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Abstract: Biodegradable nanoparticles (NPs) are preferred as drug carriers because of their effec-
tiveness in encapsulating drugs, ability to control drug release, and low cytotoxicity. Although
poly(lactide co-glycolide) (PLGA)-based NPs have been used for controlled release strategies, they
have some disadvantages. This study describes an approach using biodegradable polyhydroxyalka-
noate (PHA) to overcome these challenges. By varying the amount of PHA, NPs were successfully fab-
ricated by a solvent evaporation method. The size range of the NPS ranged from 137.60 to 186.93 nm,
and showed zero-order release kinetics of paclitaxel (PTX) for 7 h, and more sustained release profiles
compared with NPs composed of PLGA alone. Increasing the amount of PHA improved the PTX
loading efficiency of NPs. Overall, these findings suggest that PHA can be used for designing poly-
meric nanocarriers, which offer a potential strategy for the development of improved drug delivery
systems for sustained and controlled release.

Keywords: Poly(lactide co-glycolide); polyhydroxyalkanoate; nanoparticle; drug release; paclitaxel

1. Introduction

Biodegradable polymers have a variety of applications in the pharmaceutical field [1].
These polymers, either natural or synthetic, provide desirable physicochemical properties
for controlled release of therapeutic agents, with concomitant improvements to their phar-
macokinetics [2,3]. Biodegradable polymers have been applied to drug delivery systems
in many previous studies [4,5]. However, there remains resistance to their use, and con-
cerns regarding their degradation [6]. Degraded metabolites can accumulate and cause
local toxic responses. For example, during degradation, metabolites triggered undesirable
toxicity and pro-inflammatory mediators in the microenvironment, despite having high
biocompatibility [7].

Pharmaceutical formulations have been developed to control the release profiles of
therapeutics, which is important for alleviating toxicity and achieving improved pharma-
cokinetics, as well as therapeutic efficacy [8]. Various polymers, such as poly-ε-caprolactone
(PCL), poly(L-lactide) (PLA), and poly(lactide co-glycolide) (PLGA), have been widely ex-
plored in previous studies as important nanoparticle wall materials for controlling the
release of therapeutics [9], the rate of which is mainly dependent on the diffusion of
therapeutics through a matrix/barrier composed of different polymers [10]. However,
PLGA-based matrices, the most prevalent biodegradable copolymer for drug delivery
carriers, have a few drawbacks. These include a relatively low encapsulation efficiency and
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an initial burst of drug release [11,12]. This initial burst of drug is undesirable because it
can cause toxicity and safety issues, owing to excessive amounts of the drug in the early
stages after administration [13]. Therefore, there is a need to reduce the initial burst of drug
release and to further control the release through modified polymeric formulations.

Polyhydroxyalkanoates (PHAs) are biopolymers synthesized inside microorganisms
for carbon and energy storage [14]. PHAs, which are natural polyesters, have many ad-
vantages, such as biocompatibility, biodegradability, and high loading efficacy, and are
suitable for a variety of biomedical and pharmaceutical applications [15]. Their degraded
monomers, such as 3-hydroxybutyrate and 4-hydroxybutyrate, are easily metabolized and
excreted well [16]. These advantages make them attractive substitutes for biodegradable
polymers as drug delivery carriers [17]. Previous studies have reported PHA-based strate-
gies for encapsulating therapeutics [18] and cells [19], which implies the potential of PHAs
as pharmaceutical materials and as alternatives to other biopolymers for industrial use.
In addition, their tunable physicochemical properties are useful and can be controlled
through the production process [20]. However, the main hurdles against the use of PHA are
their high hydrophobicity [21] and high cost for conventional production [22,23]. If these
limitations are overcome, PHAs will be more attractive and useful as pharmaceutical excip-
ients. As with conventional biopolymers, controlling the release profiles of therapeutics
is also advantageous for PHA-based carriers, although their degradability, stiffness, and
elasticity are tunable [24]. Such controlled release of therapeutics via PHA matrices will
provide a wide range of applications for drug delivery and biomedical engineering. As a
therapeutic agent, paclitaxel (PTX), C47H51NO14 (CAS NO. 33069-62-4, MW 853.906 g/mol),
was chosen because it has been widely used as a chemotherapeutic agent for treatment of
patients with lung, ovarian, breast, head, and neck cancer [25]. Due to its hydrophobicity
and toxicity, PTX requires a pharmaceutical formulation, leading to an improved colloidal
stability and controlled release properties. In practice, biocompatible polymers, such as
PLGA, PLA, and/or PGA, have been applied for clinical use [26]. Despite these efforts,
there remain some limitations for the sustained release of PTX.

