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ABSTRACT
Glioblastoma multiforme (GBM) is the most fatal malignancy, and despite extensive treatment, 
tumors inevitably recur. This study aimed to identify recurrence-associated molecules in GBM. The 
gene expression profile GSE139533, containing 70 primary and 47 recurrent GBM tissues and their 
corresponding clinical traits, was downloaded from the Gene Expression Omnibus (GEO) database 
and used for weighted gene co-expression network analysis (WGCNA) and differentially expressed 
gene (DEG) analysis. After identifying the hub genes which differentially expressed in recurrent 
GBM tissues and in the gene modules correlated with recurrence, data from the Chinese Glioma 
Genome Atlas (CCGA) and The Cancer Genome Atlas (TCGA) databases were analyzed with 
GSE43378 to determine the relationship between hub genes and patient prognosis. The diag
nostic value of the identified hub genes was verified using 52 GBM tissues. Three gene modules 
were correlated with recurrence and 2623 genes were clustered in these clinically significant 
modules. Among these, 13 genes – EHF, TRPM1, FXYD4, CDH15, LHX5, TP73, FBN3, TLX1, C1QL4, 
COL2A, SEC61G, NEUROD4 and GPR139 – were differentially expressed in recurrent GBM samples; 
low LHX5 and TLX1 expression predicted poor outcomes. LHX5 and TLX1 expression showed weak 
positive relationships with Karnofsky performance scale scores. Additionally, LHX5 and TLX1 
expression was found to be decreased in our recurrent GBM samples compared with that in 
primary samples; these genes exhibited high diagnostic value in distinguishing recurrent samples 
from primary samples. Our findings indicate that LHX5 and TLX1 might be involved in GBM 
recurrence and act as potential biomarkers for this condition.

ARTICLE HISTORY
Received 9 April 2021 
Revised 3 June 2021 
Accepted 3 June 2021 

KEYWORDS
Glioblastoma multiforme; 
wgcna; deg analysis; 
recurrence

CONTACT Zhirui Zeng 987963481@qq.com Department of Physiology of Basic medicine college, Guizhou Medical University, Guiyang 550009, 
Guizhou, China;  
HongMei Zhang 249402604@qq.com Department of Gastroenterology, The Affiliated Hospital of Weifang Medical University, Weifang 261000, 
Shandong, China 
*These authors are equally contributed to this work.

Supplemental data for this article can be accessed here

BIOENGINEERED
2021, VOL. 12, NO. 1, 3188–3200
https://doi.org/10.1080/21655979.2021.1943986

© 2021 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted 
use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://doi.org/10.1080/21655979.2021.1943986
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/21655979.2021.1943986&domain=pdf&date_stamp=2021-07-14


Introduction

Glioblastoma multiforme (GBM) is a common 
malignancy in the brain, with a distinctly low 
life expectancy after diagnosis [1]. Despite con
siderable efforts being made in molecular 
understanding and disease therapy, patient sur
vival remains at a dismally low rate, with 
a median survival time is 14–16 months with 
a 5-year survival of 9.8% [2,3]. Particularly, as 
GBM is a highly malignant brain tumor and 
lacks an effective prevention strategy, it inevi
tably progresses or recurs after the first-line 
standard of care. There is no consensus regard
ing the best treatment to offer people upon 
disease progression or recurrence [4]. Tumor 
recurrence affects approximately 90% of 
patients, and it is a significant barrier to the 
increase in overall survival following effective 
surgery [5]. Hence, a more intensive under
standing of the mechanisms underlying GBM 
may contribute to the diagnosis and therapy 
of GBM recurrence.

Bioinformatic methods, including analysis of 
GBM microarray and high-throughput sequencing, 
are effective strategies for the exploration of ther
apeutic targets in GBM [6–8]. Weighted gene co- 
expression network analysis (WGCNA) is a potent 
tool for uncovering complex mechanisms and 
multigene analysis of high-throughput data, parti
cularly for exploring the relationship between 
genes and traits of samples [9–11]. In the 
WGCNA network, the average expression level of 
genes in the significant modules was determined 
and modules containing highly related genes were 
explored; thus, clusters can be generalized by 
a module eigengene or module core gene, module 
relationships with the traits of samples can be 
determined, and module membership measures 
can be calculated [12–14]. For instance, Zhang 
et al. [15] identified 24 genes, including vimentin 
(VIM), chloride intracellular channel 1 (CLIC1), 
and tubulin beta 6 (TUBB6), which were asso
ciated with the tumor grade and prognosis in 
GBM. Similarly, utilizing WGCNA, Chen et al. 
[16] identified 22 genes, including BUB1, cyclin 
B2 (CCNB2), kinesin family member 20A 
(KIF20A), and nucleolar and spindle associated 

protein 1 (NUSAP1), which are potential biomar
kers in glioma.

