
RESEARCH ARTICLE

Critical role of the finger loop in arrestin

binding to the receptors

Chen ZhengID
1, Jonas Tholen2, Vsevolod V. GurevichID

1*

1 Department of Pharmacology, Vanderbilt University, Nashville, United States of America, 2 University of

Applied Sciences Emden/Leer, Emden, Germany

* vsevolod.gurevich@vanderbilt.edu

Abstract

We tested the interactions with four different G protein-coupled receptors (GPCRs) of

arrestin-3 mutants with substitutions in the four loops, three of which contact the receptor in

the structure of the arrestin-1-rhodopsin complex. Point mutations in the loop at the distal tip

of the N-domain (Glu157Ala), in the C-loop (Phe255Ala), back loop (Lys313Ala), and one of

the mutations in the finger loop (Gly65Pro) had mild variable effects on receptor binding. In

contrast, the deletion of Gly65 at the beginning of the finger loop reduced the binding to all

GPCRs tested, with the binding to dopamine D2 receptor being affected most dramatically.

Thus, the presence of a glycine at the beginning of the finger loop appears to be critical for

the arrestin-receptor interaction.

Introduction

G-protein coupled receptors (GPCRs) are the largest family of signaling proteins in mammals,

with ~500 different subtypes in dolphins, ~800 in primates, and more than 3,400 in elephants

(sevens.cbrc.jp). GPCRs are involved in almost every aspect of life activity by mediating most

cellular responses to hormones, neurotransmitters, odorants, light, etc. [1].

All GPCRs share a common seven transmembrane (7TM) α-helical segments linked by

extracellular loops (ECLs) and intracellular loops (ICLs). ECLs, ICLs, as well as the extracellu-

lar N-termini and intracellular C-termini are diverse in sequence and length [2,3]. The activa-

tion of GPCRs induced by external stimuli leads to the activation of many molecules of

heterotrimeric G-proteins to amplify signal. Ultimately GPCR signaling via G proteins is ter-

minated by receptor phosphorylation by specific GPCR kinases (GRKs; of which most mam-

mals only have seven, with some nocturnal rodents having only six [4]), and specific binding

of arrestins to active phosphorylated receptors [5,6]. Mammals express even fewer arrestin

subtypes than GRKs, the total of four, two out of which are specialized visual that are expressed

in retinal photoreceptors and quench photopigment signaling [7,8]. In contrast, non-visual

subtypes arrestin-2 and -3 (also known as β-arrestin1 and 2; note that we use systematic names

of arrestin proteins, where the number after the dash indicates the order of cloning: arrestin-1

(historic names S-antigen, 48 kDa protein, visual or rod arrestin), arrestin-2 (β-arrestin or β-

arrestin1), arrestin-3 (β-arrestin2 or hTHY-ARRX), and arrestin-4 (cone or X-arrestin)), are

ubiquitously expressed and bind hundreds of non-visual GPCRs.
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Identified >800 GPCRs in humans account for ~ 3% of coding genes [9]. Abnormal GPCR

functions due to mutations are associated with a wide variety of congenital disorders [10–12].

Currently, about 30% of clinically used drugs target various GPCRs [2]. For gain-of-function

GPCR mutations, engineered enhanced arrestins with higher ability to bind phosphorylated

and unphosphorylated receptors may have therapeutic potential, as these proteins can reduce

the excessive signaling of overactive GPCRs [12,13].

Considering that visual and non-visual arrestins are highly conserved with only a few resi-

dues different [8], the high specificity of visual arrestin for rhodopsin might be tuned by those

key residues. Previous study suggests that receptor preference of visual arrestin-1 and non-

visual arrestin-2 can be switched by the exchange of ten residues on the receptor-binding

interface [14]. A double mutation in arrestin-3 yielded up to 50-fold preference for particular

receptors over others [15], indicating the possibility of narrowing arrestin-3 receptor prefer-

ence and constructing receptor-specific variants. Recent structural studies of the arrestin-1

complex with rhodopsin revealed that several arrestin elements directly participate in receptor

binding [16,17]. Here we test how mutations in these regions of arrestin-3 affect its binding to

the four model GPCRs: β2-adrenergic, M2 muscarinic, and D1 and D2 dopamine receptors.

Materials and methods

Materials

Restriction endonucleases and other DNA modifying enzymes were from New England Bio-

labs (Ipswich, MA). Cell culture reagents and media were from GIBCO (Gaithersburg, MD).

