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Abstract

Background: Parasites’ evolution in response to parasite-targeted control strategies, such as vaccines and drugs, is known
to be influenced by their population genetic structure. The aim of this study was to describe the population structure of
Ethiopian strains of Leishmania donovani derived from different areas endemic for visceral leishmaniasis (VL) as a
prerequisite for the design of effective control strategies against the disease.

Methodology/Principal Findings: Sixty-three strains of L. donovani newly isolated from VL cases in the two main Ethiopian
foci, in the north Ethiopia (NE) and south Ethiopia (SE) of the country were investigated by using 14 highly polymorphic
microsatellite markers. The microsatellite profiles of 60 previously analysed L. donovani strains from Sudan, Kenya and India
were included for comparison. Multilocus microsatellite typing placed strains from SE and Kenya (n = 30) in one population
and strains from NE and Sudan (n = 65) in another. These two East African populations corresponded to the areas of
distribution of two different sand fly vectors. In NE and Sudan Phlebotomus orientalis has been implicated to transmit the
parasites and in SE and Kenya P. martini. The genetic differences between parasites from NE and SE are also congruent with
some phenotypic differences. Each of these populations was further divided into two subpopulations. Interestingly, in one
of the subpopulations of the population NE we observed predominance of strains isolated from HIV-VL co-infected patients
and of strains with putative hybrid genotypes. Furthermore, high inbreeding irreconcilable from strict clonal reproduction
was found for strains from SE and Kenya indicating a mixed-mating system.

Conclusions/Significance: This study identified a hierarchical population structure of L. donovani in East Africa. The
existence of two main, genetically and geographically separated, populations could reflect different parasite-vector
associations, different ecologies and varying host backgrounds and should be further investigated.
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Introduction

In Ethiopia, it is estimated that every year more than 4,000

individuals suffer from visceral leishmaniasis (VL, otherwise called

kala-azar) caused by protozoan parasites of the Leishmania donovani

complex [1]. The worst affected region is north Ethiopia (NE)

bordering Sudan which accounts for more than 60% of the

reported VL cases that are frequently associated with HIV/AIDS

[2,3,4]. On the other hand, VL is endemic in south Ethiopia (SE)

near the border with Kenya, where 20% of cases, rarely associated

with HIV/AIDS, occur [4].

VL in the Horn of Africa has important epidemiological and

clinical features. For instance, based on the phlebotomine sand fly

species involved in the transmission cycle of the parasite, two

markedly different ecological situations have been recognized in

East African VL foci. One is in the semiarid regions of NE and

eastern Sudan [5,6,7] where VL is transmitted by Phlebotomus

orientalis residing in cracks of black cotton clay soils of Acacia-

Balanties forest. The second is in the savannah and forest areas in

SE and Kenya, where VL is associated with P. martini and P. celiae

thriving in Macrotermes termite hills [8,9]. Studies elsewhere showed

that differences in the biology and ecology of sand fly vectors may

influence the genetic make-up of the Leishmania parasite popula-

tions they harbor and transmit [10]. Vectors could possibly select a

particular group of parasites or parasites could differ in their

adaptability to sand fly species or populations [11]. From this, one

could hypothesize that at least two genetically distinct populations

of parasites of the L. donovani complex should be present in East

Africa corresponding to the different vector species. But this

remains to be proven by analysing strains of L. donovani from the

two ecotypes of VL in East Africa. Also, differences in the clinical

manifestation of the disease, such as prevalence of post kala-azar

dermal leishmaniasis (PKDL) cases, have been documented

between the two major East African foci [12,13]. Moreover,
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treatment outcomes were recently noted to vary in different VL

foci of Ethiopia [14].

The extent to which drug-resistant or virulent parasite strains

contribute their genes to the next generations depends on the

breeding mode of the organism. Thus understanding the repro-

ductive mode is crucial for the development of drugs and vaccines

[15,16]. Although controversial, the consensus based on the

population genetic studies reported so far is that Leishmania is a

clonal organism [17]. The criteria considered as indicators of

clonality in Leishmania have, however suffered from the limited

discriminatory power of the molecular markers used, e.g. multilocus

enzyme electrophoresis (MLEE), random amplification of polymor-

phic DNA (RAPD) and restriction fragment length polymorphism

(RFLP). In addition, linkage disequilibrium, a classical hallmark of

clonality, has been recently shown to be an unreliable measure for

testifying clonality in an organism [18,19,20]. There is also growing

evidence of recombination in Leishmania at inter-and intra-species

level [21,22,23,24,25]. Indeed, high-resolution markers are neces-

sary to address key epidemiological questions, including the

reproductive mode. Microsatellite markers have proved to be the

most powerful tools for population genetic studies in Leishmania

[16,26,27]. The power of these markers is basically that they are

abundant in the genomes of Leishmania, highly informative, neutral,

not under selective pressure and co-dominant [27].