The goal of this study was to fabricate polymeric nanoparticles (NPs) composed of
PLGA and PHA to control the release of paclitaxel (PTX), a model therapeutic agent, and
to improve drug release and entrapment by varying the composition of the wall materials.

2. Materials and Methods
2.1. Materials

PLGA (50/50, DL-lactide/glycolide copolymer, 70,000–150,000 g/mol) (Boehringer
Ingelheim-Korea, Seoul, Republic of Korea) and PTX (Samyang Biopharmaceuticals, Seong-
nam, Republic of Korea) were supplied by Prof. Dong-Jin Jang at Kangwon National
University. PHA was supplied by CJ CheilJedang (Seoul, Republic of Korea). Polyvinyl
alcohol (PVA), a surfactant, was purchased from Daejung Chemicals and Metals (Daejung,
Siheung, Republic of Korea); chloroform, an oil phase of emulsion, was obtained from
Duksan General Science (Duksan, Ansan, Republic of Korea) for the solvent evaporation
process. All other reagents used were of analytical grade, and double-distilled water
was used.

2.2. Preparation of Polymeric NPs

NPs composed of PLGA and/or PHA were fabricated by the two-step solvent evapora-
tion method [27,28]. In brief, 10 mg of the polymer was first dissolved in 2 mL of chloroform
as an oil phase, which was added to an aqueous phase containing 3% PVA. To obtain NPs,
the mixture was first homogenized under the following conditions: 300 watts for 1 min
in an ice bath (Scientz-11D, NingBo Scientz Biotechnology, Ningbo, Zhejiang, China). In
the second step, these emulsions were poured into a 0.3% PVA solution. To completely
evaporate the solvent, each emulsified mixture was stirred at 500 rpm (MS-MP-8, Daihan
Scientific, Daegu, Republic of Korea) for 3 h in a fume hood. Then, polymeric NPs (PLGA,
PHA, and PLGA-PHA mixed matrices) were harvested by centrifugation at 24,249 g for
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3 h (ScanSpeed 1580R, Gyrozen, Gimpo, Republic of Korea). These NPs were washed by
double-distilled water to eliminate the remnant PVA, and retained for further studies. In
addition, the entrapment efficiency of PTX was determined by calculating the ratio of the
amount of incorporated PTX in the NPs to the total amount of PTX in the NPs. Sedimented
NPs were dissolved by dimethyl sulfoxide and vortexed, thereafter quantitatively ana-
lyzed by high-performance liquid chromatography (HPLC), which is further explained in
Section 2.5.

2.3. Physicochemical Properties of Polymeric NPs
2.3.1. Size and Zeta Potential Measurement of NPs

The size of NPs was measured via dynamic light scattering using Zetasizer (Nano-
ZS90, Malvern Instruments, Worcestershire, UK) at a fixed angle of 90◦ at 25 ◦C. All samples
were washed with double-distilled water to remove PVA. Measurements were performed
in triplicate after dispersion of NPs in double-distilled water. Each zeta potential value of
NPs was investigated by zeta potential measurement at 25 ◦C. Data are presented as the
mean ± standard deviation.

2.3.2. Fourier-Transform Infrared Spectroscopic Measurement of NPs

Polymeric NPs composed of PLGA, PHA, and PLGA-PHA mixed matrices were
fabricated using the solvent evaporation method and harvested as described above. Each
sample was placed on an attenuated total reflection (ATR) crystal, and spectra were scanned
between 4000 and 500 cm−1, including 64 scans with a resolution of 4 cm−1 using a Fourier
transform infrared (FT-IR) spectrometer (ALPHA II, Bruker, Karlsruhe, Germany) [29].
Spectral peaks were confirmed by transmittance [30], and each peak of these polymers was
comparatively analyzed for a better understanding of shell materials.

