
Glaucoma is characterized by progressive optic neurop-
athy leading to severe, often permanent, vision loss [1]. 
Glaucoma is considered one of the major causes of bilateral 
blindness worldwide, with an estimated prevalence of 64.3 
million, of whom 8.4 million are bilaterally blind [2]. This 
prevalence is anticipated to rise with an alarming rate to 76.0 
million in 2020 and 111.8 million in 2040 [3,4]. Among the 
glaucoma subtypes, primary congenital glaucoma (PCG; 
OMIM 231300), characterized by the presence of an under-
developed trabecular meshwork, is an imperative cause of 

severe visual disability in children, and has a prevalence of 
1:10,000 to 18,000 live births worldwide [2].

In PCG, the improperly developed aqueous outf low 
system results in increased intraocular pressure, enlarge-
ment (Buphthalmos) and opacification of cornea, edema, 
with an ultimate consequence of optic nerve damage and 
vision impairment [5,6]. PCG is a genetically heterogeneous 
disorder, and commonly segregates in a typical autosomal 
recessive fashion. However, linkage and positional cloning 
studies have also revealed autosomal dominant PCG loci 
or genes [5]. Among the known genes, biallelic variants of 
CYP1B1 (OMIM 601,771) and LTBP2 (OMIM 602,091) are the 
common cause of PCG worldwide [5,7,8]. As of September 
2018, around 240 and 26 pathogenic variants of CYP1B1 and 
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Purpose: Primary congenital glaucoma (PCG) is a clinically and genetically heterogeneous disease. The present study 
was undertaken to find the genetic causes of PCG segregating in 36 large consanguineous Pakistani families.
Methods: Ophthalmic examination including fundoscopy, or slit-lamp microscopy was performed to clinically character-
ize the PCG phenotype. Genomic nucleotide sequences of the CYP1B1 and LTBP2 genes were analyzed with either Sanger 
or whole exome sequencing. In silico prediction programs were used to assess the pathogenicity of identified alleles. 
ClustalW alignments were performed to determine evolutionary conservation, and three-dimensional (3D) modeling 
was performed using HOPE and Phyre2 software.
Results: Among the known loci, mutations in CYP1B1 and LTBP2 are the common causes of PCG. Therefore, we 
analyzed the genomic nucleotide sequences of CYP1B1 and LTBP2, and detected probable pathogenic variants cosegre-
gating with PCG in 14 families. These included the three novel (c.542T>A, c.1436A>G, and c.1325delC) and five known 
(c.868dupC, c.1168C>T, c.1169G>A, c.1209InsTCATGCCACC, and c.1310C>T) variants in CYP1B1. Two of the novel 
variants are missense substitutions [p.(Leu181Gln), p.(Gln479Arg)], which replaced evolutionary conserved amino acids, 
and are predicted to be pathogenic by various in silico programs, while the third variant (c.1325delC) is predicted to 
cause reading frameshift and premature truncation of the protein. A single mutation, p.(Arg390His), causes PCG in six 
(~43%) of the 14 CYP1B1 mutations harboring families, and thus, is the most common variant in this cohort. Surpris-
ingly, we did not find any LTBP2 pathogenic variants in the families, which further supports the genetic heterogeneity 
of PCG in the Pakistani population.
Conclusions: In conclusion, results of the present study enhance our understanding of the genetic basis of PCG, support 
the notion of a genetic modifier of CYP1B1, and contribute to the development of genetic testing protocols and genetic 
counseling for PCG in Pakistani families.
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LTBP2, respectively, are listed in the Human Gene Mutation 
database. In patients with PCG, early diagnosis is important 
for effective treatment of the disease with surgical interven-
tions (e.g., trabeculotomy, trabeculectomy, goniotomy, or 
deep sclerectomy), use of drainage implants, or correcting 
refractive errors and amblyopia. Therefore, identifying indi-
viduals at risk for inheriting pathogenic variant(s) as soon 
as possible after birth has considerable ramifications for 
diagnosis, management, and treatment of PCG and to prevent 
unnecessary health care costs [5].

