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A B S T R A C T   

Conventional breeding approaches have played a significant role in meeting the food demand 
remarkably well until now. However, the increasing population, yield plateaus in certain crops, 
and limited recombination necessitate using genomic resources for genomics-assisted crop 
improvement programs. As a result of advancements in the next-generation sequence technology, 
GABs have developed dramatically to characterize allelic variants and facilitate their rapid and 
efficient incorporation in crop improvement programs. Genomics-assisted breeding (GAB) has 
played an important role in harnessing the potential of modern genomic tools, exploiting allelic 
variation from genetic resources and developing cultivars over the past decade. The availability of 
pangenomes for major crops has been a significant development, albeit with varying degrees of 
completeness. Even though adopting these technologies is essentially determined on economic 
grounds and cost-effective assays, which create a wealth of information that can be successfully 
used to exploit the latent potential of crops. GAB has been instrumental in harnessing the po-
tential of modern genomic resources and exploiting allelic variation for genetic enhancement and 
cultivar development. GAB strategies will be indispensable for designing future crops and are 
expected to play a crucial role in breeding climate-smart crop cultivars with higher nutritional 
value.   

1. Introduction 

Crop plants serve as a primary source of both sustenance and industrial resources. Despite advances in farming techniques/ 
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advanced breeding methods, there remains a considerable gap between crop yields and the demand for food. The impact of plant 
diseases, pests, and unfavourable environmental conditions regularly leads to significant losses in yield. These stresses coupled with a 
fast-growing global population could result in widespread food scarcity. To meet this challenge, crop breeders must keep producing 
new improved varieties with better yield potential, excellent quality, biotic or abiotic stresses tolerance, and efficient nutrient utili-
zation. There is no doubt that the field of plant breeding has made remarkable strides in the previous century [1]. The conventional 
method of plant breeding involves the controlled cross-pollination of plants or selective mating to produce offspring with desired traits. 
By combining the best traits of two parents, conventional breeding has helped to create new varieties with adaptation to different 
growing conditions and resistance to diseases and pests. Conventional breeding approaches have achieved several notable outcomes 
over time, including improved yields and plant resilience, enhanced flavour, texture, nutritional content, development of disease and 
pest-resistant crops, climate resilience and better crop quality and appearance, leading to increased market value. These advances have 
helped attain food security, improved human nutrition, and reduced pesticide and herbicide use. Despite the remarkable success, the 
traditional breeding methods encounter various obstacles that impede the development of improved cultivars, like time-consuming, 
laborious, resource-intensive, and reliant on the environment. Moreover, the genetic gain over time is low in most of the crops. By 
2050, the world’s population, which is currently 7.8 billion, is expected to reach 9.6 billion [2]. To adequately feed and sustain this 
rapidly growing population, global crop production must double over the next thirty years [3]. Genomics assisted breeding can play an 
important role in improving the genetic gain in crop breeding and can be instrumental in harnessing the potential of newly sequenced 
genomes. 

In the last two decades, genotype rather than phenotype-based selection has become more prevalent in plant breeding due to recent 
developments in molecular biology and next-generation based high-throughput sequencing/genotyping technologies (NGS). MAS has 
been a prevailing technique in molecular breeding programs for several decades, enhancing breeding efficiency to some extent [4]. 
Various MAS approaches have been devised, including major genes/QTLs introgression or MABC, enrichment of positive alleles in 
early generations, and selection of quantitative traits using markers at multiple loci [5,6]. High-density SNP markers can now be used 
to evaluate the complete genome at a relatively low cost because of advancements in whole-genome sequencing (WGS) and marker 
technologies. Genomic-assisted breeding (GAB) can explore the genetic information of crop plants to speed up plant breeding and can 
develop climate-resilient, high-yielding crop varieties. The product resulting from GAB is non-genetically modified (non-GM) and, 
thus, enjoys wider acceptance among consumers and farmers. The Food and Agriculture Organization (FAO) has reported that GAB has 
immense potential to initiate a fresh “greener revolution” that can address the challenge of feeding the ever-growing population while 
conserving natural resources [7]. 

Genomics-assisted breeding is an innovative approach that utilizes modern molecular tools and genomic information to improve 
the accuracy and efficiency of conventional plant breeding (Fig. 1). It involves the use of molecular markers to identify desirable traits, 
genes and their functions, and genomic prediction models to predict the breeding value of individuals. GAB employs multiple 

Fig. 1. A flow chart for genome-assisted breeding. MAS: Marker-assisted selection; GWAS: Genome-wide association studies; GS: Genomic selection; 
GEBV: Genomic estimated breeding value; AB-QTL: Advanced backcross QTL analysis; AM: Association mapping. The haplotype-based breeding 
approach: identification of haplotype (genotyping) along with high precision phenotyping (satellite-based phenotyping to phenotype a large area of 
cropping system, UAV-based phenotyping over a group of crop plant and individual plant-based X-ray imaging) helps to study the marker-trait 
association that ultimately identify the candidate gene for the trait of interest—the pangenomics approach: Dynamic analysis of the pangenome 
structure as a result of a variety of events and forces. Mutations, duplications, deletions, and transpositions add new sequences to the dispensable 
genome, while deletion and transposition reduce the core genome content. Introgression and horizontal transfer also have an impact on the 
dispensable genome compartment (sequence gain). Furthermore, both positive and purifying selections and genetic drift affect both the core and 
dispensable genomes (sequence gains and losses), as well as the pangenome (sequence losses). 
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techniques to improve crop yields and enhance desirable traits like MABC, Association Mapping, Genomic Selection (GS), Advanced 
Backcross QTLs (AB-QTLs), MARS (Marker Assisted Recurrent Selection), haplotype-based breeding (HBB) and other strategies. These 
approaches utilize the latest advancements in genomics to facilitate breeding programs and enhance the accuracy and efficiency of 
selecting desirable crop traits [8]. As a means of progressing plant breeding, these methods use DNA sequencing, gene expression 
analysis, high-throughput phenotyping, and genotyping. There is a great deal of genomic information available in databases that can 
be used to develop novel varieties with desired characteristics, including high yield, resistance to environmental stresses, nutritional 
value, improved quality and other essential agronomic characteristics. 

Genetic gain, i.e. the improvement in the genetic potential of a population over time, usually achieved through selective breeding 
[9], has a close relationship with GAB. With genomic information, breeders can select individuals with desirable traits at an earlier 

Table 1 
Genome sequence information of major crops.  

Crops Variety Estimated genome size 
(Mb) 

Assembly size 
(Mb) 

Number of gene 
predictions 

Repeat (%) Reference 

Cereals 
Oryza sativa spp. Indica 

(Rice) 
93–11 430.00 466.00 46,022–55,615 42.20 [14] 

Oryza sativa spp. japonica Nipponbare 420.00 389.80 37,544 35.00 [13] 
Triticum aestivum (Bread 

wheat) 
Chinese spring 17,000.00 3800.33 94,000–90,000 80.00 [119] 

Zea mays (Maize) B73 2300.00 2048.00 32,540 85.00 [120] 
Sorghum bicolor (Sorghum) BTx623 ~730.00 698.00 27,640 62.00 [121] 
Legumes 
Cajanus cajan (Pigeon pea) Asha (ICPL 87119) 833.07 605.78 48,680 51.67 [122] 
Cicer arietinum (Chickpea) CDC Frontier ~738.00 532.29 28,269 49.41 [123] 
Glycine max (Soybean) Williams 82 1115.00 950.00 46.430 57.00 [124] 
Phaseolus vulgaris 

(Common bean) 
G19833 587.00 473.00 27,197 45.37 [125] 

Vigna radiata (Mungbean) VC1973A 579.00 431.00 22,427 43.00 [126] 
Vigna mungo (Urd bean) Pant U-31 574 475.91 42,115 49.6 [127] 
Arachis hypogaea 

(Groundnut) 
Tifrunner 2717.8 2540 66,469 64 [128] 

Horticultural Crops 
Solanum lycopersicum 

(Tomato) 
Heinz 1706 900.00 760.00 34,727 63.28 [129] 

Solanum tuberosum 
(Potato) 

DM1-3516 R44 and 
RH89-039-16 

844.00 727.00 39,031 62.20 [130] 

Dioscorea rotundata 
(Guinea yam) 

TDr96_F1 570.00 594.00 26,198 – [131] 

Musa acuminata (Banana) DH-Pahang 523.00 472.20 36,542 43.72 [132] 
Manihot esculenta Krantz 

(Cassava) 
AM560-2 770 532.5 30,666 37.5 [133] 

Beta vulgaris (Sugar beet) KWS2320 714.00–758.00 567.00 27,421 63.00 [134] 
Citrullus lanatus 

(Watermelon) 
97103 ~425.00 353.50 23,440 45.20 [135] 

Allium cepa L. (Onion) DHCU066619 ~16400 14940 540,925 72.4 [136] 
Citrus sinensis (Sweet 

orange) 
Valencia 367.00 320.50 29,445 20.50 [137] 

Cucumis sativus 
(Cucumber) 

Chinese long 367.00 243.50 26,682 24.00 [138] 

Malus domestica (Apple) Golden Delicious 742.3 603.9 57,386 67 [139] 
Vitis vinifera (Grapevine) ENTAV 115 504.6 477.1 29,585 27.4 [140] 
Capsicum annum (Hot 

pepper) 
CM334 3480.00 3060.00 34,903 76.40 [141] 

