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ABSTRACT

Various cancer genome projects are underway to
identify novel mutations that drive tumorigenesis.
While these screens will generate large data sets,
the majority of identified missense changes are
likely to be innocuous passenger mutations or
polymorphisms. As a result, it has become increas-
ingly important to develop computational methods
for distinguishing functionally relevant mutations
from other variations. We previously developed an
algorithm, and now present the web application,
CanPredict (http://www.canpredict.org/ or http://
www.cgl.ucsf.edu/Research/genentech/canpredict/),
to allow users to determine if particular changes are
likely to be cancer-associated. The impact of each
change is measured using two known methods:
Sorting Intolerant From Tolerant (SIFT) and the
Pfam-based LogR.E-value metric. A third method,
the Gene Ontology Similarity Score (GOSS), pro-
vides an indication of how closely the gene in
which the variant resides resembles other known
cancer-causing genes. Scores from these three
algorithms are analyzed by a random forest
classifier which then predicts whether a change
is likely to be cancer-associated. CanPredict fills
an important need in cancer biology and will
enable a large audience of biologists to determine
which mutations are the most relevant for further
study.

INTRODUCTION

The study of mutations that drive tumorigenesis is
a central focus of cancer biology. These mutations disrupt
genes that regulate normal cellular processes, thereby
providing growth advantages and metastatic capabilities
to tumor cells. Understanding how such changes lead to
an oncogenic phenotype can provide a deeper under-
standing of the molecular nature of different cancers
while also revealing novel therapeutic targets. There are

a number of well-known somatic mutations (1) and
germline mutations (2,3) that have been implicated in
cancer progression. However, there are likely many more
mutations that have not yet been found (4). The
identification and study of these additional mutations
presents an important opportunity for further under-
standing of the biological processes and pathways under-
lying cancer.
Many large-scale screens have been initiated to identify

novel cancer-causing mutations (4–7) (http://cancer
genome.nih.gov). These efforts have relied on sequence
analysis of a few hundred to several thousand genes across
multiple tumor and cell line samples. While these screens
are extremely important for further understanding of
tumorigenesis, the results are difficult to interpret because
the majority of identified changes are not cancer-causing.
In fact, a recent large-scale survey of mutations in breast
and colon cancers indicates that causal mutations likely
account for less than 1% of all observed non-synonymous
changes (4).
The high level of background signal can be attributed

in part to single nucleotide polymorphisms (SNPs) and
passenger mutations. SNPs can be distinguished from true
cancer mutation data by a variety of methods including
identifying the same change in a matched normal tissue
sample, or identifying the same, change in a database of
known SNPs such as dbSNP. However, such approaches
can be complicated by many factors including a lack
of matched normal samples for re-sequencing putative
cancer mutations. Additionally, known SNP databases are
largely incomplete (8) and can contain unreliable records,
making it difficult to positively identify a particular change
as an SNP.
It is even more difficult to distinguish passenger

mutations from true cancer mutations as this usually
requires laboratory experimentation. Recently, a method
was developed by Sjoblom and colleagues (4) to identify
passenger mutations by uncovering those changes that
occur at a higher than expected frequency in a set of tumor
samples. But, since this method is highly dependant
on large numbers of representative tumor samples,
well-known oncogenes such as BRAF were not identified
due to their low observed frequency in the Sjoblom data.
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Thus, without methods specifically designed to analyze the
mutations generated from these genome-scale screens, it is
likely that a large number of true causal mutations will be
overlooked.
Different algorithms have been developed to measure

the effect a particular mutation might have on protein
function. These approaches include Sorting Intolerant
From Tolerant (SIFT) (9), the Pfam-based LogR.E-value
metric (10), Polyphen (11), LS-SNP (12), statistical
geometry methods (13), support vector machine methods
(14), decision trees (15) and random forest classifiers (16).
Additionally, methods based on the gene ontology such as
the Gene Ontology Similarity Score (GOSS) (17) can also
provide a measure as to how similar a gene of interest is
to other known cancer-causing genes. While these algo-
rithms may provide some indication about the nature of
a particular mutation, it remains unclear whether by
themselves such methods could be directly applicable in
cancer mutation analysis.
Recently, using algorithms described earlier, we found

that relevant somatic missense mutations behave differ-
ently from SNPs, and based on this distinction we
developed a computational method to predict whether
a variant is likely to be cancer-causing or not (17).
Our algorithm uses a random forest classifier to combine
data from the SIFT, LogR.E-value and GOSS metrics to
generate a prediction to distinguish relevant mutations
from other missense changes. We demonstrated that this
approach could be potentially useful in distinguishing
causal from passenger mutations (17). While this method
was described in detail, its implementation requires a
thorough understanding of random forest algorithms and
the R programming language, likely impeding a large
number of experimental biologists from attempting to
classify their mutations. Here, we present a web applica-
tion, CanPredict, that provides a clean and straightfor-
ward interface to our algorithm. Changes identified on a
RefSeq protein sequence can be submitted and a predic-
tion is generated as to whether the changes are cancer-
associated or not. This application provides the first public
interface to an important algorithm that can provide
insight into the large amount of mutation data being
generated from cancer re-sequencing projects.

