate and
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increased apoptosis (Ref. 276). Treatment of prostate
cancer cells with cyclopamine in combination with
gefitinib and docetaxel cooperatively inhibited
proliferation and invasiveness (Ref. 277).
Combination of cyclopamine with erlotinib or
sequential treatment with erlotinib followed by
cyclopamine inhibited tumour-initiating potential in
glioblastoma cells (Ref. 278). Similarly, combination
of the SMO inhibitor saridegib and EGFR inhibitor
cetuximab drastically decreased head and neck
squamous cell carcinoma tumour growth in vivo
(Ref. 279).
Several preclinical studies have evaluated HH

pathway inhibitors in combination with PI3K
and mTOR inhibitors. Simultaneous treatment
with sonidegib and the PI3K inhibitor buparsilib
(BKM120) or the dual mTOR/PI3K inhibitor
BEZ235 led to a significant delay in resistance
development (Ref. 254). Similarly, HH and PI3K
pathways have been shown to synergise in
promoting tumour growth in PTEN-deficient
glioblastomas, and combined inhibition of the
two pathways resulted in improved efficacy
compared with inhibition of either pathway
alone (Ref. 280). In pancreatic cancer,
combination of chemotherapy, cyclopamine and
the mTOR inhibitor rapamycin led to a near
complete elimination of CSCs and increased
long-term survival in mouse model (Ref. 281).
Combination of vismodegib and the mTOR
inhibitor everolimus resulted into a better
response than each treatment alone in EAC
xenografts (Ref. 41). Recently, multimodal
treatment with the novel HH pathway inhibitor
SIBI-C1, the mTOR inhibitor rapamycin and
gemcitabine was shown to eliminate pancreatic
CSCs and to increase survival of primary
human pancreatic cancer tissue xenografts
(Ref. 282).
Combination of HH and Notch inhibitors has

also proved potential therapeutic efficacy in
preclinical studies. For instance, cyclopamine
and a γ-secretase inhibitor showed additive
growth suppression in leukaemia cell lines
(Ref. 283). Combined inhibition of cyclopamine
and the γ-secretase inhibitor MRK-003 led to
decreased glioblastoma cell growth, increased
apoptosis and decreased colony formation
compared with either agent alone (Ref. 218).
Similarly, treatment of CD133+ glioblastoma
stem cells with cyclopamine and a γ-secretase
inhibitor enhanced the therapeutic effect of
temozolomide (Ref. 284). Inhibition of Notch

and Hedgehog signalling were also shown to
affect docetaxel-resistant hormone-refractory
prostate cancer cells, which have a high tumour-
initiating potential. Treatment with the γ-
secretase inhibitor DBZ or compound E and
with cyclopamine or vismodegib reduced
growth of docetaxel-resistant hormone-
refractory prostate cancer cells in vitro and
in vivo through inhibition of the survival
molecules AKT and Bcl-2 (Ref. 285).

BCR-ABL tyrosinase kinase inhibitors (TKI) are
effective against CML; however, these agents are
unable to eliminate quiescent leukaemia stem
cells (Ref. 286). Therefore, combination therapies
with HH inhibitors are being explored. First of
all, it was shown that imatinib-sensitive and
-resistant CML cell lines express components of
HH signalling, and genetic silencing of GLI1
reduced BCR-ABL protein expression, effect that
is reversed by SMO agonist treatment (Ref. 287).
Cyclopamine enhanced the effect of the BCR-
ABL inhibitor nilotinib and prolonged the
survival of mice by acting on leukaemic stem
cells in a mouse model of CML (Ref. 89). SMO
inhibition impaired propagation not only of
wild-type BCR-ABL, but also of imatinib-
resistant mouse and human CML (Ref. 90). In
the BCR-ABL-positive cell line OM9;22, the
combination of vismodegib with the BCR-ABL
TKI dasatinib resulted in enhanced cytotoxicity
compared with each drug alone (Ref. 288).
Similarly, simultaneous treatment with
vismodegib and the pan-ABL kinase inhibitor
ponatinib reduced the percentage of
CD19-positive leukaemia cells and overall
tumour burden, and increased survival
compared with treatment with either compound
alone (Ref. 289).

Another example of combination drug for SMO
inhibitors is gemcitabine for the treatment of
pancreatic cancer. The activity of SMO inhibitor
as a single agent in a pancreatic cancer
xenograft model is modest and seems to be
mediated by stromal pathway inhibition
(Ref. 79). The combination of cyclopamine with
gemcitabine completely abrogated metastases
and significantly reduced the size of primary
tumours in an orthotopic model of pancreatic
cancer (Ref. 71). In a mouse model of pancreatic
cancer (Trp53R172H and KrasG12D) saridegib (IPI-
926) was proposed to sensitise tumours to
gemcitabine treatment through depletion of the
tumour stroma (Ref. 139).
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In light of the role of HH signalling in the
maintenance of CSCs, combinatorial therapy
with SMO antagonists and debulking
chemotherapeutic agents has attracted interest,
particularly with the respect to preventing
relapse or resistance to standard treatments. For
instance, SMO inhibitors have also shown to
increase the effects of the alkylating agent
temozolomide in glioblastoma xenograft
models, mostly acting on the CSC population
that is spared by temozolomide alone (Refs 75,
290).
Similarly, inhibition of Aurora kinase and Polo-