Solanum melongena 
(Eggplant) 

Nakate-Shinkuro 1126.00 833.10 85,446 70.40 [142] 

Industrial Crops 
Elaeis guineensis (Oil palm) Deli dura 1800.00 1535.00 34,802 57.00 [143] 
Ricinus communis (Castor 

bean) 
Hale (NSL 4773) 320.00 350.00 31,237 50.33 [144] 

Gossypium arboretum 
(Cotton) 

Shixiya1 (SXY1) 1724 1694 41,330 68.5 [145] 

Nicotiana tabacum 
(Tobacco) 

TN90 4500.00 3700.00 90,000 72.00–78.00 [146] 

Brassica juncea (Indian 
mustard) 

Tumida 955 784 80,050 40.3 [147] 

Beverages 
Coffea canephora (Robusta 

coffee) 
– 710.00 568.60 25,574 50.00 [148]  
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breeding stage rather than wait until the traits are fully expressed. GAB allows breeders to identify individuals with the most desirable 
genetic traits and a deeper understanding of the genetic architecture of those traits for a given breeding program [10]. This information 
can help them identify the genes responsible for the desired traits, which can be effectively targeted in future breeding programs. By 
analysing the genetic makeup of potential parents, breeders can make more informed decisions about the individuals to be used in their 
breeding program, resulting in offspring with high genetic potential. This technique allows selection cycles to be completed much 
quicker, resulting in faster genetic gain [11,12]. 

2. Genome sequence information of major crops 

The introduction of NGS technologies has facilitated the sequencing of more than 100 plant species. The Arabidopsis thaliana genome 
was the first plant genome to be completely sequenced (The Arabidopsis Genome Initiative, 2000), and it was subsequently followed by the 
sequencing of a draft genome of rice [13,14] and more recently, oat genome was sequenced in 2022 [15]. Plant genome sequencing 
plays a crucial role in assisting the development of elite varieties in various ways. It enables identifying, manipulating and analysing 
specific genes and molecular markers associated with desirable plant traits. Through MAS, plant breeders can make more informed 
selections at the early stages of plant development, reducing the time and resources required to develop elite varieties. Sequencing 
provides a comprehensive understanding of the genetic architecture of plants. This information enables the development of statistical 
models for genomic selection that can predict the performance of a plant based on its genetic makeup. Gene editing and other genetic 

Table 2 
Candidate gene/QTLs with successful trait introgression in various crops.  

Crop Trait Genes/QTLs References 

Rice Bacterial Leaf Blight xa5, xa13, Xa4, Xa21, Xa33, Xa38 [68–70] 
Blast Pi1, Pi2, Pi5, Pi9, Pi33, Pi54, Piz5, Pita, Pil [69,73,149] 
Gall midge Gm1, Gm4 [71] 
Salt tolerance SALTOL, qSSISFH8.1, OsSAP16 [150,151] 
Submergence Sub1 [90] 
Drought DTY1.1, 2.1, 2.2, 3.1, 4.1 [92] 
Sheath Blight qSBR11-1 [152] 
Semi dwarf Sd1 [153] 
Herbicide tolerance AHAS [99] 
Phosphorous tolerance Pup1 [99] 
Nitrogen Use Efficiency qNUE6 [154] 
Low temperature Germination LOC_Os01g23580, LOC_Os01g23620 (OsSar1a) [155] 
Heat tolerance LOC_Os08g07010, LOC_Os08g07440 [156] 
Spikelet number SPIKE [117] 

Wheat Fusarium Head Blight Fhb1 and Fhb2 [157] 
Stripe/yellow Rust Yr10, Yr15, Yr17, Yr26, Yr40 [158] 
Leaf rust Lr19, Lr34, Lr37, Lr57 [159] 
Stem rust Sr2, Sr36, Sr24, Sr25, Sr26 [160] 
Dwarfing gene Rht1 [24] 
Photoperiod Ppd-D1 [24] 
Powdery mildew Dx5, Dx10 [77] 
Yield Qyld.csdh.7AL [118] 

Maize Quality Protein opaque-2, o-16 [161,162] 
Provitamin and vitamin E LcyE and VTE4 [163] 
Beta carotene CrtRB1 [111] 
Maize rough dwarf disease qMrdd8 [81] 
Head smut qHSR1 [82] 

Brassica Leptosphaeria maculans resistance Rlm1, Rlm2, Rlm3, Rlm4, LepR1, LepR2 & LepR3 [164] 
Flowering time FTA09, FTA10, and FTC05 [165] 

Sorghum Shoot fly resistance SBI-01/LG A + SBI-07/LG E + SBI-10/LGG [80] 
Pearlmillet Downy mildew resistance qRSg1, qRSg4, qRSg3.1, qRSg4.2, qRSg6.1 [78] 
Chickpea Fusarium wilt resistance foc1, foc2, foc3, foc4, foc5 [88,89] 

Ascochyta blight ABQTL-I, ABQTL-II [87] 
Drought QTL hotspot [103] 

Groundnut Oleic acid FAD2a, FAD2b [108] 
Soybean YMV resistance Rymv  

Asian soybean rust Rpp1-b, Rpp4, Rpp5 [166] 
Phytopthora Rps2 [84] 
Powdery mildew Rmd-c [84] 
Drought AREB1 [104] 
Kunitz trypsin inhibitor Null allele of KTi [113] 
Lipoxygenase-2 free lox1, lox2, lox3 [114] 
Early maturity Null allele of E1 – 
Pod shattering Pdh1 [116] 
Plant Height Glyma.02G133000, Glyma.05G240600 [167] 
Nodulation rj2 [84] 

Buckwheat Yield & Grain weight FtBRI1, FtAGB1, FtTGW6, FtMADS1, FtMKK4 [168]  
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engineering techniques can be used to introduce or modify genes responsible for desirable traits [16]. The evolution of sequencing 
platforms has made sequencing more affordable, although certain challenges still exist. Long-read sequencing technologies (PacBio 
and Oxford Nanopore), combined with chromosome conformation capture techniques such as HiC, have significantly improved 
genome assembly quality by providing longer contiguous sequences and higher resolution of genome structures [17,18]. Likewise, 
pangenome sequencing and whole genome resequencing have proven instrumental in identifying novel genes and QTLs within wild 
relatives of various plant species [19]. However, the affordability of these technologies remains a concern. While costs have decreased, 
they can still be prohibitive for large-scale projects or resource-limited research programs. Additionally, the complexity of data 
analysis and interpretation from these advanced sequencing methods requires significant bioinformatics expertise and resources. 
Despite these challenges, the benefits of integrating long-read sequencing and Hi-C technologies are substantial, as they provide deeper 
insights into the genetic basis of important agricultural traits [20]. 

These approaches have been particularly valuable for incorporating these genes into elite varietal backgrounds through MAS and 
MABC. These advancements significantly contribute to developing elite varieties with improved traits, including higher yields, 
increased nutritional value, and resistance to environmental stresses. However, re-sequencing and gene expression studies are still 
being conducted to learn how genes work behind each trait and to pinpoint any hidden allelic variations. Many genome projects are 
currently underway or in the planning stages, adding to the crop genomes that have already been sequenced. The key features of the 
sequenced genomes of the 31 important crop species are illustrated in Table 1. 

3. Genetic resources as a source of valuable genes 

Plant genetic resources are considered valuable for present and future generations of humans because they contain novel genes for 
climate resilience, adaptability and nutritional quality. Landraces carry different important alleles that may be utilized for gene 
introgression, like in rice Gobindobhog, Bhutmuri, and Radhunipagol have been used as donors of PUP1 QTL for phosphate tolerance 
in breeding programme [21]. Rice fragrance gene BADH2 and Basmati’s intermediate amylose trait were introduced into ‘Mana-
wthukha from Basmati 370 in Myanmar through MAS [22]. Low-grain arsenic accumulating allele ‘ABCC1’ has been identified in 
Gobindobhog, small-grain Bengal aromatic rice [23]. Likewise, in wheat AP-1 line of Aegilops ventricosa contributed eyespot resistance 
gene Ach1 for developing an improved version of Almatense H-10-15 [24]. Another novel fertility restoration Rf9 gene in Gerek and 
71R1203 [25], increased spikelet number per spike along with stability QTL conferring higher yield in PI272527 [26], stem/leaf rust 
and powdery mildew gene in Triticum timopheevii [27], and high protein content in Farnum, Westmore, Lillian, Somerset, and Burnside 
wheat variety have been identified or developed which can be used for further wheat improvement [28]. Haplotype mining of genes 
responsible for drought tolerance in pigeon pea has been exploited from different accessions like C. cajan_23080-H2, 26230-H5 and 
30211-H6 [29]. Two important genes RING-H2 finger protein and zeaxanthin epoxidase, have been identified from two contrasting 
groundnut genotypes, ICGV 97045 and ICGV 00350, for dormancy which controls abscisic acid accumulation during germination [30]. 
Photoperiod-responsive gene ELF3 in lentil can be used for breeding thermotolerance under delayed sown conditions [31]. Candidate 
genes viz. TB1, LAX1/BA1, GRAS8, ERF, and MAX2 were identified for complex branch number traits in Chickpea [32]. Higher plant 
biomass, leaf area, plant height, and canopy area have been linked with ‘QTL hot spot’ found in chickpea genotype ICC4958 [33]. All 
these studies demonstrate the potential and benefits of genome sequencing and genomic resources in crop breeding programs. Table 2 
shows the list of successfully introgressed candidate genes/QTLs in crop plants. 