LIM homeobox 5 (LHX5), a member of the LIM 
homeobox (LHX) family of transcription factors 
identified in 1995 [17], is highly expressed in the 
caudal hypothalamus and acts as an important 
differentiation mediator [18]. LHX5 also plays 
a key role in development of the forebrain and 
hippocampus, while deficiency of LHX5 induces 
a variety of brain abnormalities [19]. Moreover, 
low expression of LHX5 has been observed in 
breast cancer [20]. T cell leukemia homeobox 1 
(TLX1), a nuclear transcription factor of the NK- 
linked or NK-like (NKL) subfamily of homeobox 
genes, was identified in 1993 [21] and is involved 
in the specification of neuronal cell fates [22]. 
TLX1 is also required for normal development of 
the spleen during embryogenesis [23]. However, 
the roles of LHX5 and TLX1 in GBM are still 
unknown.

The present study aimed to identify novel recur
rence-associated molecular markers in GBM. By 
combining WGCNA, differentially expressed 
genes (DEGs), and experimental verification, it 
was demonstrated that LHX5 and TLX1 were clus
tered in the gene modules associated with recur
rence and showed decreased expression in 
recurrent samples compared with that in primary 
GBM tissues. Lower LHX5 and TLX1 expression 
predicted poor outcomes, and both LHX5 and 
TLX1 had high diagnostic value in distinguishing 
recurrent samples. Therefore, we suggest that 
LHX5 and TLX1 may be recurrence-associated 
molecules in GBM, as well as effective biomarkers 
for predicting the recurrence of GBM.

Materials and methods

Preconditioned data profile used for WGCNA

The gene expression profile GSE139533, including 
the corresponding clinical traits (recurrence state 
and recurrence time), was downloaded from the 
Gene Expression Omnibus (GEO) database 
(https://www.ncbi.nlm.nih.gov/gds). The data pro
file was contributed by Ella et al. [24] and 
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performed on the GPL18573 platform. Before per
forming WGCNA, the data profile was pre- 
processed as follows: the data were converted to 
log2 values; the probes of the profile were mapped 
to the gene names according to the information 
provided by the GPL18573 platform; and the null 
probes and low-abundance genes with a mean 
expression < 0.5 were removed. The gene expres
sion data of 16,043 genes were then analyzed with 
WGCNA.

WGCNA

To perform WGCNA [12], the gene expression 
data of 16,043 genes in 117 GBM tissue samples, 
along with their corresponding clinical character
istics (recurrence state and recurrence time; recur
rence state: 0 for GBM without recurrence and 1 
for GBM with recurrence; recurrence time: 0–2 
times), were imported into R software v.4.0.2 
(https://www.r-project.org/). First, all the samples 
were clustered via hclust to identify the outliers 
with a cutoff value of 300. The outliers need to be 
removed before performing WGCNA. Then, 
Pearson’s correlation analysis was employed to 
assess the relationships between the gene pairs, 
the results of which were used to construct 
a matrix of similarity. Subsequently, WGCNA 
was performed to cluster the genes in co- 
expression modules using an appropriate soft 
power that ensured that the scale independence 
was greater than 0.85 and mean connectivity was 
close to 0. The dynamic tree cutting algorithm was 
used to define modules by cutting the clustering 
tree into branches, following which the modules 
were assigned to different colors for visualization.

Identification of clinically significant modules

The relationship between different module eigen
genes and patient characteristics (recurrence state 
and recurrence time) was assessed using Pearson’s 
correlation analysis. Modules were considered clini
cally significant if they were correlated with the 
above-mentioned two clinical characteristics 
(r > 0.3, P < 0.05). In the clinically significant mod
ules, gene significance (GS) was calculated based on 
the relationship between each gene and the charac
teristics of interest, while the module membership 

(MM) was measured by analyzing the correlation 
between the module eigengenes to confirm that they 
were significant modules. If P < 0.05, the correla
tions between GS and MM in the clinically signifi
cant modules were regarded as real clinically 
significant modules and subjected to further analy
sis. Moreover, the correlation intensity was analyzed 
using the cutoff values as follows: very strong rela
tionship (0.80 < r ≤ 1.0), strong relationship 
(0.60 < r ≤ 0.80), moderate relationship 
(0.4 < r ≤ 0.6), weak relationship (0.2 < r ≤ 0.4), 
and very weak or no relationship (0 < r ≤ 0.20).