2.3.3. Differential Scanning Calorimetric Measurement of NPs

Differential scanning calorimetry (DSC) was used to analyze various physical proper-
ties and thermal transitions of polymeric materials. In brief, each harvested sample was
measured using DSC equipment (DSC-60, Shimadzu, Kyoto, Japan) [31]. Approximately
5–7 mg of each sample was placed in a sealed aluminum pan prior to heating under air
flow (20 mL/min) and then heated at a rate of 5 ◦C/min. DSC scans of NPs were obtained
from 20 ◦C to 230 ◦C.

2.3.4. X-ray Diffraction Measurement of NPs

The X-ray diffraction patterns of NPs were obtained using an X-ray diffraction sys-
tem equipped with Cu-Kα irradiation at 40 kV (Ultima IV, Rigaku, Tokyo, Japan). The
diffractogram was obtained in the range of 2–80◦/2θ at a step of 1◦/min [32,33].

2.4. Storage Stability of NPs

NPs fabricated as mentioned in Section 2.2 were stored at 4 ◦C in a cold chamber, and
their size and zeta potential (ζ) values were measured by dynamic light scattering using a
Zetasizer every day for one week. Prior to measurement, each NP was washed twice with
double-distilled water to eliminate the remnant PVA.

2.5. In Vitro Release of PTX from NPs

Prior to the release experiment, PTX, used as a model drug, was quantitatively ana-
lyzed by HPLC using Hitachi LaChrom HPLC-2000 series equipped with an autosampler
(L-2200), pump (L-2130), column oven (L-2300), and diode array detector (L-2455) (Hitachi
Co., Ltd., Tokyo, Japan). An ODS-2 C18 column (150 × 4.6 mm, 5 µm; LB Science, Seoul,
Republic of Korea) was used for quantitative analysis. The mobile phase was composed of
acetonitrile and water (50:50, v/v) at a flow rate of 0.8 mL/min and injection volume was
set as 10 µL. Each sample was measured at 227 nm and analyzed using the D-2000 Elite
software [34].
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In vitro release experiments were performed using the modified dialysis membrane
method [35,36]. In brief, harvested PTX-loaded NPs were added into a Slide-A-Lyzer®

dialysis cassette, with a 10,000 molecular weight cut-off membrane (Thermo Fisher Sci-
entific, Rockford, IL, USA), which is sufficient to allow PTX to penetrate the membrane
during dialysis. Each cassette containing PTX-loaded NPs was placed into bottles filled
with 30 mL of phosphate buffer at pH 7.4, which were then placed in a shaking incubator
(100 rpm) (JSSI-100T, JSR Research Inc., Gonju, Republic of Korea) at 37 ◦C. Samples were
then harvested from the cassette at various release times, 7 h after administration. One
milliliter of sample harvested at each time point was quantitatively analyzed as described
above and replaced with the same amount of buffer.

2.6. In Vitro Cell Experiment

HeLa cells obtained from the Korean Cell Line Bank (KCLB No. 1002) were cultured
in Dulbecco’s Modified Eagle’s Medium (Corning, VA, USA) supplemented with 10% fetal
bovine serum (Corning, VA, USA) and 1% penicillin-streptomycin (Mediatech Inc., Corn-
ing, VA, USA). Cells were maintained at 37 ◦C under humified conditions with 5% CO2
(ARA150 CO2 incubator, Gyrozen Co., Ltd., Gimpo, Republic of Korea). For confocal
microscopy, HeLa cells (1.6 × 105) were seeded in microscopy chambers with coverslip bot-
toms (Marienfeld, Harsewinkel, Germany). After stabilization, the cells were incubated for
4 h with polymeric NPs containing PTX and Nile red (<0.1 mg/mL, Tokyo Chemical Indus-
try, Tokyo, Japan) [37,38]. During incubation, NPs were treated with 100 nM of lysotracker
(LysoTrackerTM Green DND-26, Invitrogen, OR, USA) for 2 h and mounting medium was
treated with 4,6-diamidino-2-phenylindole (DAPI) (FluoroshieldTM with DAPI, Sigma, St.
Louis, MO, USA). NPs were observed by confocal microscopy (Carl Zeiss-LSM800, Zeiss,
Jena, Germany) (DAPI: 465 nm, LysoTracker: 509 nm, Nile red: 636 nm, 63×, ZEN2.6).