4. Molecular markers and their role in the post-genomic era 

Molecular markers are DNA fragments that indicate the presence or absence of specific alleles associated with specific traits in a 
plant genome. SSR markers have been widely used in the past few decades in diversity analysis, genetic mapping, and improving crop 
improvement programs’ efficiency [34]. Before the discovery of SNPs, SSR markers, also known as microsatellites, were widely used in 
GAB. SSRs had co-dominant inheritance, high abundance, and polymorphism, making them useful for genetic mapping, population 
genetics, and breeding experiments. However, with the introduction of high-throughput sequencing technologies, SNPs, which are 
single nucleotide polymorphisms caused by base substitutions, insertions, or deletions, became a more potent alternative. SNPs are 
abundant across the genome and can be easily genotyped utilizing automated approaches, allowing for precise genetic mapping and 
analysis. SNPs have transformed molecular markers, allowing for large-scale genomic investigations, association studies, and popu-
lation genomics. Because of their ubiquitous nature, the availability of cost-effective genotyping platforms and bioinformatics tools, 
they are currently the favoured markers in many genetic research domains. While SSR markers are still used in certain circumstances, 
the arrival of SNPs has substantially widened the boundaries of genetic studies, providing researchers with greater insights into genetic 
diversity and evolutionary links [35]. SNP genotyping panels have been developed and used recently, like an Amplified-fragment 
single nucleotide polymorphism and methylation (AFSM), another sequencing method that facilitates the simultaneous detection of 
methylation sites by identifying variant sites in the genome. Restriction-site Associated DNA sequencing (RADseq) has gained 
popularity in various species, as it does not require reference genome information and has made the resequencing procedure easier 
[35]. 

KASP markers have considerably aided plant breeding by allowing for more efficient and precise genotyping, allowing breeders to 
make more informed decisions, accelerate breeding processes, and generate improved crop varieties with improved attributes (Sood 
et al., 2022). They are utilized in MAS, genetic mapping, QTL analysis, hybrid purity testing, germplasm characterization, diversity 
studies, etc. For instance, the development of the KASP functional marker TaTAP46-5A is associated with Kernal weight in wheat [36]. 
The DArT SNP platform continues to be a popular tool in plant breeding and genetic research. Its capacity to efficiently capture genetic 
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variation and provide useful insights into genome structure and diversity has aided developments in breeding programmes and crop 
variety production. For different crop species, the mid-density DArT SNP platform have been developed for genotyping and genomic 
selection. The mid density DArT platform for wheat has 3900 SNPs, Maize has 3305 SNPs, cowpea has 2602 SNPs, groundnut has 2500 
SNPs, potato has 2147 SNPs, pigeon pea has 2000, and common bean has 1861 SNPs [37]. 

Rapid advances in genotyping platforms have resulted in the development of more than 50 SNP arrays and 15 GBS platforms for 
about 25 crop species and perennial trees [38]. SNP Affymetrix arrays have been widely used for SNP discovery and genotyping in 
food, horticultural, and woody crops [39]. Compared to GBS and PCR-based methods, microarray technology, particularly SNP 
microarrays, provides faster, more efficient, and customizable genotyping, with liquid-phase chips more commonly used than 
solid-phase chips, allowing flexibility in marker selection and sample size. Liquid-phase chips for soybean and barley have been 
developed, and SNP arrays are being used to analyse haplotypes in polyploid plants, assisting in understanding their evolutionary 
history. The KPS wheat 90K chip with 85K loci and the rice 60K whole-genome chip with high distribution density are two notable 
examples. The rice 56K high-density SNP chip has been used to build prediction models for yield and quality in hybrid rice [35]. 

Further progress in the fine mapping of the QTLs and designing of functional SNP chips will improve the efficiency of crop biotic 
and abiotic stress breeding [40]. GBS and chip-based SNPs are frequently used to identify genetic loci associated with specific traits. 
Drought stress GWAS studies have used SNP microarray chips such as the 90K Illumina Infinitum SNP array in wheat, SNP50 Bead Chip 
in maize, SoySNP6k iSelect BeadChip in soybean, and 9K Illumina iSELECT genotyping BeadChip in barley [41]. Due to their 
genome-specificity, high density, and efficacy, various SNP solid chips (15K, 35K, 90K, 55K, 660K, and 820K) are now available for 
genome analysis in wheat [42]. The Illumina Infinium 40K SNP array version 1.0 was created to capture haplotypic diversity in barley 
and wheat germplasm [43]. For sugarcane genotyping, a 345K Sugarcane SNP Chip has been developed [44]. High-density 62K 
genic-SNP array allow for discovering novel QTLs associated with yield, nutrition quality, and stress resistance in Cajanus spp. [45]. 
These advancements in SNP arrays and GBS facilitate comprehending and improving various crops. 

5. QTLs mapping in the post-genomic era 

QTL mapping is a molecular technique used in crop improvement to identify genetic regions, known as Quantitative Trait Loci 
(QTLs), linked with desirable attributes. This method analyses genetic markers and phenotypic data from a plant population to pre-
cisely locate these QTLs. For example, an SSR-based QTL study of the F2:3 population (C-214 × WR-315) revealed two QTLs for 
fusarium wilt (FOC1) resistance on linkage group 6 (LG6) [46]. The generated data is a vital tool for breeders, aiding the selection and 
production of plants with enhanced features through marker-assisted selection procedures. Linkage mapping is a bi-parental mapping 
strategy using genetic and molecular markers to detect links between markers and QTLs. Linkage analysis has limitations in mapping 
resolution and allele richness. The Nested association mapping (NAM) population, combining association and linkage mapping, has 
been employed to study agronomic traits in crops [47]. Complex traits, such as crop yield, are frequently influenced by multiple genes 
or QTLs or haplotypes, each with minor effects that interact with the environment. Due to the minimal individual effects of these 
components, capturing their contributions in isolation becomes difficult. 

On the other hand, association mapping uses historical recombination events in natural populations to locate QTLs. GWAS provides 
improved resolution, lower costs, and the flexibility to test multiple alleles for their interactions. For example, 25 DEGs were 
discovered to be linked with flowering time in maize by combining GWAS, QTL, and transcriptome analysis. Three specific candidates 
(Zm00001d011673, Zm00001d011668 and Zm00001d011666) among these genes were identified as putative regulators of the trait 
associated with flowering time in maize [48]. Association studies, such as GWAS, use statistical approaches to identify connections 
between genetic markers and phenotypic characteristics, allowing potential relationships between specific genomic regions and 
observable phenotypes to be identified. Several crop attributes, including yield, quality, and stress tolerance, have been effectively 
found using haplotype-based GWAS in various plant species, including wheat, rice, barley, maize, and soybean [49]. Recent GWAS 
research based on empirical and simulated data has shown that haplotype blocks, compared to individual SNPs, offer increased 
mapping accuracy and power for discovering QTLs/genes [50]. Haplotype-based mapping has proven to be more effective than 
SNP-based mapping at identifying genetic loci associated with maize biomass and plant height, as well as with drought tolerance in 
maize with higher phenotypic variation explained (PVE) values [51]. Since the haplotype blocks can explain typical patterns of genetic 
variation, haplotyping the complete genome also enables the identification of tag-SNPs that represent the haplotype blocks employed 
in genetic studies. As a result, there is no longer a need to examine each SNP individually, saving money and time on GWAS. 
Evolutionary biologists employ QTL mapping techniques to explore the genetic underpinnings of adaptation in plants such as Ara-
bidopsis and wheat by utilization of the MAGIC population. Recent advances in genetic profiling and QTL mapping have significantly 
enhanced the precision and efficiency of identifying QTLs associated with desirable crop traits. High-throughput sequencing tech-
nologies have revolutionized next-generation mapping, generating high-resolution genetic maps. Innovations such as MutMap and its 
variants (e.g., QTL-seq and MutMap+) have streamlined the rapid identification of QTLs, which showed their effectiveness in rice [52]. 
The integration of CRISPR/Cas9 genome editing with QTL mapping has opened new avenues for functional genomics in rice [53]. 
Additionally, multi-omics integration has enhanced the understanding of complex traits, e.g. Li et al. [54] identified candidate genes 
for heat tolerance in rice through combined GWAS and transcriptome analysis. This approach helps elucidate the specific genomic 
regions associated with adaptive traits in these plant species [55]. 

6. Pangenomics 

In the next few years, the world’s population is expected to reach 840 million undernourished people by 2030. Therefore, crop 
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improvement is more important than ever to fulfil the demand of this increasing population. The advancement in sequencing tech-
nologies, computing power and sequencing of complete, or even gap-free high-quality genome have led to the insight that a single 
genome of a species may not be adequate to manifest the landscape of that species. This is due to the greater number of variations 
present among accessions, which could lead to biased genetic analyses. The “pan-genome” idea was developed to characterize all the 
genetic information regarding a species, which includes core genes that are present in all strains as well as dispensable genes that are 
present in only a subset of strains. In the first generation of pan-genome studies, the aim is usually to identify as many structural 
variants using a diverse but limited sample of genotypes. With this breakthrough, crop genomics shifted from a single reference 
genome to tens or more of reference-quality genome assemblies within a species. 