Screening of DEGs

For DEG analysis, gene expression data were 
imported into the R software, and the limma pack
age (https://www.bioconductor.org/) [25] was 
employed to identify DEGs between the 70 pri
mary and 47 recurrent GBM tissues. P < 0.05, and 
|log-fold change (LogFC)|>2 were used to consider 
differentially expressed genes.

Gene set enrichment analysis (GSEA)

In the gene expression profile GSE139533, the 
GBM samples were divided into primary and 
recurrent tissue groups. To identify and distin
guish the functions of DEGs between the primary 
and recurrent tissues, GSEA (https://software. 
broad institute. org/gsea/index.jsp) [26] was per
formed to determine the biological processes that 
were enriched in the gene rank derived from DEGs 
between the two groups. Enriched terms with false 
discovery rate (FDR) < 0.05 were significant.

Survival analysis of hub genes

To verify the value of predicting the prognosis of 
hub genes, Kaplan–Meier survival analysis was 
performed according to the data obtained from 
the Chinese Glioma Genome Atlas (CCGA) 
(http://www.cgga.org.cn/) [27]. Based on the med
ian gene expression values, patients in the CCGA 
database were divided into high and low expres
sion groups. P < 0.05 was set as the cutoff value to 
determine the significant differences between the 
high and low expression groups.
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Analysis of the relationship between the 
expression levels of hub genes and the Karnofsky 
performance scale (KPS) scores in GBM patients

Two gene expression profiles containing KPS scores 
for GBM patients were downloaded from The Cancer 
Genome Atlas (TCGA) (https://xenabrowser.net/data 
pages/) [28] and GEO (https://www.ncbi.nlm.nih. 
gov/gds; Accession: GSE43378) databases [29]. After 
normalization, the two gene profiles were merged 
using sva package v.3.12 (https://www.bioconductor. 
org/) [30]. Thereafter, the expression levels of LHX5 
and TLX1 and the corresponding KPS scores for 
GBM patients were extracted. Finally, Pearson’s cor
relation analysis was performed to determine the 
relationship between the expression levels of LHX5 
and TLX1 and the KPS scores in GBM patients. 
Statistical significance was set at P < 0.05.

Tissue collection

GBM tissues were obtained from the samples of 
52 patients with GBM, aged 39–72 years, which 
were collected from the Affiliated Hospital of 
Weifang Medical University (Shandong, China). 
Among these, 36 were primary and 16 were 
recurrent GBM samples. All samples were diag
nosed as GBM by two pathologists according to 
the following criteria: (1) the cells in tissues 
exhibited high heteromorphosis; (2) the tissues 
were disordered and exhibited high heteromor
phosis; (3) no normal neurons with long spindle 
type nerve fibers were found in the tissues; and 
(4) there was a high density of cells in the tissues. 
The tissues were collected between June 2017 and 
July 2020. None of the patients received che
motherapy or radiotherapy prior to tissue collec
tion. All patients signed the informed consent 
forms, and the Human Research Ethics Review 
Committee of the Affiliated Hospital of Weifang 
Medical University approved and administered 
the use of collected tissues.

Immunohistochemistry (IHC)

All GBM tissues were fixed with 4% parafor
maldehyde (Cat no. 30,525–89-4, Sigma- 
Aldrich, USA). The tissues were then embedded 
in paraffin and cut into 4 μm thick sections. 