3. Results
3.1. Physicochemical Properties of NPs
3.1.1. Size and Zeta Potential of NPs

NPs composed of PLGA and/or PHA were fabricated, and their physicochemical
characteristics were analyzed, as shown in Table 1. The size of the NPs was less than
200 nm, which were well-matched with the transmission electron microscopy (TEM) im-
ages (Figure S1). According to previous literature, NPs have appropriate sizes for tumor
accumulation, as particles larger than 200 nm are mostly eliminated by the phagocytic
system during circulation [39,40]. The polydispersity index (PDI) value of the NPs was
very low (<0.25), indicating uniformity of the NPs [41]. The zeta potential (ζ) value of
NP1 to NP4 was slightly negative, presumably providing a stable dispersion, owing to the
electrostatic repulsion between NPs in a given experiment. Based on the physicochemical
properties, it was considered that the NPs were well fabricated for passive targeting of
antineoplastic agents, although their size varied depending on the polymer composition.
Notably, NP4, composed of PHA, showed a higher entrapment efficiency of PTX than that
of NP1, composed of PLGA. As the amount of PHA increased, entrapment efficiency also
gradually increased, which might have improved the therapeutic effects and reduced side
effects [42].

Table 1. Physicochemical properties of NPs.

Nanoparticle
(NP)

Polymer
Composition 1

Size
(nm)

Polydiversity
Index (PDI)

Zeta Potential
Value (ζ, mV)

Entrapment
Efficiency (%)

NP1 PLGA only 140.93 ± 1.63 0.19 ± 0.01 −15.20 ± 0.90 40.13 ± 0.92
NP2 PLGA:PHA (1:1) 137.60 ± 0.59 0.15 ± 0.01 −14.00 ± 0.69 44.03 ± 0.37
NP3 PLGA:PHA (1:9) 186.93 ± 1.35 0.11 ± 0.05 −18.13 ± 0.32 60.38 ± 0.79
NP4 PHA only 162.43 ± 0.42 0.08 ± 0.02 −13.53 ± 0.96 72.41 ± 1.29

1 Weight ratio of polymer composition in NPs.
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3.1.2. Fourier-Transform Infrared (FT-IR) Spectroscopic Analysis

The chemical structure of the NPs was analyzed by FT-IR spectroscopy, as shown in
Figure 1. Identification of IR spectra provides information about different functional groups
of PLGA and/or PHA polymers in the NPs, compared to those of raw materials, such as
PLGA and PHA (Figure S2a). The NP1 spectrum showed intense spectra that belonged
to PLGA from NP1, which exhibited molecular vibration of the representative functional
groups, including aliphatic C-H stretching vibration (3010 to 2885 cm−1), C=O stretching vi-
bration (1760 to 1750 cm−1), and C-O ester stretching vibration (1300 to 1150 cm−1) [43,44].
The strong peak at 1756.34 cm−1 corresponded to a carbonyl group stretch in lactide and
glycolide. The peak at 1422.45 cm−1 corresponded to CH2 bending of glycolide, and
the other peak at 1088.01 cm−1 corresponded to C-O stretching vibration [45]. In con-
trast, the NP4 spectrum showed typical PHA characteristics. The representative band at
1732.34 cm−1 corresponded to a carbonyl (C=O) ester bond stretching vibration related to
the amorphous region of PHA [46]. The absorption band at 2916.44 cm−1 corresponded to
an asymmetric stretching vibration of CH2 associated with the formation of lateral chains
of monomers [47]. Other peaks in the range of 1450 to 1000 cm−1 represented the functional
groups of CH3, CH2, and C-O, and in the range of 1300 to 1000 cm−1 represented stretching
of the ethers of C-O-C linkage [48]. The IR spectra of NPs (NP2 and NP3) composed of
PLGA and PHA mixed matrices were analyzed and compared with those of NP1 and
NP4. The spectra of NP2 and NP3 showed common characteristics of both PLGA and
PHA. For example, strong bands in NP2 and NP3 spectra in the range of 1740 to 1724 cm−1