To investigate the etiology of the disease at the molecular 
level and to improve genetic diagnosis, we ascertained a large 
cohort of consanguineous Pakistani families segregating 
PCG. We performed candidate genes screening with Sanger 
sequencing and whole exome sequence (WES) analysis to 
identify the underlying genetic cause of PCG in the cohort. 
In this study, we report identification of five known and 
three novel variants of CYP1B1 segregating in 14 families 
with PCG. We did not find a pathogenic allele in CYP1B1 and 
LTBP2 in 22 of the 36 families (61%), which suggests genetic 
heterogeneity of PCG in the Pakistani population.

METHODS

Subjects and clinical evaluation: The present study was 
approved by IRB committees of the participating institu-
tions in the United States and Pakistan. All methods used 
in the study followed the precepts of Declaration of Helsinki 
and were in compliance of the ARVO statement on human 
subjects. Informed written consent was obtained from all 
individuals before inclusion in the study. A total of 423 indi-
viduals including 227 males (of which 79 had glaucoma) and 
196 females (71 affected) with the ages ranging from 1 year 
old to 65 years old were recruited from Sindh and Punjab 
Provinces of Pakistan. Detailed interviews were conducted 
with family members to gather information on pedigree 
structure, comorbidities, onset of disease, and initial symp-
toms. The clinical diagnosis was based on presenting symp-
toms, physical and ophthalmic examinations, fundoscopy, or 
slit-lamp microscopy. The DNA was extracted from whole 
blood by using the inorganic method as described previously 
Grimberg et al 1989 [9].

Known genes screening and exome sequencing: Before 
exome sequencing, we performed Sanger sequencing on one 
affected individual from 24 of the 36 families with glaucoma 
for known PCG genes, CYP1B1 and LTBP2. Primers for 
Sanger sequencing were designed using Primer3. PCR ampli-
fication was performed as follows: 95 °C: 2 min (1X), 95 °C: 
30 sec; annealing temperature: 30 sec; 72 °C: 1 min (35X), 

72 °C: 7 min (1X), 25 °C: 5 min (1X) by using EconoTaq 
Plus 2X Master mix. and DNA sequencing were performed 
as described previously [10]. WES was performed on the 
remaining 12 families and on the families negative for patho-
genic variants in CYP1B1 and LTBP2. For WES, genomic 
libraries were recovered for exome enrichment using the 
Agilent SureSelect Human Expanded All Exon V5 (62 Mb) 
kit (Agilent corporation, Santa Clara, CA).. Libraries were 
sequenced on an Illumina HiSeq2500 (Agilent corporation) 
with average 100X coverage. Data analysis used the Broad 
Institute’s Genome Analysis Toolkit [11]. Reads were aligned 
with the Illumina Chastity Filter with the Burrows-Wheeler 
Aligner [12]. Variant sites were called using the GATK 
UnifiedGenotyper module. Single nucleotide variant calls 
were filtered using the variant quality score recalibration 
method [11]. Filtration of candidate variants was performed 
as described previously [13]. Sanger sequencing was used 
to confirm the segregation of the variants identified in the 
families.

In silico analysis: The following online pathogenicity 
prediction programs were used to evaluate the pathogenicity 
of missense variants: Polymorphism Phenotyping v2 (Poly-
Phen-2), Sorting Tolerant From Intolerant (SIFT), Mutation 
Taster, Mutation Assessor, and fathmm. Moreover, ClustalW 
alignment was used to assess the conservation of the affected 
amino acid residues.

RESULTS

Clinical findings: In this study, we enrolled 36 families 
segregating with primary congenital glaucoma from the 
Punjab and Sindh provinces of Pakistan (Figure 1). The 
neonatal clinical records of the affected individuals were not 
available at the time of enrollment. According to the family 
history, all the affected individuals were reported to have 
vision problems shortly after birth or in early childhood. The 
most common features consistent with PCG included high 
intraocular pressure, reduced visual acuity, increased corneal 
diameter, and corneal haze (Figure 1, Table 1). However, 
high inter- and intrafamilial variability was observed in the 
severity of PCG in these families (Table 1). For instance, 
one affected individual of family PKED05 had no apparent 
visual impairment or corneal haze, but ophthalmic evaluation 
revealed high intraocular pressure, while the other affected 
individuals of the same family had classical symptoms of 
PCG. Furthermore, a few affected individuals of the families 
with PCG had low vision and corneal haze only in one eye 
(Table 1). However, a few of the participating affected indi-
viduals had microphthalmia, and were completely blind at the 
time of enrollment.