Paying attention to the fundamental importance of population

genetic studies for unravelling key epidemiological questions

associated with VL in Ethiopia in particular, and in East Africa

in general, is a prerequisite for the development of effective control

strategies. We used a set of highly polymorphic multilocus

microsatellite markers [28,29] to investigate the level of genetic

diversity, population structuring and the reproductive system in

strains of the L. donovani complex strains isolated in different

endemic foci in Ethiopia.

Materials and Methods

Ethical considerations
This study was conducted in accordance with the Helsinki

declaration. It was reviewed and approved by the Institutional

Review Board (IRB), Medical Faculty, Addis Ababa University, and

the Ethical Committee of Charitè University Medicine. Written

informed consent was obtained from each study participant.

Parasite strains and DNA isolation
In this study, we used 63 strains of L. donovani isolated between

2007 and 2009 from VL cases in five areas of endemicity in

Ethiopia; Metema, Humera and Belessa in NE, and Negele

Borena and Konso in SE (Figure 1). Some strains were collected

from patients living in different areas non-endemic for VL but

having records of travel to one of the VL foci in Ethiopia or

Sudan. Additionally, the microsatellite profiles of 60 strains of L.

donovani previously described by Kuhls et al. [29] and Alam et al.

[30] were included for comparison. Three of them were previously

isolated in Ethiopia, 21 were from Sudan, 8 from Kenya and 28

from India. Table S1 displays the list of the strains studied, their

WHO codes, geographic origins, zymodemes, pathology, and

population, subpopulation and cluster assignment.

The Ethiopian strains were cryo-preserved and re-cultured in

biphasic Novay-MacNeal-Nicolle (NNN) media. DNA was

isolated from pelleted promastigotes using phenol/chlorophorm

extraction as previously described [31]. ITS1 polymerase chain

reaction-restriction length polymorphism (PCR-RFLP) was car-

ried out to confirm that the 63 newly isolated strains belong to the

L. donovani complex [32].

Multilocus microsatellite typing (MLMT)
For the population genetic study, we used 14 unlinked

microsatellite markers previously described elsewhere [28,29].

Fluorescence-labeled forward primers (Proligo, France) were used

for the amplification of microsatellite containing sequences

applying the PCR conditions described earlier [29]. The precise

size of the amplicons was determined on an automated ABI

sequencer (SMB Services in Molecular Biology, Berlin Germany),

using the peak scanner ABI PRISM GeneMapper software version

3.7 (Applied Biosystems, Foster City, USA) as described earlier

[28]. In each run, a reference strain of L. donovani (MHOM/IN/

80/DD8) was included for which the microsatellite sizes for the 14

loci had been determined by sequencing [29]. MLMtype for each

strain was obtained by compiling all alleles at each locus.

Population genetic analysis
Population structure was examined by a Bayesian model-based

clustering approach deployed in STRUCTURE software version

2.1 [33] once the input file was generated with software MSA

version 3.0 [34]. This algorithm identifies genetically distinct

populations on the basis of allele frequencies and estimates the

individuals’ membership coefficient in each probabilistic popula-

tion. The STRUCTURE program was run under a previously

described set of parameters [29]. The most probable number of

populations (K) was identified by plotting DK values of K from 1

to 10 with 10 replicate runs for each K and corresponds to the

peak of the DK graph [35].