like kinase, two important G2–M cell cycle
regulators (Ref. 291), has shown to enhance the
effect of SMO antagonist LDE-225 in blocking
tumour cell proliferation in vitro and tumour
growth in vivo and to increase sensitivity to
conventional chemotherapy in murine PTCH1
mutant cells and in humanMB cell lines (Ref. 292).
Recently, cyclopamine has been shown to act

synergistically with WIP1 inhibitor CCT007093
in reducing in vitro growth of patient-derived
melanoma cells and BC cell lines (Ref. 215).
These data suggest a possible novel therapeutic
approach for tumours expressing high levels of
WIP1 and with activated HH pathway, such as a
subset of MB, gliomas and melanomas
(Refs 215, 293, 294, 295). Targeting WIP1 in
tumours with wild type p53 would lead not
only to restoration of p53 tumour suppressor
activity (Ref. 296), which in turn might inhibit
GLI1 (Ref. 216), but also to a direct attenuation
of GLI1 function (Ref. 215), resulting in a
stronger inhibition of the HH pathway. This is
particularly relevant to melanoma, as nearly
90% of human melanomas express functionally
defective wild-type p53 and restoration of p53
function has recently been suggested as an
alternative for melanoma therapy (Ref. 297).
Moreover, this approach based on WIP1-
p53-GLI1 axis might inhibit not only the growth
of tumour bulk, but also that of putative CSCs
(Ref. 215).

Clinical trials of SMO inhibitors in
combination with other targets
Based on the crosstalk betweenHH signalling and
other pathways, several combinations with SMO
inhibitors are being evaluated in clinical trials
(Table 3). Most of these trials are still recruiting
and do not have published data. In a clinical
phase 2 study, 199 patients with metastatic

colorectal cancer were treated with vismodegib
or placebo in combination with VEGF inhibitor
bevacizumab and chemotherapy. The study
failed to show clinical benefit in vismodegib
compared with placebo (Ref. 298) (Table 3).
Interestingly, the placebo group had a slightly
better overall response than vismodegib-treated
group (51% versus 46%), probably reflecting
differences in safety and tolerability, as
vismodegib-chemotherapy combination is less well
tolerated compared with placebo-chemotherapy
combination. In a pilot study, 25 patients with
metastatic pancreatic adenocarcinoma were
treated with a combination of vismodegib and
gemcitabine. Vismodegib treatment for 3 weeks
led to downregulation of GLI1 and PTCH1 in post-
treatment biopsies in the majority of patients,
without significant changes in the CSC
compartment compared with baseline. However,
vismodegib and gemcitabine were not better than
gemcitabine alone in the treatment of metastatic
pancreatic cancer (Ref. 299).

Vismodegib is also being tested in combination
with the mTOR inhibitor sirolimus, and in
combination with the gonadotropin-releasing
hormone agonist leuprolide or goserelin in
metastatic pancreatic cancer and locally
advanced prostate cancer, respectively (Table 3).
In addition, clinical studies combining
vismodegib with the Notch pathway inhibitor
RO4929097 in advanced BC and sarcoma are
ongoing. Multiple combination studies with
sonidegib and BMS-833923 are either recruiting
or ongoing. For instance, phase 1 studies of
sonidegib in combination with PI3K inhibitor
buparlisib in several types of advanced solid
tumours, or in combination with BCR-ABL
inhibitor nilotinib in patients with chronic
myeloid leukaemia are recruiting (see Table 3 for
details). Results from these clinical trials will
address the applicability of SMO inhibitors in
combination with other targets in multiple
cancer types.

Perspectives
Over the last decade, knowledge of the HH-GLI
signalling has greatly increased, enabling a better
understanding of the interaction of the major
oncogenic pathways during tumourigenesis.
Despite these advances, our understanding of this
signalling pathway is far from complete and many
important questions remain to be answered. For
example, which are the mechanisms of gene
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regulation by GLI protein and how are cell type-
specific responses determined? Are there co-factors
that play a role in determining the HH
transcriptional response? What is the evolutionary
role of cilia in the HH signalling and do cilia play a
crucial role in regulating HH signalling in human
cancers?
Besides answering these questions, it will be

important to develop sensitive biomarkers of
HH-GLI pathway activation to identify the
subset of cancers that will respond to HH
inhibitors, sparing patients who are unlikely to
benefit from a potentially toxic treatment. This is
particularly true for MB, where only 25%
harbour mutations in HH pathway genes. A
reliable read-out of an active HH signalling is
the expression of GLI1; however, the use of
GLI1 as a biomarker by immunohistochemistry
is hampered by the lack of specific GLI1
antibodies for diagnostic purposes. Equally
important is to differentiate cancers with
canonical and non-canonical HH pathway
activation, and among the latter SMO-
dependent from SMO-independent cancers.
Only a clear understanding of the mechanisms
leading to GLI activation in each tumour will
allow for selection of the appropriate HH
pathway inhibitor and, in cases where crosstalk
between HH and other oncogenic pathways
occurs, the optimal combinatorial partner. The
prevalence of cancers with non-canonical HH
activation strongly argues for the development
of molecules able to target the final effectors of
the HH signalling. This would provide a good
approach to block ligand-independent and
ligand-dependent HH pathway activation and
perhaps overcome anti-SMO drug resistance.
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