Transfection reagent TransHi was from FormuMax (Sunnyvale, CA). Coelenterazine h was

from NanoLight (Pinetop, AZ). All plasmid DNAs were prepared by Qiagen (Germantown,

MD) Plasmid Maxi kit. All other reagents and chemicals were purchased from Amresco

(Solon, OH) or Sigma-Aldrich (St Louis, MO).

Plasmid constructs

All arrestin mutants were N-terminally tagged with Venus, whereas the receptors were C-ter-

minally tagged with Renilla luciferase variant 8 (RLuc8), as described [14,15].

Bioluminescence resonance energy transfer (BRET) assay

BRET-based assays [18–21] with Venus as the acceptor and RLuc8 as the donor were used to

measure the binding of Venus-tagged arrestins to the M2 muscarinic acetylcholine receptor

(M2R-RLuc8), β2-adrenergic receptor (β2AR-RLuc8), dopamine D1 (D1R-RLuc8) and D2

(D2R-RLuc8) receptors. The long isoform of D2R was used in this study, as in previous ones

[15,22]. HEK293 arrestin-2/3 KO cells [23,24] (a kind gift of Dr. A. Inoue, Tohoku University,

Japan) were transfected using TransHi according to the manufacturer’s instructions (3 μl of

TransHi /1 μg of DNA) in 6-well plates.

We have previously determined the amounts of plasmid DNA that produce sufficient excess

of arrestin-3 over receptor that saturates the BRET signal [15,25,26]. 48 h post-transfection,

cells expressing similar levels of receptor and arrestins (S1 Fig) were transferred into 96-well

plate, then appropriate agonists (10 μM) were added: carbachol (carbamoylcholine) for M2R,

isoproterenol for β2AR, dopamine for D1R, and quinpirole for D2R. Coelenterazine h was

added immediately after agonist as luciferase substrate at 5 μM. The net BRET (the difference

in BRET in the presence and absence of an agonist) was measured as previously described

[15,26,27].
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Co-immunoprecipitation

HEK293 arrestin 2/3 KO cells were seeded into 6-well plate 24 h prior to transfection. Cells

were transfected with indicated Ve-Arr3 mutants and HA-D2R using TransHi. The cells were

serum-starved overnight one day prior to test. At 48 h post-transfection, cells were washed

with PBS and treated with 10 μM quinpirole for 10 min. Then cells were immediately lysed on

ice in 400 μL of lysis buffer containing 50 mM Tris pH 7.5, 150 mM NaCl, 1% NP-40, 1 mM

Benzamidine, 1 mM PMSF. The lysates were centrifugated for 10 min at 11, 000xg to pellet cell

debris, and the supernatants were used for immunoprecipitation. A total of 400 μg protein

from each transfection were pre-cleared with 25 μL protein G agarose (Millipore, MO) in

binding buffer (25 mM HEPES, pH 7.3, 150 mM NaCl, 1 mM TCEP), followed by incubation

for 2 h with 2 μg Anti-HA antibody (Roche, NJ). The immunoprecipitates were incubated

with 25 μL of protein G agarose beads overnight at 4˚C. The next day the beads were sedi-

mented by centrifugation for min at 4˚C at 5, 000 xg and washed three times with 500 μL bind-

ing buffer. Bound proteins were eluted with 50 μL of SDS sample buffer. Cell lysates and

immunoprecipitated proteins were subjected to Western blot using anti-HA and anti-GFP

antibodies, peroxidase-coupled secondary antibodies (Jackson Immuno, PA), and SuperSignal

WestPico reagent (ThermoFisher, IL). Developed blots were visualized by LI-COR C-DiGit

Blot Scanner (LI-COR, NE). Bands were quantified using QuantityOne software (Bio-Rad,

CA). Non-specific binding to beads (in the absence of HA-D2R bait) was subtracted.

Data analysis and statistics

BRET data were analyzed, as described [15,22]. Statistical significance (p< 0.05) was deter-

mined using one-way analysis of variance (ANOVA) with Dunnett’s multiple comparison test

using GraphPad Prism software. P values<0.05 were considered statistically significant and

indicated, as follows: �p<0.05; ���p<0.001; ����p<0.0001.

Results

Selection of receptor-specific mutants

Crystal structures indicate high similarity of the basal state of all vertebrate arrestins [28–33].