Microsatellite-based genetic distances were calculated based on

the proportions of shared alleles distance measure (DAS), applying

the software POPULATIONS version 1.2.28 (http://bioinfor

matics.org/,tryphon/populations). Neighbor-Joining (NJ) trees

were constructed from the resulting matrix using POPULA-

TIONS and MEGA version 3.1 [36], with bootstrap values (1,000

replicates). Additionally, phylogenetic networks were inferred from

the distance matrix obtained from the microsatellite dataset by

using the Neighbor-Net method in SplitsTree4 [37]. GDA

software was used to quantify allelic richness (A), mean number

of alleles (MNA), expected and observed heterozygosity (He and

Ho, respectively) and inbreeding coefficient (FIS) from the

microsatellite data. Pairwise Wright’s fixation index (FST), which

estimates level of genetic differentiation and gene flow between

and within populations was calculated using MSA software,

Author Summary

In the Horn of Africa, visceral leishmaniasis, caused by
protozoan parasites of the Leishmania donovani complex,
continues to pose a major health problem affecting the
poorest of the poor. Population genetic studies are crucial
for the development of drugs and vaccines against
microorganisms. However, our knowledge about the
population structure of L. donovani parasites in this region
is still very limited. Using a highly discriminatory multilocus
microsatellite typing approach, we found a remarkably
high genetic diversity among the East African strains of L.
donovani studied which grouped into two genetically and
geographically distinct populations comprising parasites
from SE and Kenya, and those from NE and Sudan. Despite
Leishmania being widely regarded as a clonal organism,
our results suggest a possible co-existence of clonal and
sexually reproducing strains of L. donovani from SE. The
information obtained by the present study is helpful for
future design of parasite-targeted control measures in East
Africa.

Population Structure of East African L. donovani
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assuming microsatellites evolve in accordance with infinite alleles

model (IAM).

In addition, BAPS 5 software [38] was used to expose cryptic

subpopulations/subclusters within each East African population

inferred by STRUCTURE. An input file in Genepop version 3.3

format was used that was generated from microsatellite data using

MSA software. For each cluster inferred by BAPS, FIS was re-

calculated and compared with the FIS values for subpopulations

identified by STRUCTURE. To see the effect of temporal and

geographic origin of strains we divided the Ethiopian L. donovani

strains by year of isolation and endemic focus and re-calculated the

FIS values for each subdivision. A significant decrease in FIS

compared to FIS values calculated for the subpopulations inferred

by STRUCTURE indicates the presence of Wahlund effect due to

host, temporal or micro-geographic sub-structuring [16].

Results

Multilocus genotypes
Amplification and subsequent estimation of repeat numbers were

performed for all 63 Ethiopian strains (n = 22 from SE and n = 41

from NE) over the 14 markers used. Among the 63 strains analysed,

55 distinct MLMTypes were identified. Four strains from SE shared

the same MLMType. Four strain pairs also had identical

MLMTypes. Two of these pairs, MHOM/ET/2008/Dm62- and

MHOM/ET/2008/DM299, and MHOM/ET/2009/DM376sp-

and MHOM/ET/2009/DM376SpR, were isolated from the same

HIV/VL co-infected patients during different episodes of the

disease. The first strain in each pair was isolated before initiation of

treatment, and the second during 6-months or one-year follow-ups.

The remaining two pairs of genetically identical strains were from

different patients, one pair from NE and the other pair from SE.

Inference of populations and subpopulations
For the inference of population structure and sub-structure, the

microsatellite profiles obtained for the 63 strains from Ethiopia

were compared to the profiles of 60 previously characterized East

African and Indian strains of L. donovani. The Bayesian statistic-

based algorithm implemented in STRUCTURE assigned the 123

strains, in total, to three distinct populations named onwards as

SE/KE, NE/SD, and IND. Population SE/KE contained strains

(n = 30) from SE and Kenya, population NE/SD (n = 65) from NE

Figure 1. Map of Ethiopia. The VL foci in NE and SE are indicated. The NE foci are bordering the VL foci in Sudan, whereas the SE foci are bordering
Kenya.
doi:10.1371/journal.pntd.0000889.g001
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and Sudan, and population IND all strains from India (n = 28)

(Table S1 and Figure 2a).

Evanno et al. [35] stated that STRUCTURE accurately detects

the uppermost hierarchical level of population structure and that

subsequent analyses of subsets defined by the best assignment of

individuals to groups provided by the program allow finding the

hidden within-group structure. Therefore, to check for sub-

structures within the East African populations SE/KE and NE/

SD, STRUCTURE analysis was re-run separately for the strains

assigned to them. Two major subpopulations were detected in

each East African population which were named A and B in case

of the NE/SD population, and NB/KE and KO in case of SE/KE

population (Figure 2b and Table S1). However, the DK peak was

weak for the subpopulations KO and NB/KE in SE/KE. All

strains belonging to the subpopulation KO (n = 13) were isolated

from VL cases in Konso district, whereas the second subpopula-

tion NB/KE comprised all strains from Negele Borena district

(n = 4), the 8 strains from Kenya and five strains from Konso. The

NE/SD-A subpopulation was further sub-divided into 3 A clusters

and 2 B clusters, respectively. Similarly, the South Ethiopian

strains split off from the Kenyan strains in further STRUCTURE

analyses (Figure 2c and Table S1).

