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Abstract: Water pollution has always been a serious problem across the world; therefore, facile
pollutant degradation via light irradiation has been an attractive issue in the field of environmental
protection. In this study, a type of Zn-based metal–organic framework (ZIF−8)-wrapped BiVO4

nanorod (BiVO4@ZIF−8) with high efficiency for photocatalytic wastewater treatment was synthe-
sized through a two-step hydrothermal method. The heterojunction structure of BiVO4@ZIF−8
was confirmed by morphology characterization. Due to the introduction of mesoporous ZIF−8, the
specific surface area reached up to 304.5 m2/g, which was hundreds of times larger than that of
pure BiVO4 nanorods. Furthermore, the band gap of BiVO4@ZIF−8 was narrowed down to 2.35 eV,
which enabled its more efficient utilization of visible light. After irradiation under visible light for
about 40 min, about 80% of rhodamine B (RhB) was degraded, which was much faster than using
pure BiVO4 or other BiVO4-based photocatalysts. The synergistic photocatalysis mechanism of
BiVO4@ZIF−8 is also discussed. This study might offer new pathways for effective degradation of
wastewater through facile design of novel photocatalysts.

Keywords: nanorods; metal–organic framework; heterojunction photocatalyst; wastewater treatment

1. Introduction

Recently, water purifying technology has received widespread attention as an emerg-
ing field. In particular, photocatalytic degradation is recognized as the most promising way
to purify wastewater, due to its low cost and environmentally friendly properties [1–4].
Photocatalysts can degrade noxious organic pollutants under the irradiation of sunlight
without producing any toxic remains [5,6]. The key to realizing this advantage relies on
precise design of the photocatalysts.

Metal oxide semiconductors, such as TiO2 (P25), ZnO, Bi2O3, BiFeO3, ZnSnO3 and
BiVO4, have all been proved to be efficient photocatalysts [7–14]. Among the many
currently studied photocatalysts, BiVO4, as a cost-effective, eco-friendly and chemically
stable material has garnered considerable interest recently. As indicated in previous studies,
monoclinic scheelite, tetragonal zircon and tetragonal scheelite are the most common forms
of BiVO4 existing in nature [15,16]. Compared with tetragonal BiVO4, which mainly
responds to UV light, BiVO4 with a monoclinic scheelite structure has better photon
harvesting and more sensitive light response properties due to its relatively narrower band
gap (2.4 eV); therefore, m-BiVO4 can generate electron–hole pairs under the irradiation of
visible light [17,18]. Recently, many efforts have been made to enhance the photocatalytic
properties of BiVO4. Guo et al. synthesized V4+ self-doped BiVO4 nanorods with [010]
oriented for water purification. In these nanorods, the oxygen vacancies and V4+ ions
could act as charge carrier traps and adsorption sites, thus inhibiting the recombination of
photogenerated electron–hole pairs, and resulting in an excellent photocatalyst [19].
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Photocatalysts’ size and shape can also influence their degradation efficiency. Cur-
rently, mainstream photocatalysts are often in a solid bulk shape. However, bulk-shaped
photocatalysts always suffer from an increased electron–hole recombination rate, poor
electron transportation mobility and worse surface absorbability [20,21]. Therefore, investi-
gating photocatalysts with mesoporous structures has attracted a significant amount of
attention. Compared with solid photocatalysts, photocatalysts with mesoporous structures
have a relatively larger specific surface area. With the enlarged specific surface area, there
will be more contact between organic dyes and the catalyst, thus improving the absorption
and photodegradation process [22,23]. Metal–organic frameworks (MOFs), as a type of
superior mesoporous material, could be prominent host candidates for water splitting
due to their high surface area, mesoporous structure, tunable shape and chemical stabil-
ity [24]. There are a large number of organic ligands around central metal ions, and the
chemical bonds between the organic ligands and metal ions are also flexible. Therefore,
MOFs can absorb photons and transfer electrons to the metal ions easily. In addition, the
synthesis processes for MOFs are convenient. MOFs are usually synthesized by mixing
the aromatic multicarboxylatic ligands and metal ions in organic solutions, which is much
more convenient than other synthesis methods. Thus, MOFs can be prominent candidates
for photodegradation [25–27].