After heating, the tissues were deparaffinized 
and rehydrated using graded xylene and etha
nol. After antigen retrieval using sodium citrate 
(Servicebio, Wuhan, China), the endogenous 
peroxidases in the tissue sections were blocked 
using hydrogen peroxide (H2O2). Next, 5% 
bovine serum albumin (Wuhan Boster 
Biological Technology Ltd.) was added to 
block nonspecific binding. The sections were 
then incubated with the following primary anti
bodies overnight at 4°C: LHX5 (1:20 dilution; 
cat no: ab187975; Abcam, USA) and TLX1 
(1:50 dilution; cat no: 26,877-1-AP; 
Proteintech, Wuhan, China). Subsequently, the 
sections were incubated for 2 h with anti- 
mouse and anti-rabbit horseradish peroxidase 
(HRP)-conjugated goat secondary antibodies 
(Servicebio, Wuhan, China). The sections were 
then stained with 3,3�-diaminobenzidine 
(DAB) and hematoxylin (ZSGB-BIO, Beijing, 
China), and images were obtained using an 
orthophoto microscope (Version: BX53; 
Olympus, Japan). Protein levels of the targets 
were calculated based on the product of the 
intensity scores (0, no staining; 1, +; 2, ++; 3, 
+++) and percentage of positive cells (0, 0–1%; 
1, 1–33%; 2, 34–66%; 3, 67–100%).

Verification of diagnostic value of genes

Diagnostic value of the genes was analyzed 
using receiver operating characteristic (ROC) 
curve analysis according to IHC-based protein 
levels. The protein expression level scores of 
tissues were imported into SPSS software 
v.20.0 (https://www.ibm.com/analytics/spss- 
statistics-software) and an ROC curve analysis 
was performed. Genes with area under the 
curve (AUC) > 0.7 were considered to possess 
high diagnostic value.

Statistical analysis

The IHC results were analyzed in SPSS (version 
20.0) using the chi-square test. Differences among 
the IHC scores in each group were determined 
using a cutoff value of P < 0.05.
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Results

After performing WGCNA based on the gene 
expression profile GSE139533 and its correspond
ing traits, the genes were clustered into 17 co- 
expression modules; three gene modules (blue, 
royal blue, and dark turquoise) were significantly 
associated with GBM recurrence; a total of 2613 
genes were present in these three modules. Then, 
through DEG analysis, a total of 232 genes were 
found to be differentially expressed between GBM 
recurrent tissues and primary tissues. After inter
section analysis, we found that 13 genes, including 
ETS homologous factor (EHF), transient receptor 
potential cation channel subfamily M member 1 
(TRPM1), FXYD domain containing ion transport 
regulator 4 (FXYD4), cadherin 15 (CDH15), 
LHX5, tumor protein p73 (TP73), fibrillin 3 
(FBN3), TLX1, complement C1q-like 4 (C1QL4), 
collagen type II alpha chain (COL2A), SEC61 
translocon subunit gamma (SEC61G), neuronal 
differentiation 4 (NEUROD4), and G protein- 
coupled receptor 139 (GPR139), were simulta
neously presented in the gene modules associated 
with GBM recurrence and were differentially 
expressed in the recurrent GBM tissues. Among 
them, low expression levels of TLX1 and LHX5 
predicted poor overall survival rate of GBM 
patients and low KPS scores; both two genes 
showed high diagnostic value in distinguishing 
the recurrent GBM samples from the primary 
GBM samples.

WGCNA

The gene expression data of 117 GBM tissues 
and the corresponding clinical characteristic 
data were used to perform the WGCNA. The 
sample dendrogram revealed that there were no 
outliers (samples with height > 300); the trait 
heatmap showed that the clinical data of all 
patients were completely documented, and 
that these traits could be used for WGCNA 
(Figure 1). Then, the soft power β was selected 
as 10 to perform WGCNA, which ensured scale 
independence > 0.85, as shown in Figure 2a, 
and mean connectivity close to 0 (Figure 2(b)). 
Furthermore, the results revealed that when 
β = 10, the topological overlap matrix met the 

scale-free topology criterion, with R2 = 0.85 
(Figure 2(c)). These results all indicated that 
β = 10 was suitable, and we used β = 10 to 
construct WGCNA. Finally, a total of 17 gene 
co-expression modules (blue, light cyan, dark 
red, cyan, dark magenta, orange, dark gray, 
brown, dark olive green, red, royalblue, black, 
darkgreen, darkturquoise, lightgreen, darkor
ange, and green) were identified, while the 
genes without co-expression relationships were 
all clustered together in the gray module 
(Figure 2d). Detailed information about the 
genes in each module is available in 
Supplementary STable 1.