Subpopulation NE/SD-A (n = 48) encompassed 73% of the

novel isolates from NE used in this study and 75% of the strains

from NE and Sudan analysed in previous studies. Eight of the total

sixteen HIV-VL strains clustered in this subpopulation. Of the

three clusters found within NE/SD-A, in the cluster A2 (n = 18) all

but one strain were old strains mainly from Sudan, whereas

clusters A1 and A3 consisted of 9 and 21 news strains from NE,

respectively. Interestingly, subpopulation NE/SD-B (n = 17) com-

prised all old stocks (n = 6) previously identified as one East African

population, population 4 [29], plus 11 new strains of which eight

were isolated from Ethiopian HIV/VL co-infected patients. The

cluster NE/SD-B1 (n = 10) contained strains of putative hybrid or

mixed genotypes while the cluster B2 contained strains (n = 7) that

could be one of the parents for the putative hybrid/mixed

genotypes (Figure 2c). Strains in the NE/SD-B1 cluster showed

heterozygosity at 41% of the 14 microsatellite loci. In the six of the

loci most of the heterozygous alleles (89%) matched perfectly with

homozygote alleles in the two hypothetical parental populations

cluster B2 and subpopulation NE/SD-A (Table S2). For instance,

the strains MCAN/SD/2000/LEM3946, MHOM/SD/1997/

LEM3429, MHOM/SD/1993/GE, MHOM/ET/2007/DM19,

MHOM/ET/2007/DM62, MHOM/ET/2008/DM287, MHO-

M/ET/2008/DM295, MHOM/ET/2008/DM299 and MHO-

M/ET/2009/DM389, belonging to the cluster NE/SD-B1 dis-

played two fragments of 78 and 98 bp for locus Li22-35. Almost

all strains in subpopulation NE/SD-A were homozygous in this

locus presenting the 78 bp allele, whereas seven strains clustering

in NE/SD-B2, namely MHOM/ET/2008/DM256, MHOM/

ET/2008/DM257, MHOM/ET/2009/DM559, MHOM/ET/

2009/DM376S/376R, MHOM/ET/2008/DM481, MHOM/SD/

1997/LEM3463 and MHOM/ET/2000/HUSSEN, were homozy-

gous for the 98 bp allele. Interestingly, four of the hybrid strains in

NE/SD-B1 were isolated from HIV/VL co-infected AIDS patients.

The three populations (NE/SD, SE/KE and IND) and the

division of the NE/SD population into two main subpopulations

and further into 5 clusters, as inferred by STRUCTURE, was

Figure 2. Populations, subpopulations and clusters for 123 L. donovani strains as inferred by STRUCTURE. The peak at DK represents
the most probable number of populations and subpopulations. Presence of smaller peaks in DK plot for the subpopulations indicated the presence
of further clustering. A) Three main populations: North Ethiopia/Sudan (NE/SD), India, and South Ethiopia/Kenya (SE/KE) were identified in the whole
data set of 123 strains. B) Within each East African population, two subpopulations were identified, A and B in the NE/SD population, and Konso and
NB/KE in the SE/KE population. C) Five clusters were apparent, three (A1, A2 and A3) in the NE/SD-A subpopulation and two (B1 and B2) in the NE/SD-
B subpopulation. Four clusters were detectable in the SE/KE population, named Konso, Kenya, Negele Borena and KO+ KE+NB. Each strain is
represented by each vertical line in the STRUCTURE bar plot. Strains with mixed membership to the different populations, subpopulations or clusters
are represented by different colored segments of the vertical bar which is proportional to the membership coefficient. The maximum membership
coefficient is 1 meaning that a strain is a member in only one population, subpopulation or cluster.
doi:10.1371/journal.pntd.0000889.g002
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congruent with the topologies of the DAS-NJ tree (data not shown)

and of the SplitsTree (Figure 3). The two subpopulations of NE/

SD as well as the four groups, KO, NB, KE and NB-KE, in

population SE/KE were also depicted by the NJ analyses.