Photocatalysts with a single component readily suffer from rapid electron–hole recom-
bination. Therefore, incorporating metal oxide semiconductors and MOFs together might
form new types of photocatalysts with improved photocatalytic efficiency by combining
their advantages. In addition, to take advantage of the extremely large surface area of
MOFs, which can provide more active sites for dye degradation, a semiconductor–MOF
heterojunction can be formed at the interface; this can generate an in-built electric field and
inhibit rapid electron–hole recombination, thus enhancing their life time and improving
photocatalytic efficiency [28,29]. Moreover, the heterojunction can change the distribution
of photogenerated electron–hole pairs in order to adjust the band gap width and promote
photocatalytic performance [30].

In this research, ZIF−8-wrapped BiVO4 nanorods with a narrower band gap and
larger specific surface area were fabricated through hydrothermal and self-sedimentation
processes. The photocatalytic performance of BiVO4@ZIF−8 was evaluated by the degrada-
tion of RhB solutions. With the newly designed composites, about 70% of the organic dye
could be degraded under irradiation with visible light for nearly 40 min. The mechanism
of this synergistic photocatalysis was also investigated.

2. Materials and Methods
2.1. Material Synthesis
2.1.1. Material Preparation

Bismuth nitrate pentahydrate (Bi(NO3)3·5H2O), zinc nitrate hexahydrate (Zn(NO3)2·6H2O),
sodium oleate (C17H33CO2Na ≥ 98%), ammonium vanadate (NH4VO3 ≥ 98%), ammonium
hydroxide and nitric acid were all bought from Sinopharm Chemical Reagent Co., Ltd. 2-
Methylimidazole (C4H6N2 ≥ 98%) was purchased from Macklin Inc.

2.1.2. Synthesis of BiVO4 Nanorods

BiVO4@ZIF−8 was synthesized via a two-step method. Typically, the BiVO4 precursor
was synthesized via hydrothermal reaction first, and then the final BiVO4@ZIF−8 product
was obtained via a self-sedimentation method. In detail, about 0.4 mmol (0.388 g) of
bismuth nitrate pentahydrate was dispersed into 20 mL of deionized water under constant
stirring. In order to obtain a homogeneous transparent solution, several drops of HNO3
were added to the mixture. We defined this solution as A. Likewise, 0.4 mmol (0.096 g)
NH4VO3 and 1 mmol (0.36 g) sodium oleate were dissolved in deionized water, giving
solutions which were defined as B and C, respectively. After 30 min magnetic stirring, we
mixed solutions A, B and C together to form a yellow homogeneous suspension. Several
drops of ammonium hydroxide were then dropped into the suspension to keep it weakly
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alkaline (pH≈ 9). Afterwards, the suspension was poured into a PTFE-made hydrothermal
reactor (Yu hua Tech Co., Ltd. Shanghai, China), to be kept at 180 ◦C for 24 h. After the
reaction, the brown powder was collected by centrifugation and dried at 80 ◦C. To enhance
its crystallinity, the BiVO4 powder was further annealed in a furnace at 450 ◦C for 2 h.

The second step was to obtain ZIF−8-wrapped BiVO4, named BiVO4@ZIF−8, via
a self-sedimentation method. Typically, we dissolved 0.5 g Zn(NO3)2·6H2O and 0.8 g
2-methylimidazole separately into absolute methanol to form homogeneous solutions.
Then, 1 g as-prepared BiVO4 was dispersed into Zn(NO3)2 solution under vigorous stirring
for half an hour. Afterwards, we mixed them together to form a yellow homogeneous
suspension and let it stand for half a day. After the reaction, the light yellow powder
was collected by centrifugation and dried at 80 ◦C. The final product was a light yellow
BiVO4@ZIF−8 composite.

2.2. Material Characterization

A JSM-IT500HR/LA instrument (JEOL, Tokyo, Japan) was used for scanning electron
microscopy (SEM); a JEM-2100Plus (JEOL, Tokyo, Japan) was used as a transmission elec-
tron microscope (TEM); and X-ray diffraction (XRD, D2 Advance, BRUKER, Karlsruhe,
Germany) and X-ray photoelectron spectroscopy (XPS, ESCALAB 250Xi, Thermo Fisher
Scientific, London, UK) were used to investigate the phase and element information of the
final products. Belsorp-MAXII (MicrotracBEL, Osaka, Japan) was used to measure the BET
surface area. In this study, the photoluminescence spectra were acquired using a photolu-
minescence spectrometer (Fluorolog-3 Horiba Scientific, NJ, USA), with 360 nm excitation
light. Ultraviolet–visible (UV–Vis) spectra were recorded by a Cary 5000 spectrophotometer
(Agilent Technologies, Penang, Malaysia).