Single reference genome based QTL mapping and GWAS studies provide an incomplete relationship between structural variants 
and phenotypes. Therefore, many SNP trait associations could not be validated based on single genome information. However, with a 
pan-genome approach, this picture could become clearer. Recently in rice, a high-quality pangenome using an international rice panel 
(413 diverse accessions) and 12 representative rice genomes successfully identified causal structural variations for plant height and 
grain weight and characterized a new locus (qPH8-1) on chromosome 8 for plant height, which was undetected by the SNP-based 
GWAS [19]. Similarly, the genomic prediction for complex traits based on pan-genome could help improve genomic prediction ac-
curacy due to bias reduction. According to Lyra [56], adding a few hundred copy number variations to an analysis of around 20k SNPs 
improved the prediction accuracy of plant height in maize under low nitrogen conditions. 

The pan-genome studies have been carried out in model plants, Arabidopsis and crop plants like rice [57,58], wheat [59], tomato 
[60], brassica [61], apple [62], maize [63], sunflower [64] and pepper [65]. The structural variants discovered by the pangenome 
studies provide genomic information to identify genes/alleles related to various environmental stresses and other desirable traits. In 
addition, they can improve the efficiency of genome editing approaches such as CRISPR-Cas by providing useful information on new 
target genes. The availability of pangenomes for major crops has been a significant development, albeit with varying degrees of 
completeness. However, the expansion of pan-genomic studies beyond individual species holds great potential for harnessing the 
genetic diversity found in wild relatives of crops. This expansion would facilitate the incorporation of novel gene sequences into crop 
improvement efforts, enabling the development of customized or “designer” crops. 

Furthermore, with the establishment of pangenomes for numerous diverse species, we can understand how species and higher 
taxonomic groups are defined at the genomic level. This deeper insight into plant evolution and diversification will contribute to our 
overall knowledge of plant biology and inform future breeding strategies [66]. Pangenomics has shed light on the evolutionary ge-
nomics of numerous species. Core genes, for example, have been found to have much greater expression levels in maize than 
dispensable genes [63]. Furthermore, compared to core regions, dispensable areas of the genome have a larger content of transposable 
elements (TEs) [60]. 

7. Success stories of GABs 

In most food crops, genomic-assisted breeding has produced numerous varieties resistant to biotic stress, abiotic stress, improved 
quality and agronomic related traits. Some notable examples have been discussed in the following paragraphs. 

7.1. Biotic stress 

Either candidate genes or significant effect QTLs are most favoured for introducing disease resistance using GAB. GAB has resulted 
in the development of many disease-resistant varieties or improved advanced breeding lines in many crops. For instance, the rice 
variety ‘Improved Pusa Basmati 1′ was engineered with two stacked genes (xa13+Xa21) to confer resistance against bacterial blight 
disease [67]. Likewise, ‘Improved Samba Mahsuri’ originally containing three resistance genes (xa5+xa13+Xa21), was further stacked 
by two additional major blast resistance genes (Pi-2, Pi-54) and one blight resistance gene (Xa38) [68–70]. Variety, ‘Improved 
Tapswini’ [71] and ‘Improved Lalat’ [72] were developed by pyramiding gene combinations (Xa4+xa5+xa13+Xa21). Additionally, 
six tolerance/resistance genes/QTLs (Pi2, Pi9, Gm1, Gm4, Saltol and Sub1) were added to the ‘Improved Tapswini’ to supplement the 
blast resistance genes [71], acquiring long-lasting resistance to several diseases. Resistance genes were pyramided in the rice cultivars 
Pusa Basmati 1609 (Piz5+Pi54), Pusa Samba 1850 (Pi1+Pi54+Pita) and an improved version of ‘Pusa Basmati 1’ (Pi54+ Pi1+ Pita +
Pi2+ Pib + Pi5+ Pi9) to achieve a high level of resistance to blast disease [73]. In wheat, several varieties/cultivars were improved for 
rust resistance by gene introgression, like ‘Jagger’ and ‘Overley’ having the genes Lr57/Yr40 [74] and Lr58, HUW510 (Lr34) [75], 
Unnat PBW 343 (Yr17+Yr40+Lr37+Lr57), HD 2733 (Lr19/Sr25+Sr26+Yr10), HD 2932 (Lr19/Sr25+Lr24/Sr24+Yr10) [76] and 
Xiaoyan 22 [77]. 

The transfer of the eyespot resistance gene Pch1, barley yellow mosaic virus resistance genes rym4/rym5, and barley powdery 
mildew resistance gene mlo were other examples highlighting the potential of GAB in cereal breeding. Downy mildew resistance genes 
were stacked in the pearl millet original cultivar HHB 67 and HHB 67 improved’ (qRSg1 + qRSg4) and ‘HHB 67 improved 2’ cultivars 
were released, which demonstrated increased resistance to downy mildew [78]. Three QTLs for striga resistance in sorghum were 
transferred in the background of ‘Tabet’ and ‘Wad Ahmed’, a well-known cultivar in Sudan [79]. By pyramiding three QTLs from the 
donors J2658, J2614, and J2714, the popular Indian varieties Parbhani Moti and ICSB 29004 were improved for shoot fly [80]. Seven 
elite lines of maize were improved for rough dwarf disease in China using a QTL (qMrdd8) [81], and another ten advanced lines were 
similarly made resistant to head smut by introducing a head smut resistant QTL (qHSR1) [82]. 

Compared to cereals, grain legume crops have lagged behind in terms of GAB product delivery; nonetheless, genotyping-based 
choices are currently being used in breeding programs more and more. For instance, at USDA-ARS, pyramiding against different 
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Table 3 
Improved varieties/lines introgressed with various biotic stresses using Genomic assisted breeding.  

Crop Improved varieties/advanced breeding lines/recurrent 
parent 

Gene combination Trait(s) target References 

Rice Improved Pusa Basmati I, Pusa 6A, Pusa 6B of Pusa RH 
10 rice hybrid, Punjab Basmati-3, Punjab Basmati-4, 
Pusa Basmati 1728, Pusa Basmati 1718, Pusa1592, 
PRR78 of Pusa RH 10 rice hybrid, Improved Pusa 
Basmati 1121, Pusa Basmati 6 

xa13 + Xa21 Bacterial blight [67,149, 
153,169] 

Improved Samba Mahsuri, CR Dhan 800 (Swama MAS), 
Triguna 

xa5 + xa13 + Xa21 [68,99,170] 

KMR3 Restorer, Improved Tapaswini, Improved Lalat, 
CRMS 32B and CRMS 32A 

Xa4+ xa5 + xa13 + Xa21 [71,72,171, 
172] 

Improved Mangeumbye Xa4+ xa5 + Xa21 [173] 
DRR Dhan 53 Xa21+ xa13+ xa5 + Xa38 [99] 
DRR Dhan 59 Xa33 [99] 
Pusa Basmati 1609, Pusa 1612 (Pusa 6), PRR78 of Pusa 
RH10 rice hybrid, Improved Pusa Basmati 1121, Pusa 
Basmati 6 

Pi2 + Pi54 Rice blast [149,174] 

Pusa Basmati 1 Pi9 +Pita [73] 
Samba Mahsuri (BPT 5204) Pil [175] 
Pusa Basmati 1637 Pi9 [99] 
DRR Dhan 51 Pi2 [99] 
Pusa Samba 1850 Pi1 + Pi54 + Pita [176] 
ADT 43 Pi54+Pi33+Pi1 [177] 
MushkBudj Pi54+ Pil + Pita [178] 
Pusa 1604 qSBR11-1 Sheath blight [152] 
Pusa Basmati 1847, 1885, 1886 Xa21+ xa13+ Pi2 + Pi54 Bacterial blight & blast [99] 
DRR Dhan 62 Xa21+ xa13+ xa5+ Pi2 + Pi54 
Swama Xa4+xa5+xa13+Xa21+Sub1 Bacterial blight & Submergence [179] 
Ranbir Basmati xa13 + Xa21 + sd1 Bacterial blight and semi dwarf [153] 
DRR Dhan 58 Xa21+ xa13+ xa5 + qSaltol Bacterial blight resistance & 

seedling stage salinity tolerance 
[99] 

DRR Dhan 60 Xa21+ xa13+ xa5 + qPup1 Bacterial blight resistance & low 
soil phosphorous tolerance 

[99] 

Wheat PBW 761 (Unnat PBW 550), PBW 757 Yr15 Stripe rust resistance [76,158] 
PBW 752 Yr10 
HI8498 Sr2 and Sr36 Stem rust [160] 
HUW510 Lr34 Spot blotch [75] 
PBW 723 (Unnat PBW 343) Yr17+Yr40+ Lr37 + Lr57 Stripe & leaf rust resistance [76,180] 
PBW 771 Yr40 + Lr57 
HD2967 Lr19 + Yr10+Lr34 
HD2733 Lr19/Sr25+ Lr24/Sr24+ Yr10 
HD2932 g Lr19/Sr25, Sr26 and Yr10 three rust together [76] 
Xiaoyan22 Dx5+ Dy10+Yr26+ML91260 Stripe rust + powdery mildew 

and glutenin 
[77] 