Identification of clinically significant modules

After obtaining information on gene modules, 
we determined which gene modules were asso
ciated with recurrence state and recurrence 
times. It was found that three gene co- 
expression modules (blue, royalblue, and dark
turquoise module) were simultaneously and sig
nificantly correlated with two clinical 
characteristics (recurrence state and recurrence 
times) in patients with GBM. The gene of the 
blue module was negatively and moderately 
correlated with the recurrence state (R = – 
0.46, P = 0.0001) and recurrence times (R = – 
0.45, P = 0.0001) (Figure 3). Genes of the 
royalblue module were negatively and weakly 
correlated with the recurrence state (R = – 
0.34, P = 0.0001) and recurrence times (R = – 
0.38, P = 0.0001) (Figure 3). Additionally, genes 
in the darkturquoise module had a weak posi
tive relationship with recurrence (R = 0.38, 
P = 0.0001) and a moderate positive relation
ship with recurrence times (R = 0.44, 
P = 0.0001) (Figure 3). Correlations between 
GS and MM were subsequently calculated in 
the three aforementioned modules to further 
confirm that they were real clinically significant 
modules. The MM of the blue module was 
moderately correlated with the GS for recur
rence state (correlation = 0.56, P < 0.05) and 
recurrence times (correlation = 0.51, P < 0.05) 
(Figure 4(a, b)). The MM of the royalblue mod
ule was weakly correlated with the GS for 
recurrence state (correlation = 0.3, P < 0.05) 
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Figure 1. Sample tree clustering and clinical trait heatmap of 70 primary and 47 recurrent glioblastoma multiforme (GBM) samples. 
For sample tree clustering, there were no samples with height > 300, and all samples were used for the weighted gene co- 
expression network analysis (WGCNA). For the construction of the clinical trait heatmap, the recurrence state contained two parts 
classified as with or without recurrence (with recurrence is shown in red, and without recurrence is shown in white); recurrence time 
contained three parts classified as non-recurrence, recurrence once, and recurrence twice (non-recurrence is shown in white, 
recurrence once is shown in pink, and recurrence twice is shown in red). The clinical trait heatmap shows the information of all the 
traits. All the traits could be used for WGCNA.

Figure 2. WGCNA for the gene expression profiles of 117 GBM tissues. (a-b) Scale independence and mean connectivity of various 
soft-threshold values (β). Red numbers indicate the different soft threshold values (1–20), while the red lines indicate the selected 
cutoff values, as the scale independence > 0.85. (c) Gene sets with the corresponding log10 and log10 P-values when the scale-free 
topology is set as β = 10. (d) Clustering dendrograms of all genes with dissimilarities based on topological overlap, together with 
their assigned module colors.
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and recurrence times (correlation = 0.36, 
P < 0.05) (Figure 4(c, d)). The MM of the 
darkturquoise module was moderately corre
lated with the GS for recurrence state (correla
tion = 0.4, P < 0.05) and recurrence times 
(correlation = 0.49, P < 0.05) (Figure 4(e, f)). 
Accordingly, these three modules (i.e., blue, 
royalblue, and darkturquoise modules) were 
set as real clinically significant modules and 
were analyzed further.

Identification of DEGs in the primary and 
recurrent GBM samples

After performing the DEG analysis, a total of 
126 upregulated and 106 downregulated genes 
were identified in the recurrent GBM tissues 
compared with those in the primary GBM tis
sues (Supplementary Table 2). To identify the 
biological functions of DEGs, GSEA was con
ducted; we found that the DEGs were enriched 
in ‘chemical homeostasis,’ ‘ion homeostasis,’ 

‘leukocyte differentiation,’ ‘lymphocyte differ
entiation,’ ‘T cell activation,’ and ‘T cell differ
entiation’ (FDR < 0.05; Figure 5). Genes in 
each enriched term of biological function are 
shown in Supplementary Table 3.

Identification of hub genes involved in the 
recurrence of GBM

To identify hub genes that were differentially 
expressed in recurrent GBM tissues and pre
sented in the modules significantly associated 
with recurrence state and recurrence times, 
intersection analysis was performed. We found 
that three genes (EHF, TRPM1, and FXYD4) 
were upregulated in recurrent GBM tissues 
and in the module (dark turquoise) positively 
associated with recurrence state and recurrence 
times (Figure 6(a)), whereas 10 genes (CDH15, 
LHX5, TP73, FBN3, TLX1, C1QL4, COL2A, 
SEC61G, NEUROD4, and GPR139) showed low 
expression in recurrent GBM tissues and in the 

Figure 3. Identification of significant modules associated with the clinical traits (recurrence state and recurrence time). Each cell in 
the heat map contains the corresponding correlation score and P-value between gene modules and clinical traits. Red indicates 
positive correlation, and green indicates negative correlation.
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modules (blue and royalblue) negatively asso
ciated with recurrence state and recurrence 
times (Figure 6(b)). Therefore, these 13 genes 
were identified as hub genes for GBM 
recurrence.