Furthermore, the reticulate patterns seen in the SplitsTree

between and within the three main populations with putative

hybrid strains in intermediate positions indicate the possible

occurrence of hybridization or recombination events.

Characterization of the main East African populations
The genetic diversity in each population was measured by

determining the number of alleles per locus (allelic richness, A),

expected (He) and observed (Ho) heterozygosities as well the

inbreeding coefficient (FIS). As shown in Table S3, there is

considerable polymorphism in all loci but not all of them were

polymorphic within the individual populations. Three loci [Li46-

67(C), Li71-5/2(P) and Li71-5/2(Q)] were entirely monomorphic

within population SE/KE but different between SE/KE and NE/

SD, and four to nine different alleles were seen in population NE/

SD for these markers. Locus Lm2TG was entirely monomorphic

in population NE/SD but different between NE/SD and SE/KE.

The number of alleles per locus ranged from one to 10 (mean 5.5)

for NE/SD, and one to 15 (mean 4.1) for SE/KE. The most

polymorphic locus for SE/KE population was locus CS20 with 15

alleles, whereas for NE/SD it was locus Li23-41(F) with 11 alleles

(Table S3). Population-specific alleles were found for the loci

Lm2TG, Li22-35(E), Li23-41(F), Li45-24(G), CS20 and

KLIST7031 by which strains belonging SE/KE could be

unambiguously distinguished from strains belonging NE/SD. This

implies that one could track the spread of L. donovani parasites

using only these markers in East Africa.

The expected heterozygosity (He) which is a measure for genetic

diversity was slightly higher in strains of L. donovani from NE/SD

(He = 0.47) as compared to strains from SE/KE (He = 0.39). It

Figure 3. Phylogenetic network (unrooted) for 123 L. donovani strains constructed with the Neighbor-Net algorithm. STRUCTURE, NJ
tree and network analyses detected the same three main populations as well as the two subpopulations (A and B) in the North Ethiopia/Sudan
population and the four clusters; Konso, Negele Borena, Kenya and KO+KE+NB; in the South Ethiopia/Kenya population. The reticulate patterns seen
in the network indicates either hybridization or recombination events between similar or closely related genotypes. The putative hybrid genotypes
are indicated by a red bar line on the top. They are located in between their hypothetical parental strains in NE/SD-A subpopulation A and in cluster
B1 of the NE/SD subpopulation B.
doi:10.1371/journal.pntd.0000889.g003
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cannot be excluded that this might be due to the fact that more

strains from NE (N = 44; 41 new plus 3 old) and Sudan (n = 21)

were analysed compared to the 30 strains from SE (n = 22) and

Kenya (n = 8).

In both East African populations identified herein, a consider-

able deficit of heterozygotes (He . Ho, FIS .0) was observed for

both single-locus and multilocus data (Table S3). To determine

whether heterozygote deficiency could be attributed to population

sub-structuring, the Wahlund effect, the FIS values were re-

calculated for each subpopulation and cluster defined by

STRUCTURE (Table S4). This resulted in only a slight reduction

of FIS values for the subpopulations NE/SD-A and –B as well as

for subpopulations SE/KE-KO and –NB/KE. However, the FIS

values were much higher for the two subpopulations in SE/KE

than for the two subpopulations in NE/SD. The FIS values

remained significantly positive when re-calculated for the 5 and 4

clusters in NE/SD and SE/KE, respectively, except for the cluster

NE/SD-B1 (Table S4).

We also used BAPS to check for the presence of further hidden

subclustering within each East African population and found 10

(with probability of PBAPS = 0.57) and 7 (PBAPS = 0.91) clusters in

SE/KE and NE/SD, respectively. For each cluster identified by

BAPS, except for those containing single strains only, the FIS values

were re-calculated. For NE/SD, the results showed a significant

decrease of FIS in BAPS clusters with a mean of 0.22 (0.07–0.40)

(Table S5). However, the FIS values for the BAPS’ clusters in SE/KE

remained clearly positive ranging from 0.34 to 0.86 (Table S5) and

indicating the presence of significant inbreeding in this population.