RIL-169, RIL -151, SDAU1881, SDAU1886 Fhb1 and Fhb2 Fusarium Head Blight [157,181, 
182] 

Sorghum Tabet, Wad Ahmed two or more qtls Striga resistance [79] 
Parbhani Moti, ICSB 29004 SBI-01/LG A + SBI-07/LG E +

SBI-10/LG G 
Shoot fly resistance [80] 

Pearlmillet HHB 67 Improved qRSg1 + qRSg4 Downy mildew resistance [78] 
HHB 67 Improved 2 qRSg3.1+ qRSg4.2 + qRSg6.1 [99] 

Chickpea IPCMB 19-3 (Samriddhi), Pusa 256 foc2 Fusarium wilt resistance [88,89,183] 
Super Annigeri-1, JG 74315-14 foc4 
Pusa Chickpea 20211 foc1+ foc3+ foc4 + foc5 
C 214 foc1+ABQTL-I + ABQTL-II Fusarium wilt (FW) and 

Ascochyta blight (AB) 
[87] 

Soybean NRCSL 1 Rymv YMV resistance  
SJ10-122-040, SJ10-173-072 and SJ10-158-039 Rpp1-b + Rpp5 and Rpp4 + Rpp5 Asian soybean rust [166] 
CO 3, JS 335 Rps2+Rmd-c + rj2 Phytophthora rot and powdery 

mildew resistance and effective 
nodulating gene 

[84] 

Ground 
nut 

ICGV 13192, 13193, 13200, 13206, 13228 and ICGV 
13229 

Major QTL for rust and late leaf spot resistance [86] 

Maize Huangzao4, Ye478, Chang7-2, Zheng58, Zhonghuang68, 
B73, and Ji846 

qMrdd8 Maize rough dwarf disease [81] 

Ji853, 444, 98107, 99094, Chang7-2, V4, V022, 982, 
8903, and 8902 

qHSR1 Head smut [82] 

Brassica Improved Topas DH16516 Rlm1, 2, 3, 4, LepR1, LepR2 & 
LepR3 

Leptosphaeria maculans 
resistance 

[164]  
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races of the soybean cyst nematode has created the disease-resistant and high-yielding genotype ‘JTN 5503’ [83]. Two rust resistance 
gene combinations (Rpp4+Rpp5 and Rpp1-b + Rpp5) were integrated into three elite lines, SJ10-173-072, SJ10-122-040 and 
SJ10-158-039 to introgress Asian soybean rust resistance. The powdery mildew resistance and efficient nodulating gene combinations 
(Rps2+Rmd-c + rj2) were stacked into the soybean cultivars JS335 and CO3 for multiple disease resistance [84]. [85] developed many 
introgression lines in groundnut by introducing a major QTL for rust resistance into the three susceptible cultivars JL 24, ICGV 91114, 
and TAG 24, which showed higher yield and increased rust resistance. Similar to this, a significant QTL that conferred multiple disease 
resistance, including rust and late leaf spot, was inserted into the same above three groundnut cultivars from which six lines (ICGV 
13192, 13193, 13200, 13206, 13228, and ICGV 13229) were derived [86]. 

Popular chickpea cultivar C 214 was improved parallel to fusarium wilt (foc1) and ascochyta blight (ABQTL-I and II) by MABC [87]. 
In order to achieve long-lasting resistance against fusarium wilt, Pusa Chickpea 20211 was developed by transferring the four different 
race combinations (foc1+ foc3+ foc4 + foc5) in the background of ‘Pusa 391’ [88]. By introducing genomic region (foc4) resistant to 
fusarium wilt (race 4), the elite desi cultivars JG 74 and Annigeri 1 were improved and made available as super JG 74315-14 and 
Annigeri 1 [89]. Table 3 illustrates the development of several improved varieties and lines with enhanced resistance to various biotic 
stresses through the application of genomic-assisted breeding techniques. 

7.2. Abiotic stress 

The recent introgression of salt tolerance (Saltol), submergence tolerance (sub1), and drought tolerance QTL in rice cultivars for 
increasing abiotic stress tolerance indicates the great potential of GAB (Table 2). Sub1 QTL was introduced into several high-yielding 
varieties in India, including Swarna [90], Samba, Pusa Basmati [91], Bahadur and Ranjit [92]. Following the QTL-introgression for 
submergence, higher survival rates of Samba Mahsuri (BPT 5204), Thadokkham 1 (TDK1), CR 1009 and BR 11 were observed [93]. 
The potential rice varieties that were used for introgressing Saltol QTL were Pusa Basmati 1 [91], Pusa Basmati 1121 [94], AS 996, BT 
7, Q5DB, and BRRI-Dhan 49 [95]. A pyramiding of two major QTLs of drought tolerance into Sabitri (drought-susceptible variety of 
Nepal) is similar to the breeding for salinity and submergence tolerance instances stated above [96]. Other established varieties with 
drought and submergence tolerance are CR Dhan 801 [97], Subhash [98], Samba Mahsuri-Sub 1, and IR64-Sub1 [92]. 
Herbicide-tolerant QTL (AHAS) was incorporated in the development of Pusa Basmati 1979 and Pusa Basmati 1985 [99]. 

In the case of wheat, the variety ‘HD 2733’ was improved for drought tolerance by transferring three significant QTLs, and five 
prospective varieties were identified, including HD2733-208-96-204-36-42, HD2733-297-235-609-70-35, HD2733-217-8-22-9, 
HD2733-208- 23-6-18, and HD2733-208-18-4-25 [100]. For instance, the first pulse molecular breeding product in India, Pusa 
10216, was created as a result of the introgression of the “QTL hotspot” region governing drought tolerance traits into the Pusa 372 
[101]. Additional drought-tolerant cultivars created by adding QTL hotspot include Improved JG 11 [102], KAK2, Chefe [103], and 
Pusa Chickpea 4005 [101]. The elite soybean germplasm lines LS93-0375 and BMX Desafio RR introgressed with drought-tolerant 
gene AtAREB1 [104]. 

7.3. Quality traits 

One of the advances in quality improvement using genomic assisted breeding has been the introgression of the high protein content 
gene GPC-B1 into wheat (Table 5). As a result of this, high GPC cultivars have been developed in the USA (Westmore, Desert King-High 
Protein and Lassik), Australia (Gladius, VR1128) and Canada (Burnside, Lillian) [28]. A gene PsyE1 encoding for Phytoene Synthase 

Table 4 
Improved mega varieties/lines introgressed with various abiotic stress resistance genes using Genomic assisted breeding.  

Crop Name of the lines/variety Gene combination Trait(s) target References 

Rice Swarna (CR 2539-1), Samba, CRl009, CO 43, ADT 46, HUR 105, 
Bahadur, MTU 1075, Pratikshya, Pooja, Rajendra Mahsuri, Ranjit, 
CR Dhan 803 (Trilochan) 

Sub1 Submergence [90,92,184, 
185] 

Pusa Basmati 1, Pusa Basmati 1121, Pusa Basmati 1509, Improved 
Sarjoo and Improved Pusa 44 

Saltol Salinity [91,94,150] 

ADT 45, Gayatri, MTU 1010, PR 114, Pusa 44, Sarjoo 52 qSALTOL + qSSISFH8. 1 Salinity [92] 
IR 64 Drt1 (DRR Dhan 42) qDTY2.2 + qDTY4.1 Drought tolerance [99] 
Aiswarya Saltol + Sub1 Salinity & 

submergence 
[186] 

Pusa Basmati 1979, Pusa Basmati 1985 AHAS Herbicide 
tolerance 

[99] 

CR Dhan 801 qDTY1. 1+qDTY2.1+qDTY3.1 + Sub1 Drought and 
submergence 

[97] 
CR Dhan 802 (Subhash), DRR Dhan 50 qDTY2.1+qDTY3.1+Sub1 [98] 
Samba Mahsuri-Sub 1 Sub1+DTY1. 1+DTY2. 1+DTY2. 2 

+DTY3.1 
[92] 

IR64-Sub1 Sub1+qDTY1.1+qDTY2.2+qDTY3.1 [92] 
Wheat HD2733 Three QTLs for drought Drought tolerance [100] 
Soybean LS93-0375, BMX Desafio RR AtAREB1 [104] 
Chick 

pea 
JG 11, KAK2, Chefe, Pusa Chickpea 10216, Pusa Chickpea 4005, 
IPCL4-14 

QTL hotspot [101–103]  
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encoding Y gene was recently identified in wheat [105], which can increase the carotenoid content and have tremendous scope for 
developing biofortified wheat varieties. Improved lines of rice for intermediate amylose and fragrance content were produced by 
transferring Wx and badh2 (mutant alleles) from basmati into Manawthukha cultivar [22]. [106] developed groundnut lines ‘Tifguard 
High O/L′ with high oleic acid content (AhFAD2B) and nematode resistance (Rma). The peanut variety, ‘TifNV-High O/L’, was made to 
be resistant to nematodes, tomato spotted wilt, and to have a high oleic acid content [107]. Three peanut lines (ICGV 06110, 06142, 
06420) with altered mutant alleles (ahFAD2A and ahFAD2B) were developed for the control of the composition of the three major fatty 
acids (oleic, palmitic acids and linoleic) which together determine the quality of peanut oil [108]. 