2.3. Photocatalytic Activity Evaluation

Rhodamine B (RhB) was used to assess the photocatalytic activity of the as-prepared
catalyst. Typically, we dispersed 100 mg catalyst (pure BiVO4 or BiVO4@ZIF in this work)
into RhB solution with a concentration of 0.5 mg/50 mL. Before the degradation reaction,
the suspension was kept in a dark environment for 30 min to reach a photoequilibrium
state, using ultrasonic vibration. In the catalysis process, we collected the suspension
every 10 min via centrifugation. As the characteristic absorption peak for RhB is at 550
nm, the intensity of the absorption peak for RhB was measured by UV–Vis absorption
spectra. Equation (1) below was applied to determine the RhB degradation efficiency
(the ratio of the remaining RhB concentration and the initial RhB concentration) in the
degradation process:

ηeff = (1− At

A0
)× 100% (1)

where ηeff is the degradation efficiency of RhB, and A0 and At are the intensities of absorp-
tion peaks before and after degradation for a certain time interval, respectively.

3. Results and Discussion

The phase and crystal structure information of the as-synthesized BiVO4 nanorods and
BiVO4@ZIF-8 composites was examined by XRD analysis, as shown in Figure S1 (which
can be found in the Supplementary Materials) and Figure 1, respectively. In Figure S1, all
of the diffraction peaks were assigned to the standard monoclinic-type BiVO4 (JCPDS card
no. 14-0688; a = 5.195 Å, b = 11.704 Å, c = 5.092 Å; space group: I2/a) [31]. There was a
minor diffraction peak at 15.11◦ in the XRD pattern of BiVO4, which could distinguish
m-BiVO4 from tetragonal scheelite BiVO4 (t-BiVO4) [32]. It can also be seen in Figure S1
that the intensities of the diffraction peaks of m-BiVO4 were very strong, suggesting that
the defect intensity of BiVO4 nanorods was notably reduced via calcination. The lower
number of defects and high crystallinity of BiVO4 are conducive to its enhanced catalytic
performance, since defects in crystal lattices can play the role of combining centers for
photogenerated electrons and holes [33–35]. In addition, there were two diffraction peaks



Materials 2021, 14, 7424 4 of 13

of BiVO4 assigned to (200) and (002) at about 35◦, which are characteristic of monoclinic
scheelite-type BiVO4. The curve in Figure 1 shows the XRD pattern of BiVO4@ZIF−8. The
majority of diffraction peaks of ZIF−8 were clearly seen between 10◦ and 30◦, indicating
the co-existence of BiVO4 and ZIF−8. We conclude that the BiVO4@ZIF−8 composites
were formed simply by the attachment of ZIF−8 nanoparticles to the surface of BiVO4
nanorods, and that no compound was formed.
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Morphologies of as-synthesized BiVO4 nanorods and BiVO4@ZIF−8 composites were
obtained by SEM and TEM and are shown in Figure 2a–f. As indicated in Figure 2a–c, the
diameter and length of BiVO4 nanorods were about 150 nm and 3000 nm, respectively.
In addition, the BiVO4 nanorods were aggregated together to form a flower-like shape.
Figure 2c (insert) shows the HR-TEM image of an individual BiVO4 nanorod and its
corresponding SAED pattern. As shown in Figure 2c (insert), the diffraction fringes
of BiVO4 nanorods with the spacing of 0.582 nm were well assigned to their (020) lattice
planes (b = 11.704Å, two times the fringe spacing), indicating that the BiVO4 nanorods were
probably growing along the [010] direction. Figure 2c (insert) also shows the diffraction
spots along the [102] zone axis in the SAED pattern. There were two spots around the (000)
spots, indexed as the (020) and (211) lattice planes. In addition, there was only one set of
diffraction spots in our SAED pattern, indicating that the as-synthesized BiVO4 was a pure
phase without any impurities. Figure 2d–f show SEM and TEM images of BiVO4@ ZIF−8.
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The surface of BiVO4@ZIF−8 nanorods was coarser than that of pure BiVO4. In addition,
the BiVO4@ZIF−8 nanorods were well dispersed, owing to the existence of the MOF. We
could clearly see that ZIF−8 nanoparticles with a size of ~30 nm were tightly attached to
the BiVO4 nanorod’s surface and that a heterojunction between the BiVO4 and ZIF−8 was
formed, which could enhance the photocatalysis performance of BiVO4@ ZIF−8.
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Figure 2. Morphology and structure characterization of BiVO4 and BiVO4@ZIF−8. Typical SEM
images of as-synthesized BiVO4 precursor at (a) low and (b) high magnification; typical (c) TEM
image with HR-TEM and SAED images inserted of as-synthesized BiVO4 precursor with the length
of ~3000 nm and width of ~150 nm; typical SEM images of as-synthesized BiVO4@ZIF−8 at (d) low
and (e) high magnification; (f) typical TEM image of as-synthesized BiVO4@ZIF−8 with the ZIF−8
nanoparticles tightly attached to the surface of the BiVO4 nanorod.