corresponding to C=O stretching vibration was a typical feature of PHA [49,50]. Both NPs
also showed typical peaks that were similar to those of PLGA at approximately 1422 cm−1

and 1088 cm−1. These findings suggest no significant interaction between PLGA and PHA.

Pharmaceutics 2022, 14, x FOR PEER REVIEW 5 of 14 
 

 

Table 1. Physicochemical properties of NPs. 

Nanoparticle 
(NP) 

Polymer  
Composition 1 

Size 
(nm) 

Polydiversity 
Index (PDI) 

Zeta Potential Value 
(ζ, mV) 

Entrapment  
Efficiency (%) 

NP1 PLGA only 140.93 ± 1.63 0.19 ± 0.01 −15.20 ± 0.90 40.13 ± 0.92 
NP2 PLGA:PHA (1:1) 137.60 ± 0.59 0.15 ± 0.01 −14.00 ± 0.69 44.03 ± 0.37 
NP3 PLGA:PHA (1:9) 186.93 ± 1.35 0.11 ± 0.05 −18.13 ± 0.32 60.38 ± 0.79 
NP4 PHA only 162.43 ± 0.42 0.08 ± 0.02 −13.53 ± 0.96 72.41 ± 1.29 

1 Weight ratio of polymer composition in NPs. 

3.1.2. Fourier-Transform Infrared (FT-IR) Spectroscopic Analysis  
The chemical structure of the NPs was analyzed by FT-IR spectroscopy, as shown in 

Figure 1. Identification of IR spectra provides information about different functional 
groups of PLGA and/or PHA polymers in the NPs, compared to those of raw materials, 
such as PLGA and PHA (Figure S2a). The NP1 spectrum showed intense spectra that be-
longed to PLGA from NP1, which exhibited molecular vibration of the representative 
functional groups, including aliphatic C-H stretching vibration (3010 to 2885 cm−1), C=O 
stretching vibration (1760 to 1750 cm−1), and C-O ester stretching vibration (1300 to 1150 
cm−1) [43,44]. The strong peak at 1756.34 cm−1 corresponded to a carbonyl group stretch in 
lactide and glycolide. The peak at 1422.45 cm−1 corresponded to CH2 bending of glycolide, 
and the other peak at 1088.01 cm−1 corresponded to C-O stretching vibration [45]. In con-
trast, the NP4 spectrum showed typical PHA characteristics. The representative band at 
1732.34 cm−1 corresponded to a carbonyl (C=O) ester bond stretching vibration related to 
the amorphous region of PHA [46]. The absorption band at 2916.44 cm−1 corresponded to 
an asymmetric stretching vibration of CH2 associated with the formation of lateral chains 
of monomers [47]. Other peaks in the range of 1450 to 1000 cm−1 represented the functional 
groups of CH3, CH2, and C-O, and in the range of 1300 to 1000 cm−1 represented stretching 
of the ethers of C-O-C linkage [48]. The IR spectra of NPs (NP2 and NP3) composed of 
PLGA and PHA mixed matrices were analyzed and compared with those of NP1 and NP4. 
The spectra of NP2 and NP3 showed common characteristics of both PLGA and PHA. For 
example, strong bands in NP2 and NP3 spectra in the range of 1740 to 1724 cm−1 corre-
sponding to C=O stretching vibration was a typical feature of PHA [49,50]. Both NPs also 
showed typical peaks that were similar to those of PLGA at approximately 1422 cm−1 and 
1088 cm−1. These findings suggest no significant interaction between PLGA and PHA. 