In three well-known Indian groundnut varieties (GJG9, GJGHPS1 and GG20) [109], coupled the resistance to foliar diseases (rust 
and late leaf spot) with high oleic acid. A QPM variant of the elite line BML-7 in maize was created by transferring the opaque-2 with the 
help of linked marker umc1066 [110]. The β-carotene hydroxylase (crtRB1) gene was introduced into seven parental lines (V335, 
V345, VQL1, VQL2, HKI1105, HKI323, and HKI161) of the elite maize hybrids and CO6 (UMI1200 × UMI 1230) to increase β-carotene 
content [111,112]. To increase the quality of the protein the Kunitz trypsin inhibitor (KTI) was removed from two superior soybean 
genotypes, ‘DS9712’ and ‘DS9814’, and six KTI free lines were developed [113]. To increase the nutritional value of the soybean, tetra 
recessive alleles (lox1lox2lox3/lox1lox2lox3-ti/ti-le/le-cgy1/cgy1) for the anti-nutritional factors were incorporated in the genetic 
background of ‘Daewonkong’ and the first soybean strain with absence of lipoxygenase, lectin, KTI, and 7S α′ subunit proteins was 
developed [114]. 

7.4. GAB for yield and agronomic traits 

The immediate improvement of yield and agronomic traits through GAB has been subject to limited studies. However, notable 
impacts have been observed in a few instances, as summarized in Table 4. For example, incorporating yield QTL into the soybean 
varieties ‘AG4501′ and ‘AG2401′ using GAB resulted in significant improvements in their yield [115]. Similarly, introducing the null 
allele of E1 into the variety ‘NRC 138′ enhanced its earliness [99]. Genome-based breeding utilizing the pod-shattering-resistant gene 
(pdh1 mutant) from ‘Hayahikari’ has led to the development of four soybean cultivars resistant to pod dehiscence, namely ‘Sachiyutaka 
A1 gou’, ‘Fukuyutaka A1 gou’, ‘Enreinosora’, and ‘Kotoyutaka A1 gou’ [116]. Introducing the SPIKE gene into the variety ‘NSIC Rc 158′ 
in rice resulted in increased grain yield and spikelet number [117]. Furthermore, the transplantation of a QTL (Qyld.csdh.7AL) 
improved grain yield in four wheat cultivars, namely HUW468, HUW234, DBW17 and K307 [118]. These studies demonstrate the 
potential of GAB in directly enhancing yield and agronomic traits in various crop species. Table 6 presents the improved varieties and 
lines that have been developed by introgressing genes related to yield and agronomic traits using genomic-assisted breeding 
techniques. 

8. Conclusions 

Conventional plant breeding has made tremendous progress in ensuring food as well as nutritional security. However, the 
increasing population and varied food and lifestyle demands have made it hard for conventional breeding to keep up. Genomics- 
assisted breeding promises high precision and efficiency compared to traditional plant breeding. The new approaches of GAB, like 
genomic selection (GS), have shown promise in designing new breeding programs and in developing new genetic evaluation models 
based on molecular genetic markers. The successful and efficient utilization of GAB methodologies in crop species heavily relies on the 
accessibility of genome-wide, cost-effective, high-throughput and flexible markers that exhibit minimal bias and can be applied to both 
model and non-model crop species, regardless of the availability of a reference genome sequence. These factors were significant 

Table 5 
Improved varieties/lines introgressed with quality traits related genes using Genomic assisted breeding.  

Crop Name of the lines/variety Gene combination Trait(s) target References 

Soybean NRC 127, MACSNRC 1667, DS9712, DS9814, 
JS97-52 

Null allele of KTi KTI free [99,113, 
187] 

NRC 109 Null allele of lox2 lipoxygenase-2 free – 
Daewonkong lox1lox2lox3/lox1lox2lox3- 

ti/ti-le/le-cgy1/cgy1 
lipoxygenase, Kunitz trypsin inhibitor (KTI), 
lectin, and 7S α′ subunit proteins 

[114] 

Ground 
nut 

Girnar 4, Girnar 5, ICGV 06110, 06142 and 06420 ahFAD2a + ahFAD2b Oleic acid [99,108] 
TifNV-High O/L Rma + AhFAD2 Nematode resistance + Tomato spotted wilt 

+ oleic acid 
[107] 

Maize Vivek QPM9, Pusa HM4/HM8/HM9 
Improved, BML-7 

opaque2 Lysine & tryptophan [99,110, 
161] 

Pusa Vivek QPM9 Improved, VQL1, VQL2, V335, 
V345, Pusa Vivek Hybrid-27 Improved, 
HKI1105, HKI323, and HKI161, CO6 

crtRB1 Provitamin-A [99,112, 
188] 

Pusa HQPM-1, 5, 7 Improved, Pusa Biofortified 
Maize Hybrid-1 

crtRB1 + lcyE Provitamin-A [99] 

QCL5008, HQPM-1, 4, 5, 7 o-16 Quality Protein [162,189] 
HQPM-1- PV, HQPM- 5- PV, HQPM- 4- PV, and 
HQPM- 7- PV 

CrtRB1, LcyE and VTE4 QPM, Provitamin and vitamin E [163] 

o16 o16w x w x o-2 and o-16 QPM and Waxy corn [190]  
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limitations in earlier marker systems, such as SSR and array-based approaches, which were inconceivable before the advent of NGS 
technologies. NGS has revolutionized genotyping by providing novel platforms for SNP genotyping, particularly through genotyping 
by sequencing. Third-generation sequencing technologies (PacBio SMRT and Oxford Nanopore sequencing) offer long-read capabil-
ities that accurately resolve complex genomic regions and structural variants. These advancements enable complete genome assem-
blies and a comprehensive pan-genome representation, which is crucial for capturing genetic diversity. Consequently, these 
technologies enhance the precision of genomics-assisted breeding, supporting the development of resilient, high-yield, and nutri-
tionally superior crops. 
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[10] J. Crossa, P. Pérez-Rodríguez, J. Cuevas, et al., Genomic selection in plant breeding: methods, models, and perspectives, Trends Plant Sci. 22 (2017) 961–975, 

https://doi.org/10.1016/j.tplants.2017.08.011. 
[11] J.L. Jannink, A.J. Lorenz, H. Iwata, Genomic selection in plant breeding: from theory to practice, Briefings Funct, Genom. Proteonomics 9 (2010) 166–177, 

https://doi.org/10.1093/bfgp/elq001. 
[12] R. Bernardo, Molecular markers and selection for complex traits in plants: learning from the last 20 years, Crop Sci. 48 (2008) 1649–1664. 
[13] S.A. Goff, D. Ricke, T.H. Lan, et al., A draft sequence of the rice genome (Oryza sativa L. ssp. japonica), Science (80-.) 296 (2002) 92–100, https://doi.org/ 

10.1126/science.1068275. 
[14] J. Yu, S. Hu, J. Wang, et al., A draft sequence of the rice genome (Oryza sativa L. ssp. indica), Science (80-.) 296 (2002) 79–92, https://doi.org/10.1126/ 

science.1068037. 
[15] S.G. Krattinger, B. Keller, Oat genome — sequence of a superfood, Nat. Plants 8 (2022) 602–603, https://doi.org/10.1038/s41477-022-01169-z. 
[16] R.K. Varshney, P. Sinha, V.K. Singh, A. Kumar, Q. Zhang, J.L. Bennetzen, 5Gs for crop genetic improvement, Curr. Opin. Plant Biol. 56 (2020) 190–196, 

https://doi.org/10.1016/j.pbi.2019.12.004. 
[17] Y. Jiao, P. Peluso, J. Shi, et al., Improved maize reference genome with single-molecule technologies, Nature 546 (2017) 524–527, https://doi.org/10.1038/ 

nature22971. 
[18] M.H.W. Schmidt, A. Vogel, A.K. Denton, et al., De novo assembly of a new Solanum pennellii accession using nanopore sequencing, Plant Cell 29 (2017) 

2336–2348, https://doi.org/10.1105/tpc.17.00521. 
[19] R. Della Coletta, Y. Qiu, S. Ou, M.B. Hufford, C.N. Hirsch, How the pan-genome is changing crop genomics and improvement, Genome Biol. 22 (2021) 1–19, 

https://doi.org/10.1186/s13059-020-02224-8. 
[20] E. Espinosa, R. Bautista, R. Larrosa, O. Plata, Advancements in long-read genome sequencing technologies and algorithms, Genomics 116 (2024) 110842, 

https://doi.org/10.1016/j.ygeno.2024.110842. 
[21] S. Sarkar, R. Yelne, M. Chatterjee, P. Das, S. Debnath, A. Chakraborty, N. Mandal, K. Bhattacharya, S. Bhattacharyya, Screening for phosphorus(P) tolerance 

and validation of Pup-1 linked markers in indica rice, Indian J. Genet. Plant Breed. 71 (2011) 209–213. 

Table 6 
Improved varieties/lines introgressed with yield and agronomic traits related genes using Genomic assisted breeding.  