http://www.molvis.org/molvis/v25/144
http://www.hgmd.cf.ac.uk/ac/index.php
http://www.hgmd.cf.ac.uk/ac/index.php
http://genetics.bwh.harvard.edu/pph2/
http://genetics.bwh.harvard.edu/pph2/
http://sift.jcvi.org/
http://www.mutationtaster.org/index.html
http://www.mutationtaster.org/index.html
http://mutationassessor.org/
http://fathmm.biocompute.org.uk/
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Genetic spectrum: We used candidate genes (CYP1B1 and 
LTBP2) screening and WES to identify the underlying genetic 
causes of PCG in the families. We identified eight variants 
of CYP1B1 cosegregating with PCG in 14 of the 36 families 
(Figure 1, Table 2). All of these 14 consanguineous families 
segregated PCG associated with CYP1B1 variants in a homo-
zygous fashion. Five of these variants have been previously 
reported to cause PCG in humans, but we also identified three 
novel variants in CYP1B1 (Table 2). Almost 75% (six of eight) 
of the identified variants are present only once in the cohort 
(Table 2). However, a single variant p.(Arg390His) was found 
in six of the 14 families with CYP1B1-associated PCG (Table 
2). Surprisingly, we did not find a disease-associated variant 
of LTBP2 in the cohort, which suggests genetic heterogeneity 
of PCG in Pakistani families.

Causal variants: Of the causative variants identified in this 
study, two were novel missense variants [p.(Leu181Gln 
and p.(Gln479Arg)] of CYP1B1, cosegregating with PCG 

in families PKED01 and PKED05, respectively (Figure 
1). These missense variants were not found in the Genome 
Aggregation (gnomAD), Human Gene Mutation (HGMD), 
and ClinVar databases, and were predicted to be deleterious 
by various in silico prediction algorithms (Table 2). Both 
missense variants affected amino-acid residues that are 
highly conserved among the CYP1B1 orthologs (Figure 2). 
We also used the HOPE [14] and Phyre2 [15] 3D modeling 
prediction programs to further assess the effects of these two 
missense variants on the secondary structure of the encoded 
protein. The p.Leu181 and p.Gln479 residues are located in 
the cytochrome p450 domain. Leucine at position 181 is part 
of an α-helix and is predicted to be buried in the protein core. 
Substitution of p.Leu181 with glutamine, which is smaller 
and less hydrophobic than leucine, does not prefer an α-helix 
as a secondary structure and leads to the loss of hydrophobic 
interactions in the protein core. Similarly, the substituting 
glutamine with arginine at position 479 is predicted to affect 

Figure 1. Pedigrees of Pakistani families with PCG with segregated variants in CYP1B1. Pedigrees of 14 multigenerational families who 
segregated recessive primary congenital glaucoma (PCG) due to disease-causing variants in CYP1B1. Filled and empty symbols represent 
affected and unaffected individuals, respectively. A double line connecting two individuals represents consanguineous marriage. Genotypes 
are written at the bottom of the enrolled individuals. Shown also are eye photographs of representative affected individuals. All the affected 
individuals have hazy corneas.

http://www.molvis.org/molvis/v25/144
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the protein stability by introducing protein-folding problems 
due to its positive charge, which, in turn, could affect the 
ligand contacts made by one of the neighboring residues.

In two families with PCG (LUPCG01 and GCUF14), we 
found a novel single nucleotide deletion (c.1325delC), which is 
predicted to cause premature truncation [p.(Pro442Glufs*15); 
Table 2) of the encoded protein. This variant has low 
frequency in gnomAD (4.061 × 10−6), but is not registered 
in HGMD or ClinVar. In two other families (GCFGL02 and 
GCUF19), we identified two known frameshift variants 
[c.868dupC, p.(Arg290Profs*37); c.1209InsTCATGCCACC, 
p.(Thr404Serfs*30)], respectively. Both insertion variants are 
also predicted to result in premature stop codons and early 
truncation of CYP1B1.