Receptor-binding surface of all arrestins was localized to the concave sides of the two domains

and the central crest on the receptor-binding side of the molecule by different labs using a vari-

ety of methods [34–40]. The crystal structure of the arrestin-1 complex with activated phos-

phorylated rhodopsin (P-Rh�) has identified two interaction interfaces in arrestins largely

responsible for the binding of non-phosphorylated parts of the receptor [16,17]. The first inter-

face consists of the finger loop (residues G65-S75 in arrestin-3, corresponding to G68-S78 in

arrestin-1), which was shown to be the key region for receptor binding of arrestin-3 [41]. Sec-

ond interface consists of the middle loop (Q131-A140 in arrestin-3; Q133-S142 in arrestin-1),

C-loop (residues C243-Q247 in arrestin-3; V247-Y254 in arrestin-1, residue Y251 region at the

central loop in the arrestin C-domain) and back loop (K313 loop, K310 in arrestin-1, R319/

R322 in mouse/human arrestin-1). The P-Rh�-arrestin-1 complex structure shows that the

middle and C-loop are close in the basal state but move away from each other upon activation,

opening a cleft in the central crest. The shift of the back loop apparently twists the arrestin C-

domain, which allows back loop (K319 and T320) interact with TM5/6 of rhodopsin through

hydrogen bonds, and allows the 157-loop (residue D162 in arrestin-1, E157 in arrestin-3)

move closer to the finger loop [16,36,42].

Sequence comparison identifies a few residue differences in those loops at the interfaces.

Most of these residues are exposed in the basal state, so that they might be directly engaged by
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the receptor (Fig 1A). Based on these data, we substituted several residues in arrestin-3 target-

ing those loops that were expected to be flexible. For example, G65 (in bovine arrestin-3) is the

first residue of the finger loop and it is conserved in all arrestin subtypes (Fig 1B). As finger

loop is highly flexible, the small size of glycine might allow finger loop movement during acti-

vation process [43]. We made the G65P mutant because proline provides more rigidity than

glycine, while also breaking any secondary structure. We also tested the G65 deletion (ΔG65)

because of high conservation of this residue in arrestin evolution (Fig 1B) [7,8].

E157, located on the flexible 157-loop, is conserved in non-visual arrestins, but replaced

with Asn in the corresponding position of arrestin-1 where it interacts with the TM6 of the

rhodopsin via a hydrogen bond (Fig 1B) [44]. We chose to introduce E157A mutation to break

the potential hydrogen bond formation by this side chain.

In arrestin-1 both Y251 (F245 in arestin-3) in the C-loop and K319 (K313 in arrestin-3) in

the back loop participate in rhodopsin binding via interaction with ICL2 and TM5, respec-

tively, suggesting their importance in stabilizing the arrestin-receptor complex. Phe is con-

served in non-visual arrestins at the position. However, the substitution of Phe with Tyr at this

site in arrestin-2 does not change its receptor preference [14]. So, we chose the F245A muta-

tion to eliminate this aromatic side chain. K313A mutation was chosen to eliminate positively

charged side chain.

Fig 1. Arrestin residues mutated in this study. A. Crystal structure of arrestin-3 (Protein Data Bank entry 3P2D [33]) with selected mutations indicated.

Arrestin elements are colored, as follows: (Red: finger loop; Green: 157-loop; Yellow: C-loop; Blue: back-loop). B. Sequence alignment of elements containing

selected mutations in arrestin-3 and other subtypes from different species. Shaded residues in each loop are the mutations selected in this study.

https://doi.org/10.1371/journal.pone.0213792.g001
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Highly conserved G65 in the finger loop is essential for receptor binding

To measure arrestin-3 interaction with GPCRs, we used bioluminescence resonance energy

transfer (BRET) in HEK293 arrestin2/3 KO cells [22] co-transfected with Venus-tagged

arrestin-3 (Ve-Arr3) and Renilla luciferase-tagged (RLuc) receptors M2R, β2AR, D1R and

D2R. In all tests, we used arrestin-3 KNC mutant as negative control. The KNC mutant does

not bind GPCRs because 12 key receptor-binding residues in it were replaced with Ala [25,26].

All mutations were introduced on arrestin-3 A87V background. The A87V mutation makes

arrestin-3 N-domain more rigid [15]. This substitution likely enhances receptor specificity of

arrestins [30] without significantly affecting the binding to any GPCR used in this study [15].