Further, we analysed Ethiopian strains of L. donovani alone

defined by year of isolation and geographic origin. First, we

calculated FIS values for the NE (n = 41) and SE (n = 22)

populations separately. These values FIS = 0.42 for NE and

FIS = 0.83 for SE, were similar to those obtained when Ethiopian

and Sudanese (n = 65) as well as Ethiopian and Kenyan strain

(n = 30) were taken together (Table S4). When the strains from SE

were divided into two groups, SE-2007 and SE-2008, and strains

from NE into three groups, NE-2007, NE-2008 and NE-2009,

according to the year of their isolation, the FIS for each division

remained clearly positive. For the SE groups it ranged from 0.67 to

0.85, and for the NE groups from 0.29 to 0.49. We also re-

calculated FIS for SE strains isolated in the two foci, Konso and

Nebele Borena within two years (NB-2007, Konso-2007 and

Konso-2008), and found high positive values (Table S4).We did

not re-calculate FIS values for the NE strains isolated in the same

year in same focus. Because most of our patients were soldiers and

immigrant workers and had to travel frequently the two foci

Humera and Metema, it was impossible to accurately record

where they got infected.

F-statistics
The genetic differentiation between populations and subpopu-

lations as inferred by STRUCTURE was tested by F-statistics.

The estimated pairwise FST values between populations and all but

one subpopulations ranged from 0.312 to 0.727 (p = 0.0001)

(Table 1). This indicated that the two main populations NE/SD

and SE/KE and the subpopulations in NE/SD are clearly

genetically isolated with only limited gene flow between them.

The two subpopulations in SE/KE, KO and NB/KE, however

showed less genetic differentiation. We also looked for genetic

differentiation between the subpopulations of only Ethiopian L.

donovani defined by geographic origin and year of isolation; SE-

2007, SE-2008 SE-2007-Konso, SE-2008-Konso, SE-2008-NB for

the SE strains, and NE-2007, NE-2008 and NE-2009 for the NE

strains. Strong genetic differentiation (FST = 0.56; p,.0001) was

only found between NE and SE similar to what was obtained for

NE/SD and SE/KE. The FST values between the different

subdivisions were not significant (data not shown).

Discussion
Highly discriminatory methods differentiating the parasites at

the strain level are needed to answer key epidemiological and

clinical questions associated with VL in East Africa. The MLMT

approach has been shown to combine high discriminatory power

with good reproducibility allowing the comparison of profiles

identified in different laboratories and at different times [26,27].

Therefore, a panel of 14 microsatellite markers was used in the

present study for elucidating the genetic diversity, the population

structure and the reproductive system of L. donovani in Ethiopia

and for comparing the microsatellite profiles found with those of

previously analyzed strains from Sudan and Kenya as well as from

India. To the best of our knowledge, this study is the first one that

has investigated a large number of strains in the L. donovani

complex from different areas of endemicity in Ethiopia using the

MLMT approach. Only three Ethiopian strains, all from north-

western foci, were previously typed by using MLMT [29].

Using different types of population genetic analysis, namely

Bayesian statistics- and distance-based models as well as F-

statistics, we exposed two main populations among the 95 East

African strains of L. donovani which were clearly separate from the

population comprising strains from India. The two East African

populations, one consisting of strains from northern Ethiopia and

Sudan, NE/SD, and the other of strains from southern Ethiopia

and Kenya, SE/KE, represented genetically isolated populations

and were both further divided in two subpopulations. The

existence of two genetically distinct populations in Ethiopia is

not surprising considering the fact that the Ethiopian foci of VL

are adjacent to well-known foci, either in Sudan or Kenya [39,40]

and that the two foci, NE and SE, are very distant (Figure 1).

Because the NE foci are geographically adjacent to Sudanese foci

of VL, and the same is true for SE and Kenyan foci, people have

always moved across these borders for trading or seeking

employment in big commercial farms or due to ongoing conflicts

with high military activities [41].

The presence of two geographically and genetically isolated

populations of L. donovani in East Africa is supported by differences

in clinical behavior and biology of the strains from the two foci. In

NE, as well as in Sudan, the transmission of VL is suggested to be

anthropozoonotic, at least occasionally [42,43]. In SE and Kenya,

VL is an anthroponotic disease. Also, PKDL is relatively

uncommon in SE and Kenya and develops several years after

apparent cure of VL patients, whereas in 56% of the Sudanese

patients lesions appear within weeks or months [12]. In NE, cases

of PKDL are increasing with 13% occurring in non-HIV positive

Table 1. FST estimates with corresponding p values for pair-
wise comparisons of the populations and subpopulations of L.
donovani identified by STRUCTURE analysis.