 
Figure 1. FT-IR spectra of NPs (a) NP1, (b) NP2, (c) NP3, (d) NP4. The major peaks are indicated for 
spectra of each of the NPs. 

Figure 1. FT-IR spectra of NPs (a) NP1, (b) NP2, (c) NP3, (d) NP4. The major peaks are indicated for
spectra of each of the NPs.

3.1.3. Differential Scanning Calorimetric (DSC) Analysis

DSC thermal analysis of each NP composed of PLGA and/or PHA was conducted
as described in Section 2.3.3. The DSC thermograms (Figure 2 and Figure S2b) showed
glass transition temperatures. As shown in Figure 2, the endothermic peak in NP1 was
observed at 46.66 ◦C, corresponding to the glass transition temperature (Tg), which was
consistent with the Tg of PLGA [51]. The Tg values of NP2 and NP3 were slightly shifted in
accordance with the ratio of PHA to PLGA, presumably because of the increased amount of
PHA [52]. There were no peaks related to crystallinity or melting temperature, indicating
an amorphous state.
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the DSC curve of each NP.

3.1.4. X-ray Diffraction (XRD) Analysis of NPs

The physical state of NPs was studied using XRD crystallography, as shown in
Figures 3 and S2c. The XRD patterns of the NPs composed of PLGA and PHA were ana-
lyzed and compared. All NPs showed no significant peaks indicative of crystallinity in a
given range of 2θ, which was consistent with the DSC analysis, and there were no remark-
able peaks corresponding to the crystallization temperature in any given experiment. The
XRD patterns of NPs showed a broad band in the following regions: NP1 (9.49◦ to 35.56◦),
NP2 (9.28◦ to 36.91◦), NP3 (9.01◦ to 36.89◦), and NP4 (8.74◦ to 38.07◦). As shown in the
XRD patterns of NP2 and NP3, the mixed composition of PHA and PLGA rarely affected
the amorphous state of the NPs, although there was a slight change in the region of the
broad band.
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3.2. Storage Stability of NPs

The NPs were stored at 4 ◦C, and their size and zeta potential values were measured
to evaluate particle stability, as shown in Figure 4. None of the NPs showed any significant
change with respect to the size during the given period. The following changes in the
size of NPs were less than 10%: NP1 (<8.41%), NP2 (<6.18%), NP3 (<4.99%), and NP4
(<9.23%), respectively. Although there were slight changes in the zeta potential values, all
NPs remained negatively charged (Figures 4b and S3), which provides efficient electrostatic
repulsion [53].
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3.3. In Vitro Release of PTX from NPs

In vitro release studies of PTX from NPs were performed under physiological con-
ditions (pH 7.4) [54]. As shown in Figure 5, PTX was gradually released over time from
the polymeric matrices of NPs during the given period; however, the release pattern was
significantly different depending on the polymer composition. During the early period
(0–90 min), NP1 composed of PLGA showed a slightly higher PTX release than that of other
NPs; however, the total release was less than 10% in pH 7.4, indicating that the addition
of PHA might have reduced PTX release in NP2, NP3, and NP4. After 7 h, NP1 showed
92.43% release, whereas NP4, composed of PHA, showed 43.90% release of PTX. Under
the same conditions, NP2 released 68.65% of PTX, indicating a reduced release of PTX.
The PTX released from NP 4 was not statistically different from the PTX release from NP3.
The tendency of reduced release of PTX was observed throughout the 7 h duration of the
experiment. Overall, the findings demonstrated that the addition of PHA decelerated the
release of PTX at pH 7.4.

Based on PTX release data, the release curves from Figure 5 were plotted to represent
the following mathematical models: zero-order, first-order, Higuchi, and Hixon–Crowell
kinetic models. As shown in Table 2 and Figure S4, all NPs exhibited a high correlation
with the zero-order kinetic model (correlation coefficient, R2 > 0.97) rather than the Higuchi
kinetic model at pH 7.4. The decreased K value was correlated with the reduced release of
PTX, as shown in Table 2. The results are consistent with PTX being released in a zero-order
manner for up to 7 h at physiological pH. The release of PTX at close to zero-order kinetics
could overcome problems of immediate release/initial burst release, as a constant rate of
drug release was observed without any significant changes, resulting from the addition
of PHA.
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Table 2. Release kinetics of PTX from NPs at pH 7.4.