Crop Name of the lines/variety Gene combination Trait(s) target References 

Rice NSIC Rc 158 SPIKE Spikelet number [117] 
Soybean NRC 138 Null allele of E1 Early maturity – 

AG4501, AG2401 Yield QTL Yield [115] 
Sachiyutaka A1 gou, Fukuyutaka A1 gou, Enreinosora and Kotoyutaka A1 gou Pdh1 Pod shattering [116] 

Wheat HUW234, HUW468, K307 and DBW17 Qyld.csdh.7AL yield [118] 
Mentana, Ardito, Villa Glori, and Damiano Rht1 and Ppd-D1 Dwarfing gene and Photoperiod [24]  

V. Mangal et al.                                                                                                                                                                                                        

http://refhub.elsevier.com/S2405-8440(24)11544-7/sref1
http://refhub.elsevier.com/S2405-8440(24)11544-7/sref2
http://refhub.elsevier.com/S2405-8440(24)11544-7/sref3
http://refhub.elsevier.com/S2405-8440(24)11544-7/sref3
http://refhub.elsevier.com/S2405-8440(24)11544-7/sref4
https://doi.org/10.2135/cropsci2007.04.0015IPBS
https://doi.org/10.2135/cropsci2007.04.0015IPBS
https://doi.org/10.1007/s11032-009-9359-7
https://doi.org/10.1007/s11032-009-9359-7
http://refhub.elsevier.com/S2405-8440(24)11544-7/sref7
http://refhub.elsevier.com/S2405-8440(24)11544-7/sref7
http://refhub.elsevier.com/S2405-8440(24)11544-7/sref8
https://doi.org/10.1007/s10709-008-9308-0
https://doi.org/10.1007/s10709-008-9308-0
https://doi.org/10.1016/j.tplants.2017.08.011
https://doi.org/10.1093/bfgp/elq001
http://refhub.elsevier.com/S2405-8440(24)11544-7/sref12
https://doi.org/10.1126/science.1068275
https://doi.org/10.1126/science.1068275
https://doi.org/10.1126/science.1068037
https://doi.org/10.1126/science.1068037
https://doi.org/10.1038/s41477-022-01169-z
https://doi.org/10.1016/j.pbi.2019.12.004
https://doi.org/10.1038/nature22971
https://doi.org/10.1038/nature22971
https://doi.org/10.1105/tpc.17.00521
https://doi.org/10.1186/s13059-020-02224-8
https://doi.org/10.1016/j.ygeno.2024.110842
http://refhub.elsevier.com/S2405-8440(24)11544-7/sref21
http://refhub.elsevier.com/S2405-8440(24)11544-7/sref21


Heliyon 10 (2024) e35513

12

[22] M. Yi, K.T. Nwe, A. Vanavichit, W. Chai-arree, T. Toojinda, Marker assisted backcross breeding to improve cooking quality traits in Myanmar rice cultivar 
Manawthukha, F. Crop. Res. 113 (2009) 178–186, https://doi.org/10.1016/j.fcr.2009.05.006. 

[23] D. Das, P. Sen, S. Purkayastha, A.K. Saha, A. Roy, P. Rai, S. Sen, S. Saha, B.K. Senapati, T. Biswas, S. Bhattacharyya, A perfect PCR based co-dominant marker 
for low grain-arsenic accumulation genotyping in rice, Ecotoxicol. Environ. Saf. 212 (2021), https://doi.org/10.1016/j.ecoenv.2021.111960. 

[24] S. Salvi, O. Porfiri, S. Ceccarelli, Nazareno strampelli, the ‘prophet’ of the green revolution, J. Agric. Sci. 151 (2013) 1–5, https://doi.org/10.1017/ 
S0021859612000214. 

[25] F. Shahinnia, M. Geyer, A. Block, V. Mohler, L. Hartl, Identification of Rf9, a gene contributing to the genetic complexity of fertility restoration in hybrid 
wheat, Front. Plant Sci. 11 (2020) 1720, https://doi.org/10.3389/fpls.2020.577475. 

[26] A.R. Peters Haugrud, Q. Zhang, A.J. Green, S.S. Xu, J.D. Faris, Identification of stable QTL controlling multiple yield components in a durum 3 cultivated 
emmer wheat population under field and greenhouse conditions, G3 Genes, Genomes, Genet. 13 (2023) jkac281, https://doi.org/10.1093/g3journal/jkac281. 

[27] G. Doussinault, A. Delibes, R. Sanchez-Monge, F. Garcia-Olmedo, Transfer of a dominant gene for resistance to eyespot disease from a wild grass to hexaploid 
wheat, Nature 303 (1983) 698–700, https://doi.org/10.1038/303698a0. 

[28] O.P. Mitrofanova, A.G. Khakimova, New genetic resources in wheat breeding for increased grain protein content, Russ. J. Genet. Appl. Res. 7 (2017) 477–487, 
https://doi.org/10.1134/S2079059717040062. 

[29] P. Sinha, V.K. Singh, R.K. Saxena, A.W. Khan, R. Abbai, A. Chitikineni, A. Desai, J. Molla, H.D. Upadhyaya, A. Kumar, R.K. Varshney, Superior haplotypes for 
haplotype-based breeding for drought tolerance in pigeonpea (Cajanus cajan L.), Plant Biotechnol. J. 18 (2020) 2482–2490, https://doi.org/10.1111/ 
pbi.13422. 

[30] R. Kumar, P. Janila, M.K. Vishwakarma, A.W. Khan, S.S. Manohar, S.S. Gangurde, M.T. Variath, Y. Shasidhar, M.K. Pandey, R.K. Varshney, Whole-genome 
resequencing-based QTL-seq identified candidate genes and molecular markers for fresh seed dormancy in groundnut, Plant Biotechnol. J. 18 (2020) 
992–1003, https://doi.org/10.1111/pbi.13266. 

[31] A. Roy, M.H. Reddy, M. Sarkar, D. Sagolsem, S.K. Murmu, C. Das, D. Roy, S. Ganguly, R. Nath, P.K. Bhattacharyya, A. Sarker, S. Bhattacharyya, A mis-splicing 
early flowering 3 (elf3) allele of lentil is associated with yield enhancement under terminal heat stress, J. Appl. Genet. 64 (2023) 265–273, https://doi.org/ 
10.1007/s13353-023-00753-z. 

[32] D. Bajaj, H.D. Upadhyaya, S. Das, V. Kumar, C.L.L. Gowda, S. Sharma, A.K. Tyagi, S.K. Parida, Identification of candidate genes for dissecting complex branch 
number trait in chickpea, Plant Sci. 245 (2016) 61–70, https://doi.org/10.1016/j.plantsci.2016.01.004. 

[33] R. Barmukh, M. Roorkiwal, G.P. Dixit, et al., Characterization of ‘ QTL-hotspot ’ introgression lines reveals physiological mechanisms and candidate genes 
associated with drought adaptation in chickpea, J. Exp. Bot. 73 (2022) 7255–7272, https://doi.org/10.1093/jxb/erac348. 

[34] D. Deres, T. Feyissa, Concepts and applications of diversity array technology (DArT) markers for crop improvement, J. Crop Improv. (2022), https://doi.org/ 
10.1080/15427528.2022.2159908. 

[35] C. Zhang, S. Jiang, Y. Tian, X. Dong, J. Xiao, Y. Lu, T. Liang, H. Zhou, D. Xu, H. Zhang, M. Luo, Z. Xia, Smart breeding driven by advances in sequencing 
technology, Mod, Agric. For. 1 (2023) 43–56, https://doi.org/10.1002/MODA.8. 

[36] Y. Zhang, T. Li, Y. Geng, Y. Wang, Y. Liu, H. Li, C. Hao, H. Wang, X. Shang, X. Zhang, Identification and development of a KASP functional marker of TaTAP46- 
5A associated with kernel weight in wheat (Triticum aestivum), Plant Breed. 140 (2021) 585–594, https://doi.org/10.1111/pbr.12922. 

[37] J. Semalaiyappan, S. Selvanayagam, A. Rathore, et al., Development of a new AgriSeq 4K mid-density SNP genotyping panel and its utility in pearl millet 
breeding, Front. Plant Sci. 13 (2023) 1068883, https://doi.org/10.3389/fpls.2022.1068883. 

[38] A. Rasheed, Y. Hao, X. Xia, A. Khan, Y. Xu, R.K. Varshney, Z. He, Crop breeding chips and genotyping platforms: progress, challenges, and perspectives, Mol. 
Plant 10 (2017) 1047–1064, https://doi.org/10.1016/j.molp.2017.06.008. 

[39] I. Medina-Lozano, A. Díaz, Applications of genomic tools in plant breeding: crop biofortification, Int. J. Mol. Sci. 23 (2022) 3086, https://doi.org/10.3390/ 
ijms23063086. 

[40] H. Liu, B. Zeng, J. Zhao, S. Yan, J. Wan, Z. Cao, Genetic research progress: heat tolerance in rice, Int. J. Mol. Sci. 24 (2023) 7140, https://doi.org/10.3390/ 
ijms24087140. 

[41] A. Raza, M.S. Mubarik, R. Sharif, M. Habib, W. Jabeen, C. Zhang, H. Chen, Z.H. Chen, K.H.M. Siddique, W. Zhuang, R.K. Varshney, Developing drought-smart, 
ready-to-grow future crops, Plant Genome 16 (2023) e20279, https://doi.org/10.1002/tpg2.20279. 