XPS (seen in Figure 3a) showed that only Bi, V, C and O existed in as-prepared BiVO4.
Figure 3b,c show the characteristic peaks for Bi3+ and V5+ in BiVO4. The binding energies
of Bi 4f7/2 and Bi 4f5/2 were 158.5 and 164.4 eV, respectively, and the binding energies of
V 2p3/2 and V 2p1/2 were 516.5 eV and 524.3 eV, respectively, consistent with previous
reports [36,37]. The appearance of the C 1s signal at 284.8 eV might be an instrument error
during the XPS test. It is noticeable that, in Figure 3d, the O 1s peaks were split into two
peaks, which correspond to the O element in the BiVO4 crystal lattice (528.9 eV) and O2
absorbed via BiVO4 (532.5 eV).
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Specific surface areas of BiVO4 and BiVO4@ ZIF−8 were obtained using nitrogen
adsorption–desorption tests. Owing to the addition of mesoporous ZIF−8, the as-prepared
BiVO4@ZIF−8 composite showed a type IV hysteresis loop, as seen in Figure 4b [20].
Moreover, as calculated via the instrument, the surface area of BiVO4@ZIF−8 was as high
as 304.5 m2/g, which was much larger than that of pure BiVO4 (2.53 m2/g). Owing to its
larger surface area, BiVO4@ZIF−8 had more active sites to absorb and degrade organic
dyes than pure BiVO4; thus, the catalytic performance could be significantly enhanced.

The property of light absorption was another crucial factor that affected the pho-
tocatalytic properties of BiVO4 and BiVO4@ZIF−8. Therefore, ultraviolet–visible ab-
sorption spectra were applied to characterize the light absorption abilities of BiVO4 and
BiVO4@ZIF−8. From the spectra in Figure 5, we can see that the absorption edges of pure
BiVO4 and BiVO4@ZIF−8 composites were all around 500 nm. Tauc’s equation, as shown
in Equation (2), was applied to determine the band gap value of semiconductors with a
direct band gap:

αhv = A(hv− Eg)
1
2 (2)

where h, v, A, Eg and α represent Plank’s constant, light frequency, absorbance, band gap
value and absorption coefficient, respectively. In Equation (2), the parameters A and α are
constant for a specific sample.
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Figure 5b shows the K–M transformed reflectance spectra corresponding to Figure 5a.
Extrapolating the quasi-straight line to intersect with the X-axis can provide the band gap
values of the measured samples. As calculated in Figure 5b, BiVO4 without modification
showed a band gap value of 2.47 eV. However, as shown in Figure 5b, after modification
with ZIF−8, the band gap value for BiVO4@ZIF−8 was divided into two values: 2.35 eV
and 5.11 eV. The latter was assigned to the value for ZIF−8. In addition, the band gap value
for BiVO4 after modification with ZIF−8 (2.35 eV) was slightly narrower than that of pure
BiVO4 in our research and other papers [31,32,38,39]. Smaller band gaps are typically more
favorable for efficient utilization of solar energy to produce photogenerated electron–hole
pairs, which could directly enhance the photocatalytic properties.

When the photogenerated electrons and holes are recombining, strong photolumines-
cence signals will occur and can be detected via PL spectra, as shown in Figure 6. The PL
spectra of BiVO4 and BiVO4@ZIF−8 were both excited at 365 nm, which corresponded to a
photon energy of 3.39 eV, and was larger than the band gap of both BiVO4 (2.47 eV) and
BiVO4@ZIF−8 (2.35 eV). This energy was strong enough for both BiVO4 and BiVO4@ZIF−8
to excite valence electrons to the conduction band. As shown in Figure 6, the specific peak
intensities of BiVO4@ZIF−8 at 540 nm were much weaker than those of pure BiVO4. The
weaker PL intensity indicated that the recombination of photogenerated electrons and
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holes was largely suppressed in the BiVO4@ZIF−8 composite, which was conducive to
enhancing photocatalytic performance [40].
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weaker than that for pure BiVO4.