NP
Formulation

Zero-Order First-Order Higuchi Hixon–Crowell

K R2 K R2 K R2 K R2

NP1 14.370 0.9877 −0.1459 0.9112 41.598 0.9220 −0.3754 0.9611
NP2 10.327 0.9859 −0.0700 0.9453 29.388 0.8895 −0.2129 0.9640
NP3 6.4219 0.9848 −0.0349 0.9710 18.260 0.8870 −0.1152 0.9769
NP4 6.7676 0.9834 −0.0374 0.9730 19.334 0.8942 −0.1227 0.9776
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Figure 5. In vitro release profile of PTX from NPs at 37 ◦C. Amount of PTX released was quantitatively
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3.4. Intracellular Uptake of NPs

LysoTracker staining of acidic compartments, such as lysosomes, was performed to
determine the intracellular uptake mechanism of NPs. Prior to the experiment, NPs were
stained with the fluorescent dye Nile red and added to HeLa cells for incubation. As
shown in Figure 6, NPs were delivered to the cytoplasm (red color) rather than the nuclei
(blue color) of HeLa cells. Most NPs (NP1–NP4) colocalized with lysosomes (green color)
without any significant differences among NPs, as shown in Figure 6 (merged). Although
there were slight differences in size and zeta potential values among NPs (Table 1), most
NPs appeared to be endocytosed in HeLa cells, based on the evidence of colocalization of
NPs with lysosomes (merged) [55]. Taking these results together, NPs were successfully
delivered to the cells independent of the polymer composition.
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4. Discussion

Biodegradable biocompatible polymer-based NPs have been widely studied for biomed-
ical and pharmaceutical applications [56,57]. NPs can improve stability and enhance the
solubility of entrapped cargos carrying therapeutic agents [58]. Notably, the use of biocom-
patible NPs reduces the concomitant toxic effect of polymeric materials and is beneficial for
controlled delivery of therapeutics [59]. The use of such NPs as drug delivery carriers has
also attracted great interest because of their biocompatibility and biosafety [60]. PLGA is a
biodegradable, biocompatible polymer that is capable of encapsulation of various therapeu-
tic agents and is suitable for controlled release systems [61]. However, despite its safety and
approval by the United States Food and Drug Administration, the use of PLGA has been
limited, owing to its low entrapment efficiency and difficulty in regulating drug release [62].
In this study, biodegradable PHA, which is produced by microbes, was used to improve
entrapment efficacy and regulate the release profile of drugs, depending on the polymer
composition. Although a few approaches using PHA have been described, simultaneous
use of PLGA and PHA as core materials has not previously been reported [18,19].

The results presented here demonstrated that the physical properties (particle size
and zeta potential) of NPs were slightly influenced by the addition of PHA; however, all
fabricated NPs were smaller than 200 nm and retained negative surface charges (Table 1).
Previous literature reported that small-sized NPs (less than 10 nm) were rapidly excreted
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by the kidneys, whereas large-sized NPs (more than 200 nm) showed a risk of activating
the complement system in the body [58,63]. Thus, the fabricated NPs were considered
to have an appropriate size range to be used as antitumor drug carriers. In addition, a
previous study reported that neutral or slightly negatively charged NPs showed a longer
circulation time, whereas positively charged NPs were rapidly cleared [64]. Such anionic
NPs generally show fewer interactions with biomolecules, leading to less impact of the
protein corona phenomena because most proteins are negatively charged in the physiolog-
ical environment [65]. In this aspect, it is considered that anionic surfaces, such as those
of the NPs described here, bind to a small amount of cationic proteins before reaching the
target region. The protein corona effect was clearly observed in a previous study from
this group [66]. In general, anionic NPs show relatively lower toxicity than cationic NPs,
which disturb the cellular membrane [67]. Moreover, unlike anionic NPs, cationic NPs
can trigger immunological responses [68] and concomitant cytotoxicity depending on the
surface functionalities, which was also observed in a previous study [69]. In summary,
previous reports have demonstrated that anionic surface properties and an appropriate size
of NPs (<200 nm), such as those of the NPs fabricated in this study, have several benefits,
such as a longer circulation time, lower protein corona, reduced cytotoxicity, and reduced
immune response.