Base mutant A87V showed a robust binding upon agonist stimulation, while KNC mutant

consistently showed extremely low binding, as expected (Fig 2). Four mutations did not signif-

icantly affect arrestin-3 binding to any of the four GPCRs tested: G65P, E157A, F245A and

K313A (Fig 2). However, ΔG65 dramatically reduced the binding to all four receptors (Fig 2).

The magnitude of the reduction varied from ~30% to ~80%. In particular, ΔG65 dramatically

reduced arrestin-3 binding to D2R, almost to the level observed with the KNC mutant. Con-

sidering that receptor specificity of arrestins appears to be determined by several residues

[15,27], it is surprising that a single mutation can make such a dramatic difference. More

importantly, although ΔG65 reduced binding to all of four GPCRs, this mutation affected D2R

binding to a much greater extent than others, suggesting that stability of D2R-arrestin complex

is more dependent on the receptor interaction with the finger loop of arrestin.

Receptor binding might be sterically hindered by the deletion of G65

To elucidate the mechanism of action of ΔG65 mutation, we tested the time dependence of net

BRET, comparing ΔG65 to non-binding KNC and robustly binding A87V base mutant. For all

four receptors, A87V showed increased net BRET in the first 10–15 min after the addition of

the agonist, which subsequently decreased at 25–30 min. In contrast, KNC mutant consistently

showed low binding at all time points (Fig 3A–3D). The time course of the binding of mutant

with the deletion of G65 was similar to that of A87V, while being consistently lower than the

binding of A87V at all time points. Since ΔG65 mutant never reaches the BRET value demon-

strated by A87V, this mutation likely affects receptor binding by reducing the stability of the

arrestin-receptor complex, i.e., by increasing the rate of arrestin dissociation, so that there is

less arrestin bound at any given moment, without significant changes in the kinetics of the ini-

tial arrestin-3 recruitment to receptors (Fig 3).

Independent assessment of arrestin-receptor interaction by co-

immunoprecipitation

As our in-cell BRET studies of the interaction of arrestin-3 mutants with GPCRs yielded sur-

prising results, we sought to test these interactions by an independent method. We used co-

immunoprecipitation (co-IP) of receptors with various forms of arrestin-3. HEK293 arrestin

2/3 KO cells transfected with Venus-tagged arrestin-3 mutants without HA-tagged D2R served

as control for non-specific arrestin binding to the beads. Cells were co-transfected with indi-

cated forms of Ve-Arr3 and HA-D2R. Following stimulation with the agonist, cell lysates were

immunoprecipitated with anti-HA antibody and immunoblotted with anti-GFP and anti-HA

antibodies (Fig 4). As shown in Fig 3A, upon stimulation KNC has almost no ability to bind

the receptor, as compared to fully functional A87V base mutant. The deletion of G65 dramati-

cally reduced arrestin-3 binding to D2R (Fig 3B). The same changes were observed by co-IP

(Fig 4), confirming BRET results.
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Discussion

Mutations in numerous proteins underlie a variety of human disorders. Mutations in GPCRs

fall into two categories: loss- and gain-of-function [11,12]. Despite the initial enthusiasm

about editing errors out of the genome, careful studies show that CRISPR/Cas-9 gene editing

often generates off-target changes, some of which could be expected, whereas others could not

[45]. In more traditional gene therapy approach, the strategy in case of loss-of-function muta-

tions is clear: the delivery of the coding sequence for the normal receptor should solve the

problem. Loss-of-function mutations are usually recessive, as one normal allele is in most

Fig 2. Substitution of selected residues in arrestin-3 loops differentially affects agonist-induced binding to individual GPCRs. BRET between Venus-

tagged arrestin-3 and luciferase-tagged human M2R (A), β2AR(B), D1R(C), D2R(D) in HEK293 arrestin 2/3 KO cells. Net BRET was calculated by subtracting

basal BRET (no agonist) from agonist-induced BRET. Average BRET at 10 and 15 min (means ± S.E.M.) from at least three independent experiments is shown

for each arrestin-receptor pair. Each experiment was performed in quadruplicate. Statistical significance was determined using one-way ANOVA, followed by

Dunnett’s post-hoc test with correction for multiple comparisons. �, p< 0.05; ���, p< 0.001; ����, p<0.0001, as compared to A87V base mutant.