Populations/subpopulations FST p

SE/KE vs. NE/SD 0.494 0.0001

SE/KE vs. IND 0.727 0.0001

NE/SD vs. IND 0.597 0.0001

KO vs. NB/KE 0.041 0.0006

A vs. B 0.312 0.0001

doi:10.1371/journal.pntd.0000889.t001
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and 27% in HIV-coinfected individuals [13]. Interestingly, the two

main populations identified in this study correlate with the areas of

distribution of the two different phlebotomine sand fly species that

transmit parasites of the L. donovani complex in Ethiopia: P.

orientalis in NE, as in Sudan, and P. martini in SE, as in Kenya. It is

certainly worthwhile investigating whether the population genetic

structure of L. donovani in East Africa may be influenced by the

existence of these different species of sand fly vectors. However, we

cannot rule out that other factors such as population migration

routes, ecological variations, varying host backgrounds etc., or a

combination of these and other factors might be responsible for

the observed genetic differentiation.

The two major subpopulations as well as three of the four

clusters within SE/KE correlated to the geographical origins of the

strains studied. Most strains from Konso grouped in subpopulation

SE/KE-KO and were clearly differentiated from strains from

Negele Borena and from Kenyan strains. However, few strains

from Konso were assigned to the clusters comprising strains from

Negele Borena and Kenya which might reflect intertribal

movement since Negele Borena is situated between Kenya and

Konso. The results could be, however biased by the small number

of strains per cluster and should be verified by analyzing more

strains from different SE and Kenyan foci. On the contrary, no

correlation could be found between the geographical origin of

strains and the two subpopulations and the 5 clusters in population

NE/SD. This is in agreement with a recent MLMT-based

population genetic study on Sudanese strains of L. donovani [44]

and consistent with high rate of population movement between

these Sudanese and Ethiopian foci [45]. Instead, the subpopula-

tions and clusters identified in NE/SD might reflect the differences

in hosts (population–specific positive selection), reservoirs and the

biology of the vectors [10,46], and year of isolation. Subpopulation

NE/SD-A, further divided into clusters A1 to A3, comprised most

of the newly isolated NE strains (A1 and A3) and old Sudanese

strains (A2). Subpopulation NE/SD-B, further divided into B1 and

B2, on the other hand, comprised NE strains isolated from HIV-

positive VL patients and old strains from NE and Sudan for which

the immunological status of their hosts is unknown. Only three

newly isolated strains from HIV-negative patients were found in

subpopulation NE/SD-B. The predominance of strains from

HIV/VL co-infected individuals in NE/SD-B compared to NE/

SD-A may indicate that these strains are less virulent and hence

may cause only asymptomatic infections in immune-competent

hosts. Also, clonal spread of hybrid genotypes after recombination

event(s), as suggested by the low FIS obtained for the cluster B1,

could explain the predominance of strains from HIV co-infected

cases in subpopulation NE/SD-B.

The distinction between true relapse due to recrudescence of

original parasites after treatment, and re-infection by a new

parasite is important for the accurate estimation of anti-Leishmania

drug efficacy. This is of particular importance for treatment

follow-up and drug trial studies in Ethiopia where the rate of

HIV/VL co-infection and associated relapses are on rise

[2,3,13,47]. In the present study, pairs of strains were collected

from two HIV/VL co-infected patients; one strain before the start

of treatment and the other during follow-up. MLMT showed that

the strains from first and subsequent episodes were genetically

identical suggesting a true relapse and thus treatment failure in

these two patients. Taking together the result of the present study

and previous findings [48,49], MLMT appears to be an useful tool

for differentiating true relapses from re-infections.

L. donovani has been considered to be a clonal diploid organism

[17] in which FIS values are supposed to be negative due to

heterozygote deficiency [50]. Contrary to this, we found high

inbreeding coefficients within all but one East African clusters

which could result from population subdivision (Wahlund effect),

presence of null alleles, natural selection, genetic conversion and

inbreeding as discussed by Rougeron et al. [16]. In our study, all

strains were amplified at all microsatellite loci. Thus, the high FIS

values that were observed across all polymorphic loci are unlikely

to be due to the presence of null alleles. Selection may cause

underdominance by decreasing the fitness of heterozygous geno-

types and gene conversion could lead to a transition from the

heterozygous to the homozygous stage [16]. In both cases, varying

FIS should be expected across our 14 non-coding microsatellite

loci. In our general dataset, little variance of FIS values was

observed across these loci (Table S3). This variance is even

decreasing when only the Ethiopian parasite populations and

subpopulations were analysed (Table S3 and Table S4).