Furthermore, the use of PHA increased the entrapment efficiency of PTX compared
to NP1 composed of PLGA alone (Table 1) and regulated the release of PTX, without any
significant changes in the release kinetics (Figure 5, Table 2). Moreover, the NPs described
here showed zero-order release of PTX, and the addition of PHA reduced the release for at
least up to 7 h. This zero-order release is a potential kinetic pattern of drugs to overcome
the drawbacks, such as immediate release and first-order kinetics of PLGA-based NPs,
and is quite suitable for sustained release [70]. Based on these results, the findings suggest
that adjusting the polymer composition could improve these advantages and compensate
for the disadvantages of PLGA-based NPs resulting from the use of PHA (Scheme 1).
Furthermore, as shown in Figure 6, intracellular uptake of NPs was almost independent of
the polymer composition; most NPs were successfully endocytosed in the experiments. It
is possible that because of the reduced interactions with the membrane, these NPs might
disturb the membrane to a lesser extent. According to a previous report, spherical NPs
with a size of 200 nm or less were endocytosed by clathrin-coated pits, whereas larger NPs
were taken up by caveolae-mediated endocytosis [71]. Anionic NPs can be internalized
without membrane interactions, unlike cationic NPs [72]. The NPs described here were
successfully delivered to the cells, presumably because of their small size and negative
charge. Although these NPs might have a lower cellular uptake than that of cationic NPs,
it is likely that they have more potential and applicability as nanocarriers, considering their
lower protein corona, longer circulation time, and reduced cytotoxicity/immune response.
NPs composed of PLGA and PHA are of great interest because of their physicochemical
properties (size, zeta potential, and biodegradation), their capacity for drug encapsulation,
and their ability to regulate and steadily release the drug.
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5. Conclusions

In conclusion, biodegradable and biocompatible NPs for the delivery of anticancer
drugs were fabricated. NPs composed of PLGA and PHA show potential as drug carriers in
the following aspects: they are of an appropriate size, have high entrapment efficiency, and
offer a sustained-release profile. The findings demonstrate that the use of biocompatible
PHA provides advantages over PLGA-based NPs, overcoming some of the drawbacks of
the latter, including low encapsulation efficiency and irregular release of PTX. The use of
PHA has an important role in controlling drug release and maintaining biocompatibility, as
well as biodegradability. The PHA could be applied for pharmaceutical formulations of
other hydrophobic chemotherapeutic drugs that require controlled and sustained release.
Overall, PHA could offer a wide range of applications for the future design of NP-based
drug delivery.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/pharmaceutics14081618/s1, Figure S1. TEM images of NPs (a) NP1,
(b) NP2, (c) NP3, (d) NP4; Figure S2a. FT-IR spectra of PLGA and PHA. The major peaks are indicated
for each spectrum of PLGA and PHA, respectively; Figure S2b. DSC analysis of PLGA and PHA.
The major peaks are indicated for each DSC curve of PLGA and PHA, respectively; Figure S2c. XRD
spectrum of PLGA and PHA, respectively; Figure S3. Storage stability of NPs in saline (a,b) and
10% fetal bovine serum-containing saline (c,d) at 4◦C for 1 week. Both size and zeta potential (ζ)
values of NPs were monitored: (a) changes of size in saline, (b) changes of zeta potential values in
saline, (c) changes of size of NPs in 10% fetal bovine serum-containing saline, (d) changes of zeta
potential values in 10% fetal bovine serum-containing saline; Figure S4. PTX release data fitted to
various kinetic models (zero-order, first-order, Higuchi, and Hixson-Crowell) of NPs obtained from
dissolution studies in buffer (pH 7.4). References [73,74] are cited in the supplementary materials.
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