https://doi.org/10.1371/journal.pone.0213792.g002
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cases sufficient, so that only compound heterozygotes are affected. In contrast, gain-of-func-

tion mutations are dominant: normal product of the second allele cannot dampen the signal-

ing by an overactive mutant receptor. One strategy was proposed to fight gain-of-function

GPCR mutations: dampening their excessive signaling with enhanced arrestins that have

higher propensity to bind these receptors. So far this compensational approach had shown

promise in the visual system, where the only important receptor is rhodopsin, which is shut off

by arrestin-1 [13,46]. While due to highly conserved activation mechanisms non-visual arre-

sins can be enhanced by the same mutations as visual arrestin-1 [47–49], non-visual arrestins

have broad receptor specificity [15,50,51]. Most cells express multiple GPCR subtypes. While

the expression of enhanced non-visual arrestin would likely dampen excessive signaling by the

mutant, at the same time it would reduce the signaling of perfectly normal other GPCRs in the

same cell. Thus, the use of the same compensational approach requires non-visual arrestin var-

iants with narrow receptor specificity, that would target only the “offending” receptor mutant,

but not the other GPCRs.

Arrestins in mammals are represented by only four subtypes [7,8], so that the two non-

visual arrestins control hundreds of different GPCRs [12]. However, arrestin-1 shows high

specificity toward one receptor (rhodopsin), suggesting that narrow receptor specificity is pos-

sible [14,51]. Structural analysis of arrestins suggests similarity of the mechanism of receptor

binding [29–31,33,52]. Arrestin-3 has been reported to bind virtually every GPCR tested

Fig 3. Time course of the interaction of selected arrestins with indicated receptors. Net BRET of selected Venus-tagged arrestin-3 mutants measured at

indicated time points with luciferase-tagged M2R (A), β2AR(B), D1R(C), D2R(D) is shown (means ± S.E.M.). Note similar time dependence of A87V and

ΔG65 mutant binding to the receptors, even though ΔG65 consistently demonstrates much lower binding.

https://doi.org/10.1371/journal.pone.0213792.g003
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[33,50], often demonstrating higher affinity for the receptors that both non-visual subtypes

bind [50,53]. Thus, arrestin-3 appears to be a more promising starting point for the design of

receptor-specific mutants than highly homologous arrestin-2 [54,55]. Previously, we have suc-

cessfully changed the arrestin-3 specificity for particular GPCRs through manipulating rela-

tively few residues on the receptor-binding surface [14,15,22,35]. Here we tested several

mutations in the loops of arrestin-3 that are expected to engage the receptors using in-cell

BRET assay.

The results clearly show that G65 in the finger loop is required for arrestin-3 binding to all

tested receptors: M2R, D1R, D2R, β2AR. The deletion of G65 had the greatest effect on D2R

binding (Fig 2). D2R, in contrast to D1R and β2AR, has a long third ICL [56,57]. However, it

shares this structural feature with M2R [58], where the reduction of binding was similar to that

of D1R and β2AR, so that the size of the third ICL per se (and likely consequent different

“pose” of bound arrestin), does not explain greater suppression of the D2R binding. Other

mutations (G65P, E157A, F245A and K313A) do not significantly change arrestin-3 binding to

these GPCRs. Available crystal structures show that the finger loop of arrestin can be presented

to the receptor in distinct conformations and at different angles (relative to the rest of the mol-

ecule) [41,43], suggesting that the flexibility of finger loop is important to allow the recognition

of different receptors by non-visual arrestins. The mutations that perturb the flexibility of the

finger loop were shown to interfere with receptor binding [41]. In particular, substitution of

several residues with a rigid proline (D68P, D70P) has been shown to greatly decrease

arrestin-3 binding to M2R and D2R [41]. Substitution of many residues by alanines generally

decreases the binding of arrestin-1 to rhodopsin [21,59]. Unlike these mutations, ΔG65 and

G65P differentially affect arrestin-3 binding without altering the charges in the finger loop.

Glycine is the most sterically flexible residue among all amino acids due to its smallest side

chain. The absence of this glycine apparently “tightens” the finger loop and/or allows an exten-

sion of the β-strand V, as Gly is known to break the secondary structure. Both mechanisms

would explain uniformly negative effect of its deletion on GPCR binding (Fig 2).