In this study, the most commonly observed variant was 
c.1169G>A [p.(Arg390His)], which was found cosegregating 
with PCG in six families (Table 2). The c.1169G>A variant 
has relatively low frequency in the gnomAD database (1.017 
× 10−4), which includes data of 123,136 exome and 15,496 
whole-genome sequences. Therefore, we performed a haplo-
type analysis using eight closely linked single nucleotide 
polymorphisms (SNPs) in CYP1B1 to identify potential 
founder effects for this recurrent variant. Selection of these 
eight SNPs for haplotype analysis was based on the obser-
vance of high heterozygosity (>0.3) in 50 control samples 
randomly collected from the Pakistani population. The results 
were consistent with a common ancestor for the c.1169G>A 
recurrent allele in the Pakistani families in this study (data 
not shown).

Figure 2. Multiple sequences alignment of CYP1B1 orthologs and molecular modeling of missense variants. A: ClustalW alignment of 
CYP1B1 proteins shows conservation of the residues at positions 181, 290, 390, 404, 437, 442, and 479 among eight species. B: Predicted 
three-dimensional (3D) structures of wild-type and mutant CYP1B1 proteins created using Phyre2. The positions of the wild-type and 
mutated forms of the amino acids in this cohort are shown in green and red, respectively. The p.Leu181 residue of CYP1B1 is located in 
the α-helix of the secondary structure, and replacing this residue with a smaller, less hydrophobic glutamine residue is predicted to slightly 
destabilize the local conformation and leads to the loss of hydrophobic interactions in the protein core. Modeling of the cytochrome domain 
of CYP1B1 revealed that the p.Arg390 residue forms a hydrogen bond and a salt bridge with glutamic acid at position 387, asparagine at 
position 428, and proline at position 437. Substitution with smaller residue histidine [p.(Arg390His)] or cysteine [p.(Arg390Cys)] is predicted 
to disrupt this hydrogen bond, and interrupt the signal transduction between the two domains of CYP1B1, cause an empty space in the 
core of the protein, and distort the correct protein folding. The p.Pro437 residue is located on the protein’s surface. Prolines are known to 
be rigid and therefore, induce a special backbone conformation. Replacing a proline with leucine might disturb this special conformation 
and distort the interactions with other molecules. Finally, the substituting glutamine with arginine at position 479 is predicted to affect the 
protein stability by introducing protein-folding problems due to its positive charge, which, in turn, could affect the ligand contacts made by 
one of the neighboring residues.
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The arginine at position 390 is highly conserved across 
CYP1B1 orthologs (Figure 2A), and is predicted to be protein 
damaging by several in silico bioinformatics tools (Table 2). 
The 3D protein modeling revealed that the p.Arg390 forms a 
hydrogen bond and a salt bridge with glutamic acid at posi-
tion 387, asparagine at position 428, and proline at position 
437 (Figure 2B). Substitution with a smaller residue histi-
dine [p.(Arg390His)] is predicted to disrupt this hydrogen 
bond, and interrupt the signal transduction between the two 
domains of CYP1B1, and thus, is predicted to be pathogenic. 
In another family with PCG (GCUF22), arginine at posi-
tion 390 is substituted with cysteine [p.(Arg390Cys); Table 
2], which is also predicted to result in the loss of charge 
required to keep ionic interactions to make a salt bridge. 
The p.(Arg390Cys) substitution is also predicted to cause an 
empty space in the core of the protein and loss of hydrogen 
bonds and distort the correct protein folding.

Finally, through WES we identified a known missense 
variant [c.1310C>T, p.(Pro437Leu)] of the CYP1B1 gene in 
family LUPCG10 (Table 2). The proline residue at position 
437 is located on the protein’s surface. As proline is rigid, 
p.Pro437 is predicted to induce a special protein backbone 
conformation at this position. The p.(Pro437Leu) substitu-
tion might disturb this special conformation and distort the 
interactions with other molecules.