[42] L. Song, R. Wang, X. Yang, A. Zhang, D. Liu, Molecular markers and their applications in marker-assisted selection (MAS) in bread wheat (Triticum aestivum 
L.), Agriculture 13 (2023) 642, https://doi.org/10.3390/agriculture13030642. 

[43] G. Keeble-Gagnère, R. Pasam, K.L. Forrest, D. Wong, H. Robinson, J. Godoy, A. Rattey, D. Moody, D. Mullan, T. Walmsley, H.D. Daetwyler, J. Tibbits, M. 
J. Hayden, Novel design of imputation-enabled SNP arrays for breeding and research applications supporting multi-species hybridization, Front. Plant Sci. 12 
(2021) 2659, https://doi.org/10.3389/fpls.2021.756877. 

[44] K.S. Aitken, A. Farmer, P. Berkman, C. Muller, X. Wei, E. Demano, P.A. Jackson, M. Magwire, B. Dietrich, R. Kota, Generation of a 345K sugarcane SNP chip, 
Int. Sugar J. 119 (2017) 1165–1172. 

[45] S. Singh, A.K. Mahato, P.K. Jayaswal, N. Singh, M. Dheer, P. Goel, R.S. Raje, J.K. Yasin, R. Sreevathsa, V. Rai, K. Gaikwad, N.K. Singh, A 62K genic-SNP chip 
array for genetic studies and breeding applications in pigeonpea (Cajanus cajan L. Millsp.), Sci. Rep. 10 (2020) 1–14, https://doi.org/10.1038/s41598-020- 
61889-0. 

[46] M.M. Sabbavarapu, M. Sharma, S.K. Chamarthi, N. Swapna, A. Rathore, M. Thudi, P.M. Gaur, S. Pande, S. Singh, L. Kaur, R.K. Varshney, Molecular mapping of 
QTLs for resistance to Fusarium wilt (race 1) and Ascochyta blight in chickpea (Cicer arietinum L.), Euphytica 193 (2013) 121–133, https://doi.org/10.1007/ 
s10681-013-0959-2. 

[47] J.K. Kitony, H. Sunohara, M. Tasaki, J.I. Mori, A. Shimazu, V.P. Reyes, H. Yasui, Y. Yamagata, A. Yoshimura, M. Yamasaki, S. Nishiuchi, K. Doi, Development 
of an aus-derived nested association mapping (Aus-nam) population in rice, Plants 10 (2021) 1255, https://doi.org/10.3390/plants10061255. 

[48] X. Wu, Y. Liu, X. Lu, L. Tu, Y. Gao, D. Wang, S. Guo, Y. Xiao, P. Xiao, X. Guo, A. Wang, P. Liu, Y. Zhu, L. Chen, Z. Chen, Integration of GWAS, linkage analysis 
and transcriptome analysis to reveal the genetic basis of flowering time-related traits in maize, Front. Plant Sci. 14 (2023), https://doi.org/10.3389/ 
fpls.2023.1145327. 

[49] J.A. Bhat, D. Yu, A. Bohra, S.A. Ganie, R.K. Varshney, Features and applications of haplotypes in crop breeding, Commun. Biol. 4 (2021) 1–12, https://doi.org/ 
10.1038/s42003-021-02782-y. 

[50] R.K. Srivastava, R.B. Singh, V.L. Pujarula, S. Bollam, M. Pusuluri, T.S. Chellapilla, R.S. Yadav, R. Gupta, Genome-wide association studies and genomic 
selection in pearl millet: advances and prospects, Front. Genet. 10 (2020) 1389, https://doi.org/10.3389/fgene.2019.01389. 

[51] Y. Yuan, J.E. Cairns, R. Babu, et al., Genome-wide association mapping and genomic prediction analyses reveal the genetic architecture of grain yield and 
flowering time under drought and heat stress conditions in maize, Front. Plant Sci. 9 (2019) 1919, https://doi.org/10.3389/fpls.2018.01919. 

[52] H. Takagi, A. Abe, K. Yoshida, S. Kosugi, S. Natsume, C. Mitsuoka, A. Uemura, H. Utsushi, M. Tamiru, S. Takuno, H. Innan, L.M. Cano, S. Kamoun, R. Terauchi, 
QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations, Plant J. 74 (2013) 174–183, 
https://doi.org/10.1111/TPJ.12105. 

[53] A.N. Chan, L.L. Wang, Y.J. Zhu, Y.Y. Fan, J.Y. Zhuang, Z.H. Zhang, Identification through fine mapping and verification using CRISPR/Cas9-targeted 
mutagenesis for a minor QTL controlling grain weight in rice, Theor. Appl. Genet. 134 (2021) 327–337, https://doi.org/10.1007/s00122-020-03699-6. 

[54] P. Li, J. Jiang, G. Zhang, S. Miao, J. Lu, Y. Qian, X. Zhao, W. Wang, X. Qiu, F. Zhang, J. Xu, Integrating GWAS and transcriptomics to identify candidate genes 
conferring heat tolerance in rice, Front. Plant Sci. 13 (2023) 1102938, https://doi.org/10.3389/fpls.2022.1102938. 

[55] M.F. Scott, O. Ladejobi, S. Amer, et al., Multi-parent populations in crops: a toolbox integrating genomics and genetic mapping with breeding, Heredity 125 
(2020) 396–416, https://doi.org/10.1038/s41437-020-0336-6. 

[56] D.H. Lyra, G. Galli, F.C. Alves, ́I.S.C. Granato, M.S. Vidotti, M. Bandeira e Sousa, J.S. Morosini, J. Crossa, R. Fritsche-Neto, Modeling copy number variation in 
the genomic prediction of maize hybrids, Theor. Appl. Genet. 132 (2019) 273–288, https://doi.org/10.1007/s00122-018-3215-2. 

V. Mangal et al.                                                                                                                                                                                                        

https://doi.org/10.1016/j.fcr.2009.05.006
https://doi.org/10.1016/j.ecoenv.2021.111960
https://doi.org/10.1017/S0021859612000214
https://doi.org/10.1017/S0021859612000214
https://doi.org/10.3389/fpls.2020.577475
https://doi.org/10.1093/g3journal/jkac281
https://doi.org/10.1038/303698a0
https://doi.org/10.1134/S2079059717040062
https://doi.org/10.1111/pbi.13422
https://doi.org/10.1111/pbi.13422
https://doi.org/10.1111/pbi.13266
https://doi.org/10.1007/s13353-023-00753-z
https://doi.org/10.1007/s13353-023-00753-z
https://doi.org/10.1016/j.plantsci.2016.01.004
https://doi.org/10.1093/jxb/erac348
https://doi.org/10.1080/15427528.2022.2159908
https://doi.org/10.1080/15427528.2022.2159908
https://doi.org/10.1002/MODA.8
https://doi.org/10.1111/pbr.12922
https://doi.org/10.3389/fpls.2022.1068883
https://doi.org/10.1016/j.molp.2017.06.008
https://doi.org/10.3390/ijms23063086
https://doi.org/10.3390/ijms23063086
https://doi.org/10.3390/ijms24087140
https://doi.org/10.3390/ijms24087140
https://doi.org/10.1002/tpg2.20279
https://doi.org/10.3390/agriculture13030642
https://doi.org/10.3389/fpls.2021.756877
http://refhub.elsevier.com/S2405-8440(24)11544-7/sref44
http://refhub.elsevier.com/S2405-8440(24)11544-7/sref44
https://doi.org/10.1038/s41598-020-61889-0
https://doi.org/10.1038/s41598-020-61889-0
https://doi.org/10.1007/s10681-013-0959-2
https://doi.org/10.1007/s10681-013-0959-2
https://doi.org/10.3390/plants10061255
https://doi.org/10.3389/fpls.2023.1145327
https://doi.org/10.3389/fpls.2023.1145327
https://doi.org/10.1038/s42003-021-02782-y
https://doi.org/10.1038/s42003-021-02782-y
https://doi.org/10.3389/fgene.2019.01389
https://doi.org/10.3389/fpls.2018.01919
https://doi.org/10.1111/TPJ.12105
https://doi.org/10.1007/s00122-020-03699-6
https://doi.org/10.3389/fpls.2022.1102938
https://doi.org/10.1038/s41437-020-0336-6
https://doi.org/10.1007/s00122-018-3215-2


Heliyon 10 (2024) e35513

13

[57] J. Wang, W. Yang, S. Zhang, H. Hu, Y. Yuan, J. Dong, L. Chen, Y. Ma, T. Yang, L. Zhou, J. Chen, B. Liu, C. Li, D. Edwards, J. Zhao, A pangenome analysis 
pipeline provides insights into functional gene identification in rice, Genome Biol. 24 (2023) 1–22, https://doi.org/10.1186/s13059-023-02861-9. 

[58] Y. Zhou, D. Chebotarov, D. Kudrna, et al., A platinum standard pan-genome resource that represents the population structure of Asian rice, Sci. Data 7 (2020) 
1–11, https://doi.org/10.1038/s41597-020-0438-2. 

[59] J.D. Montenegro, A.A. Golicz, P.E. Bayer, B. Hurgobin, H.T. Lee, C.K.K. Chan, P. Visendi, K. Lai, J. Doležel, J. Batley, D. Edwards, The pangenome of hexaploid 
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