The replacement of glycine with proline not only eliminates the flexibility of finger loop,

but also bends the loop to a fixed angle due to the cyclic structure of the Pro residue. Our data

show that G65P does not significantly affect the binding to the four receptors tested, suggesting

that the interruption of the strand even by a sharp turn allows finger loop to accommodate

these receptors. Considering that a glycine in position equivalent to G65 in arrestin-3 is con-

served in virtually all arrestins [7,8], both high flexibility and proper length of the finger loop

seem to be very important for arrestin function. Consequently, it is possible that G65P may

impair arrestin-3 binding to other GPCRs, narrowing the broad receptor specificity of

arrestin-3. This needs to be tested experimentally.

Arrestins appear to independently recognize two features in a GPCR: its active conforma-

tion and the presence of receptor-attached phosphates [60] (this mechanism was reviewed and

illustrated in [5]). Recent findings suggest that, at least in case of GPCRs where all phosphory-

lation sites are localized on the receptor C-terminus, arrestin binds to just the phosphorylated

elements tightly enough to yield stable receptor complexes with the “partially engaged” arrest-

ins [61–63]. Our data indicate that the deletion of G65 in the finger loop, which engages non-

phosphorylated parts of the receptor, the inter-helical cavity that opens upon GPCR activation

[16,17,64], has a very strong negative effect on the arrestin-receptor interaction. As ΔG65

Fig 4. Deletion of G65 impedes arrestin-3 binding to D2R in vitro. (A). Serum-starved HEK293 arrestin 2/3 KO cells were co-transfected with indicated Ve-

Arr3 mutants with or without (no bait control) HA- D2R. Cells were stimulated with 10 μM quinpirole. Cleared cell lysates were immunprecipitated with HA

antibody, and immunoblotted with anti-HA and anti-GFP antibodies. (B) Quantification of the specific receptor binding of different arrestin-3 mutants in

three independent experiments. Non-specific binding observed in cells that do not express HA -D2R was subtracted in all cases.

https://doi.org/10.1371/journal.pone.0213792.g004
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mutation is unlikely to directly affect arrestin-3 interactions with the receptor-attached phos-

phates directly, it appears that mutant finger loop weakens arrestin-3 binding even to the phos-

phorylated receptor elements indirectly, via an allosteric mechanism. Interestingly, D2

receptor, where the effect is the strongest, is a special case: in it GRK phosphorylation sites are

localized exclusively on the ICL3, and phosphorylation does not seem to be required for the

arrestin-3 binding [19]. Although GRK phosphorylation sites are also localized on the ICL3 in

the M2 muscarinic receptor [58], in this case phosphorylation is necessary for the arrestin

binding [58,65]. Thus, the magnitude of the effect of ΔG65 mutation on arrestin-3 interaction

with tested GPCRs might reflect relative contribution of the arrestin binding to the receptor-

attached phosphates: the greater the role of phosphate binding (which is very different in

GPCR subtypes used here [20,26]), the smaller the effects of the mutation that does not affect

phosphate-binding arrestin elements identified in several studies [41,66,67].

E157 and K313 are charged residues. In fact, K313 is the only positively charged amino acid

in the back loop. The common strategy of substitution is to change to oppositely charged

amino acid to check the role of this residue. We constructed E157K and K313E mutants with

charge reversals and found that both showed very low expression level in cells, suggesting that

these mutants have folding problems. In contrast, charge elimination mutations E157A and

K313A appear to be well tolerated (Fig 1).

To summarize, our data indicate that the absence of a highly flexible glycine and/or the

length of the finger loop, which likely affects its ability to “mold” itself to fit the receptor in the

complex, plays a more important role in receptor binding than the actual sequence in other

elements. This is consistent with the interaction of the finger loop with the inter-helical cavity

in the core of active GPCRs, revealed by the structure of the arrestin-1 complex with rhodopsin

[16,17], supporting the idea that this element plays the same critical role in the binding of non-

visual arrestins to other GPCRs.

Supporting information

S1 Fig. Expression of Venus-arrestin and receptor-Rluc8. The expression of Venus-arrestin

and receptor-RLuc8 were evaluated by the fluorescence and the basal luminescence density,

respectively. The expression level was normalized to the A87V base mutant, as follows: M2R

(A), β2AR(B), D1R(C), D2R(D).

(PDF)
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