The photocatalytic performance of pure BiVO4 nanorods and BiVO4@ZIF−8 compos-
ites was evaluated by RhB photodegradation tests, as shown in Figure 7. Figure 7a shows
the RhB degradation efficiencies of pure BiVO4 nanorods and BiVO4@ZIF−8 composites
under UV light and visible light at different degradation times. As shown in Equation (1),
the degradation efficiency of RhB was determined via UV–Vis absorption spectra, as pre-
sented in Figure S2. It is noticeable that about 15% to 23% of RhB was missing before the
light irradiation of pure BiVO4 and BiVO4@ZIF−8, respectively, mainly due to the adsorp-
tion characteristics of BiVO4 and BiVO4@ZIF−8. Owing to the larger surface area, more
RhB will be absorbed by BiVO4@ZIF−8 than by pure BiVO4. When RhB is dissolved in
water, it is positively charged. Therefore, RhB cations will be attracted by the O2− or OH−

anions at the photocatalyst’s surface. As shown in Figure 7a, after being irradiated under
visible light for 40 min, about 80% of RhB was degraded by BiVO4@ZIF−8, while 32% of
RhB still remained with the pure BiVO4 nanorods. It can also be seen in Figure 7a that,
under full-spectrum irradiation, more than 90% of RhB was degraded by BiVO4@ZIF−8 in
20 min and entirely decomposed after 60 min. In comparison, after being irradiated under
UV light for 20 min, less than 70% of RhB was degraded by the pure BiVO4 nanorods, and
still 20% of RhB remained after irradiation for 40 min. The photocatalytic property of pure
ZIF−8 is also shown in Figure S2e,f, which show that over 60% of RhB was absorbed by
the MOF, owing to its large surface area and mesoporous structure. However, only about
80% of RhB was degraded during the following photodegradation.
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Figure 7. (a) The photodegradation efficiency of BiVO4 and BiVO4@ZIF−8 under full-spectrum and
visible light. In the presence of BiVO4-ZIF 8, more than 90% of RhB is degraded after 60 min of visible
light irradiation, while only 80% of RhB is degraded in the presence of pure BiVO4. (b) The value
of ln (C0/C) vs. time for RhB degradation; BiVO4@ZIF−8 shows a higher kinetic constant with the
value of 0.133 min−1. (c) The reproducibility test of photocatalysis.

At a relatively low concentration (10 mg/L) of RhB solution, the kinetics of the
degradation process of RhB could be defined as the pseudo-first-order reaction mode,
which means that the values of the logarithm of the concentration ratio (ln(C0/C)) and
irradiation time have a linear relationship [41]. Therefore, the kinetic constant of k for RhB
degradation was defined as the slope of the quasi-line of the logarithm of the concentration
ratio and irradiation time, as illustrated in Figure 7b. After calculation, the value of k
for BiVO4 was 0.05 min−1. The k value for BiVO4@ZIF−8 reached 0.133 min−1, which
indicates that BiVO4@ZIF−8 showed better photocatalytic activity under solar irradiation
than pure BiVO4. Being as important as the catalytic efficiency, excellent reproducibility is
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also a crucial factor for photocatalysts. In Figure 7c, the reproducibility of BiVO4@ZIF−8
was examined by recycling BiVO4@ZIF−8 for four cycles. The results show that the
degradation efficiency of BiVO4@ZIF−8 was stable with no drastic deactivation after
recycling, indicating its feasibility for practical applications such as water purification.

Figure 8 shows the photocatalysis mechanism in the presence of pure BiVO4 and
BiVO4@ZIF−8. As a type of semiconductor, the valence band (VB) is full of electrons, while
the conduction band (CB) lacks electrons. When a semiconductor is irradiated under light
with energy no less than the Eg of that semiconductor, the light can excite the electrons
at the VB to the CB. Therefore, holes will be left in the VB, and thus photogenerated
electron–hole pairs will be formed. The photogenerated electron–hole pairs can oxidize
H2O molecules, OH− ions and dissolved O2 in H2O to form ·OH or O2

−· radicals, which
have strong oxidation properties. Moreover, the organic dye RhB, with its characteristic
absorption wavelength of about 550 nm, could be photosensitized under light as well.
Therefore, the sensitized RhB dye could be oxidized into water and CO2 by ·OH or O2

−·
radicals, which is one of the possible degradation mechanisms of an organic dye. We may
summarize the set of RhB degradation processes as shown in Equations (3)–(6) below [42]:

OH− + h+ → ·OH (3)

H2O + h+ → ·OH + H+ (4)

e− + O2 → O−2 · (5)

OH/e−/O−2 + RhB→ CO2 + H2O (6)
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In Equation (6), there are two pathways involved in RhB degradation: the stepwise
de-ethylation process, and cleavage of the conjugated hydrocarbon structure [43,44], which
can be directly seen in the UV–Vis absorption curve in Figure S2. The cleavage of the
conjugated hydrocarbon structure leads to a decreased absorption intensity of the RhB
solution, and the de-ethylation process leads to the red shift in the absorption peak of RhB
to about 500 nm.
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The mechanism of the enhanced photocatalysis performance of BiVO4@ZIF−8 could
be further explained by its band gap structure. The positions of the CB and VB for BiVO4
and ZIF−8 are clearly shown in Figure 8. For the BiVO4@ZIF−8 heterojunction structure,
the VB and CB positions of BiVO4 are all much more positive than those of ZIF−8 (the
CB and VB positions are −0.13 eV and 2.55 eV for BiVO4, respectively, and −3.41 eV and
1.68 eV for ZIF−8, respectively). Hence, we may discuss the enhancing mechanism under
both UV light and visible light. When irradiated under UV light, the photogenerated
electron–hole pairs can be generated from both BiVO4 and ZIF−8 at the CB and VB,
respectively. Owing to the closer position of the CB of BiVO4 and the VB of ZIF−8, the
electron at the conduction band of BiVO4 and the hole at the valence band of ZIF−8 tend
to recombine with each other more easily. Therefore, the e- and h+ of BiVO4@ZIF−8 only
remain at the CB of ZIF−8 and the VB of BiVO4, respectively, which indicates that the
band gap width of BiVO4@ZIF−8 is extended to 5.96 eV. The O2

−· at the CB of ZIF−8
has higher energy than that of BiVO4; therefore, BiVO4@ZIF−8 is more beneficial for RhB
degradation. When irradiated under visible light, due to the larger band gap of ZIF−8, the
photogenerated electron–hole pairs can only be excited at the BiVO4 surface. As the VB
of ZIF−8 is more negative than that of BiVO4, the covalent Bi-O-Zn at the heterojunction
could play a role that transfers the holes at the VB of BiVO4 to the VB of ZIF−8 and
hinders the recombination of the photogenerated electron–hole pairs [45]. In addition, the
processes of degradation often occur at the surfaces of photocatalysts; in the BiVO4@ZIF−8
composite, ZIF−8, with its mesoporous structure and large surface area, has more active
sites for h+ to form free radicals to photodegrade RhB. Thus, BiVO4@ZIF−8, with its larger
surface area and heterojunction structures, exhibited better photocatalysis performance.

As a class of multiple functional materials, BiVO4 and its composites have been widely
applied in the field of water treatment via photodegradation. Therefore, we investigated
the degradation efficiency via photocatalysis of different photocatalysts based on BiVO4
composite materials, as listed in Table S1. In addition, we investigated the performance of
different photocatalysts based on ZIF−8 composite materials, as illustrated in Table S2. As
shown in Table S2, the BiVO4@ZIF−8 heterojunction had a better catalysis performance
than other BiVO4- or ZIF−8-based composite materials.

4. Conclusions

In conclusion, BiVO4@ZIF−8, with its larger surface area and heterojunction structure,
was fabricated using a hydrothermal technique first, and then a self-sedimentation tech-
nique. Owing to its mesoporous surface and heterojunction structure, the as-synthesized
BiVO4@ZIF−8 exhibited a higher degradation efficiency than that of pure BiVO4. As shown
in our research, about 90% of RhB was degraded under 60 min of visible light irradiation.
The high degradation efficiency and reproducibility demonstrate that BiVO4@ZIF−8, as
designed in our work, could be a prominent candidate for wastewater treatment.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ma14237424/s1, Figure S1: The XRD pattern (a) and the standard PDF card (b) of pure
BiVO4. Figure S2: The light absorption spectra of RhB solution after photo-degraded by BiVO4 (a)
and BiVO4@ZIF-8 (b) in visible light; BiVO4 (c), BiVO4@ZIF-8 (d) and pure ZIF-8 (e) in UV light;
(f) The photo degradation efficiency of pure ZIF-8 under UV light. Table S1: The performances
of photocatalysts based on different BiVO4 composite materials. Table S2: The performances of
photocatalysts based on different MOF composite materials.
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