DISCUSSION

PCG is one of the most common genetic diseases worldwide. 
Pathogenic variants in CYP1B1 represent a broad spectrum 
for PCG at the global level. CYP1B1 is a constituent of cyto-
chrome p450 family genes that are known to be involved in 
the detoxification of exogenous and endogenous molecules. 
CYP1B1 also plays a role in developmental processes of eye 
with an influence on metabolism. In ocular development, 
retinoic acid and estradiols are the two specific substrates 
for CYP1B1 [16]. CYP1B1 is known to regulate oxidative 
homeostasis, and ultrastructural and functional performance 
of trabecular meshwork tissue in the eye [17].

This study described the identification of eight allelic 
variants of CYP1B1 in 14 families with PCG ascertained 
from different regions of Pakistan. All of these variants 
were either substitution of the highly conserved residues or 
predicted to cause early truncation of the encoded protein 
with determined functional significance, and thus, considered 
to be disease causing. All of the identified variants segregated 
with the phenotype with an autosomal recessive pattern of 
inheritance. Seven of these variants were found only in one 
to two families, except the p.(Arg390His) allele, which was 
recurrently found in six families and likely originated from 

a single ancestral modification incidence. We also identified 
two novel homozygous missense variants [p.(Leu181Glu 
and p.(Gln479Arg)] in PKED01 and PKED05, respectively. 
Each variant results in a disturbed protein local secondary 
structure.

Ophthalmic evaluation of the affected individuals 
harboring homozygous variants in CYP1B1 revealed inter- 
and intrafamilial variability in the severity of PCG in 
these families. Variability in the disease manifestation and 
incomplete penetrance of CYP1B1 alleles have been previ-
ously found in consanguineous populations in Saudi Arabia 
and Pakistan [18,19]. It is possible that environmental or 
other epigenetic factors may be the cause of this incomplete 
penetrance. However, a possible dominant modifier locus 
has also been proposed [18], although no modifier gene has 
been reported yet. Genetically mapping a modifier variant 
of CYP1B1 in humans is challenging because of the usual 
limitations in the number of family subjects with incomplete 
penetrance [18,19]. Currently, we also cannot rule out the 
possibility of multiple modifier factors, including genetic and 
environmental, leading to incomplete penetrance. Modifiers 
that suppress a mutant phenotype of a Mendelian disorder 
provide insight into the mechanisms by which organisms 
can buffer biologic processes to accommodate the adverse 
effects of genetic mutations [20-24]. Thus, identification of 
the modifier of CYP1B1 may point toward possible therapies 
for individuals with PCG.

Considering the reported frequency of LTBP2 alleles in 
patients with PCG negative for variants in CYP1B1 [7,25], it 
is surprising that we did not find a pathogenic variant in the 
coding exons or in the splice junctions of LTBP2 in the PCG 
cohort. There are several possible reasons for our failure to 
detect variants of LTBP2 and CYP1B1 in the remaining 22 
families with PCG. For instance, disease-causing variants 
may alter the sequence of cis-acting regulatory or splicing 
elements of LTBP2 or CYP1B1 that are necessary for their 
expression in ocular tissue. Presently, we do not know the 
location of the regulatory elements of CYP1B1 and LTBP2. 
Moreover, these results further support the genetic heteroge-
neity of PCG in the Pakistani population. Currently, we are 
investigating the exome data of the remaining 22 families 
with PCG for pathogenic variants at loci (GLC3B; OMIM 
600975 and GLC3C; OMIM 613085) that were previously 
linked with PCG [26,27], as well as in genes that were not 
previously associated with glaucoma.

In summary, we identified three novel and five known 
variants of CYP1B1 that are associated with PCG in 14 Paki-
stani families. The data suggest that the variants in CYP1B1 
might be responsible for extensive PCG cases in a highly 
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consanguineous population. Detailed functional evaluation 
of pathogenic variants in CYP1B1 will add to better aware-
ness of the PCG disease mechanism. This study extends 
the knowledge spectrum of PCG at the molecular level and 
could lead to the improvement of clinically relevant genetic 
diagnostic protocols.
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