Low expression levels of LHX5 and TLX1 
predicted a poor prognosis

We then determined the relationship between the 
expression levels of 13 hub genes and patient sur
vival rates, according to the data obtained from the 
CCGA database. The results showed that only 
LHX5 and TLX1 had significant value in predict
ing the survival rates of patients with GBM; 
patients with low expression levels of LHX5 and 
TLX1 had a lower survival rate than those with 
high expression levels of LHX5 and TLX1 
(Figure 7). Similarly, using a merged verification 
cohort of data from TCGA and GSE43378, we 
found that the expression levels of LHX5 and 
TLX1 were weakly and positively associated with 
the KPS scores (Figure 8). Taken together, low 

expression levels of LHX5 and TLX1 predicted 
a poor prognosis in GBM patients.

LHX5 and TLX1 expression was decreased in the 
recurrent GBM tissues and exhibited high 
diagnostic value

We then determined the expression levels of LHX5 
and TLX1 in 52 GBM samples by IHC. The results 
indicated that the levels of LHX5 and TLX1 were 
reduced in the recurrent GBM tissues compared to 
those in the primary GBM tissues (Figure 9(a)). 
The IHC scores of all samples are shown in Table 
1. Based on the IHC scores, we found that both 
LHX5 and TLX1 exhibited high diagnostic value 
for distinguishing between recurrent and primary 
GBM tissues (Figure 9(b)).

Discussion

Since recurrence has become a major obstacle in 
the treatment of GBM, our primary goal was to 
gain molecular insights into and provide clinical 
signatures that can accurately identify and 

Figure 4. Relationship between gene significance (GS) and module membership (MM) in the significant modules. (a) Relationship 
between the MM in blue and GS for recurrence state; (b) Relationship between the MM in blue and GS for recurrence time; (c) 
Relationship between MM in royal blue and GS for recurrence state; (d) Relationship between the MM in royal blue and GS for 
recurrence time; (e) Relationship between the MM in dark turquoise and GS for recurrence state; (f) Relationship between the MM in 
dark turquoise and GS for recurrence time.
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predict the candidate gene groups associated 
with the recurrence risk of GBM. Research on 
GBM pathogenesis is important and as an 
exploratory research, this study aimed to dis
cover key genes related to GBM recurrence, 
which could serve as potential biomarkers for 
predicting GBM recurrence and aid in future 
investigations.

In the current study, through analyzing the 
gene expression profile of 70 primary and 47 
recurrent GBM tissues using bioinformatic 
technology, we identified three gene co- 
expression modules associated with the 

recurrence state and recurrence time of the 
patients with GBM. Additionally, we performed 
DEG analysis and found that 232 genes were 
differentially expressed between the recurrent 
GBM tissues and primary tissues. These genes 
were enriched in ‘chemical homeostasis,’ ‘ionic 
homeostasis,’ ‘leukocyte differentiation,’ ‘lym
phocyte differentiation,’ ‘T cell activation,’ and 
“T cell differentiation. Previous studies have 
shown that dysfunction of immune cells, parti
cularly T cells, is an important factor in cancer 
recurrence [31]. Based on the evidence that 
DEGs between the recurrent and primary 

Figure 5. Gene set enrichment analysis (GSEA) for the enriched biological terms of differentially expressed genes between 70 
primary and 47 recurrent GBM tissues.

Figure 6. Intersection analysis for the genes in significant modules and differentially expressed genes. (a) Intersection analysis for 
the genes in significant modules positively associated with recurrence and upregulated genes in recurrent GBM tissues; (b) 
Intersection analysis for the genes in significant modules negatively associated with recurrence and downregulated genes in 
recurrent GBM tissues.
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GBM tissues are enriched in terms of their 
immune cell biology, we speculated that these 
DEGs may be linked to the process of immune 
escape and GBM recurrence.

Thereafter, we performed intersection analysis 
and found that 13 genes (EHF, TRPM1, FXYD4, 
TP73, CDH15, LHX5, FBN3, TLX1, C1QL4, 
COL2A1, SEC61G, NEUROD4, and GPR139) 

Figure 7. Kaplan–Meier survival analysis of the relationship between the expression of hub genes and the survival of GBM patients 
according to the data from the Chinese Glioma Genome Atlas (CGGA). The two red imaginary lines indicate 95% confidence interval 
(CI) for the high expression group, while the two blue imaginary lines indicate 95% CI for the low expression group.