To expose hidden subpopulation structure we used the BAPS

software. For the BAPS clusters of the population NE/SD the FIS

values were lower than those estimated for the NE/SD

subpopulations and clusters inferred by STRUCTURE, indicating

that the latter were at least partly due to population subdivision

(Wahlund effect). There was however, no indication for temporal

clustering as we still found high inbreeding for NE strains isolated

in the same year but with no significant differentiation between

different years of isolation. For the BAPS clusters and subclusters

of the population SE/KE as well as for the SE strains alone

subdivided into different clusters based on the same year isolation

at the same focus, the FIS values remained highly positive

suggesting that the Wahlund effect is not responsible for the high

inbreeding observed. Thus our results are incompatible with the

clonal hypothesis of Leishmania and provide evidence for high

inbreeding or mating between closely related genotypes, especially

among the strains from SE and Kenya but also, to a lower extent,

for the strains from NE and Sudan. Similar finding i.e., extreme

inbreeding, indicating mixed-mating events was observed in L.

braziliensis [16]. The circumstantial evidence of ‘‘strong clonality’’

in Leishmania might be spurious since most of the previous studies

were based on the less polymorphic genetic markers and used the

insensitive linkage disequilibrium as a clonal index. Whether

reproductive strategies of strains from SE are different from those

of strains from NE is not clear at the moment. It deserves further

investigations which should involve more strains for both

populations that are not separated by time and geography.

We found relatively high level of heterozygosity across the

various microsatellite loci in strains from NE/SD when compared

to strains from SE/KE which is in agreement with a recent study

in Sudan [44]. This could be explained by mutation in one of the

double alleles [51] or by a recombination event among different

genotypes in L. donovani. Mutation in one of the double alleles

would be the most likely explanation for the relatively higher

amount of heterozygote loci in NE/SD which is characteristic for

clonal diploid organisms. However, the presence of homozygote

alleles, one in subpopulation NE/SD-A and the other in cluster

NE/SD-B2, which perfectly match to the heterozygote alleles in

NE/SD-B1, indicate that the heterozygous allele combinations

might have arisen from recombination between different geno-

types rather than from a simple mutation [52]. The results of our

STRUCTURE and phylogenetic network analyses are in favor of

this hypothesis.

Natural hybrids on inter- as well as intra-species level have been

repeatedly reported [21,22,23,24,25]. Six putative hybrid strains

were identified in the present study. Interestingly, some of the

putative hybrid strains grouping in NE/SD-B1 were isolated from

HIV/AIDS patients. Previously, two strains representing L.

infantum/L. major hybrids, were isolated from immuno-compro-
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mised patients in Portugal [24] and it was hypothesized that

immuno-compromised patients could be infected with more than

one genotype over long periods of time, with large numbers of

amastigotes which could provide opportunities for the hybridiza-

tion between different Leishmania genotypes. Although recombina-

tion in Leishmania was proven to occur rather in the invertebrate

hosts than mammalian hosts [53], it is reasonable to link the

recovery of putative hybrid strains in HIV co-infected patients

with the clonal selection of hybrid genotypes. Hybrid strains may

have a selective advantage over homozygote strains, e.g. by

enhancing the transmission potential [54]. It would be interesting

to clone primary cultures of strains showing mixed membership in

different populations, subpopulations or clusters, and to re-analyze

them by MLMT in order to find out whether they might represent

true natural hybrids.

In conclusion, the present study revealed the presence of

remarkable genetic heterogeneity among East African strains of L.

donovani. East African L. donovani parasites are not only genetically

distinct from the Indian but the parasites from Kenya and south

Ethiopia in one hand and those from Sudan and northwest

Ethiopia in the other are also distinct. This study also sheds some

light on understanding of the population structure and reproduc-

tive pattern of East African L. donovani. This information, together

with future epidemiological and population genetic studies will be

very useful for the design of parasite-targeted control strategies

which aim to eradicate VL in East Africa.
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