Figure 8. Pearson correlation analysis showed the expression levels of LIM homeobox 5 (LHX5) and T cell leukemia homeobox 1 
(TLX1) were weakly and positively associated with the Karnofsky performance scale (KPS) scores.

Figure 9. LIM homeobox 5 (LHX5) and T cell leukemia homeobox 1 (TLX1) were downregulated in the recurrent GBM tissues and 
exhibited high diagnostic value. (a) Immunohistochemical (IHC) staining was used to determine the expression of LHX5 and TLX1 in 
the recurrent GBM tissues and primary GBM tissues. (b) Receiver operating characteristic (ROC) analysis was performed to determine 
the diagnostic value of LHX5 and TLX1 in distinguishing between the recurrent and primary GBM tissues.
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were in the modules associated with GBM recur
rence and were also differentially expressed 
between the recurrent and primary tissues. 
Among these genes, the expression levels of 
LHX5 and TLX1 were correlated with patient sur
vival rates and KPS scores. Furthermore, we found 
that LHX5 and TLX1 were downregulated in 
recurrent GBM tissues compared with those in 
the primary tissues.

Homeobox genes contain Lin-11, Isl-1, and 
Mec-3 domains (LIM) subfamilies, which are 
involved in a series of diseases [20,32], including 
various types of cancer [33]. LHX5, a vital mem
ber of the LIM family, has been reported to be 
involved in the regulation of neuronal differen
tiation and migration during development of the 
central nervous system [34]. LHX5 also has the 
potential to promote nerve precursor cell prolif
eration, neuronal differentiation, and migration 
during development of the hippocampus [34]. 
Dysregulated LHX5 has also been observed in 
urothelial carcinoma of the bladder [33]. TLX1, 
a key member of the HOX gene family, was first 
identified in the T-lineage leukemia cells. Under 
normal conditions, TLX1 expression is widely 
detected during embryonic life in the branchial 
arches, hindbrain, and splenic primordia of mice 
[35]. TLX1 protein is a DNA-binding homeodo
main protein [36], and it functionally synergizes 
with NOTCH1 activation during malignant 
T-cell transformation [37]. One study conducted 
by Andreiuolo et al. [38] reported that TLX1 was 
upregulated in supratentorial ependymoma. 
Interestingly, TLX1 was found to be enriched in 
the biological functions of ‘T cell activation,’ and 
‘T cell differentiation.’ Therefore, we speculated 
that TLX1 may regulate immune cell functions, 
thereby influencing the recurrence of GBM. 

Moreover, GBM recurrence is primarily due to 
the presence of cancer stem cells (CSCs) [39]. 
Previous studies have also demonstrated that 
inducing tumor stem cell differentiation is an 
important therapeutic method to overcome 
tumor stemness, thereby reducing the recurrence 
and drug resistance of cancer [40,41]. Based on 
the evidence that LHX5 and TLX1 have the 
potential to promote neuronal differentiation, 
we speculated that they may also be linked to 
cancer stemness and recurrence of GBM. 
Collectively, these findings reinforce the analysis 
that LHX5 and TLX1 are recurrence-associated 
hub genes in GBM patients.

However, the specific roles and underlying 
molecular mechanisms of these genes need to 
be studied further in future experiments. 
Furthermore, once the suppressive roles of 
LHX5 and TLX1 in the recurrence of GBM are 
confirmed, we hope that a series of therapeutic 
strategies, including the development of LHX5/ 
TLX1-specific agonists, agonists for their 
upstream transcription factors, and inhibitors 
of their repressors, may be developed to enhance 
their expression levels and/or activities to inhibit 
the recurrence of GBM.

Conclusion

Overall, the findings of our study indicated that 
LHX5 and TLX1 are reliable recurrence-associated 
genes in GBM patients and may serve as viable 
molecular biomarkers for the recurrence of GBM.

Research highlights

1. TLX1 and LHX5 were present in the gene modules asso
ciated with recurrence.

2. TLX1 and LHX5 expression was decreased in the recur
rent GBM tissues.

3. Low expression levels of TLX1 and LHX5 were asso
ciated with poor outcomes.

4. TLX1 and LHX5 have potential to distinguish recurrent 
from primary GBM tissues.
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