METHODS AND IMPLEMENTATION

The algorithm supporting the CanPredict application uses
a random forest (RF) classifier to predict whether an
amino acid change is likely to be cancer-causing or not.
RF classifiers divide a large pool of data into smaller
subsets based on characteristics of each datum (18).
For the CanPredict application, the three characteristics
used to describe each mutation are scores from SIFT,
the Pfam-based LogR.E-value and the GOSS metrics.
The SIFT algorithm uses similarity between closely related
proteins to identify potentially deleterious changes (9).
SIFT scores50.05 are predicted to be deleterious (9) and
only SIFT scores with a median information content score
53.25 are included for predictions since higher values
likely indicate unreliable SIFT scores (9). Also, because

the computation time to generate alignments used by the
SIFT algorithm is lengthy, the alignments for all RefSeq
protein sequences have been pre-computed and are stored
on the server. The Pfam-based logR.E-value score predicts
whether a change will alter protein function by determin-
ing the difference in fit of a wild-type version of the protein
to a particular Pfam model (10). These scores were derived
from values provided by the HMMER 2.3.2 software and
the ls mode was used to search against the Pfam protein
family database. The LogR.E-value score was calculated
as: log10(E-valuevariant/E-valuecanonical). Lastly, the GOSS
metric uses the gene ontology to measure the similarity of
the submitted RefSeq gene to other known cancer-causing
genes (17).

The training data set used to construct the classifier is
composed of 200 randomly selected known somatic cancer
mutations and 800 non-cancer, non-synonymous variants.
The cancer mutations were downloaded from data stored
in the COSMIC database (1) and the non-cancer variants
were selected randomly from SNPs stored in dbSNP with
a minor allele frequency420%. For each mutation in the
training data, a score from the SIFT, LogR.E-value,
and GOSS algorithms was determined. These values were
used to build the classifier using the package random-
Forest 4.5-16 (http://stat-www.berkeley.edu/users/
breiman/RandomForests) for the R statistical environ-
ment (http://www.r-project.org). The out-of-bag error,
an internal measure of the rate of misclassification of the
classifier, was determined to be 3.19% suggesting that
the classifier is very effective. The training data are
freely available from http://share.gene.com/mutation_
classification.

As shown previously (17), data from three different
experiments suggest that the predictor can function very
well to highlight putative cancer mutations. First, in
a cross-validation experiment, the classifier consistently
revealed a very low false-positive rate of 1.7% for
distinguishing relevant mutations from common SNPs
(17). Second, an experiment was performed to distinguish
recurrently identified mutations from mutations occurring
only one time; causal mutations are more likely than
passenger changes to be seen in multiple different tumor
samples because they are under positive selection in tumor
samples. In this analysis, 58% of variants observed more
than 10 times were predicted to be cancer-associated
while only 43% of variants occurring only one time were
predicted cancer-associated (P-value 0.018, two-tailed
Fisher Exact test) (17). Third, the classifier was used to
analyze recent data from a large-scale screen for cancer
mutations performed by Sjoblom and colleagues (4).
In the paper by Sjoblom, mutations were grouped into
those genes likely to cause cancer and those genes unlikely
to cause cancer, CAN genes and non-CAN genes,
respectively. The CanPredict classifier revealed that
mutations in CAN genes were more likely to be predicted
as cancer-associated than mutations in non-CAN genes
(26.3% to 13.3%, respectively; P-value 8.8e-6; two-tailed
Fisher Exact test) (17).

The CanPredict user interface was designed using
dynamic AJAX technology. The user-supplied mutations
and protein sequence data are validated via a server
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process, and the analysis status is instantly updated
without the user leaving the input page. The results
summary page is automatically loaded when the AJAX
call detects that the analysis is complete. The Dojo library
(www.dojotoolkit.org) implements AJAX calls by provid-
ing support for the back and forward buttons, changing
the URL in the address bar to allow for bookmarking,
and gracefully degrading when AJAX or JavaScript are
not fully supported on the client.

RESULTS AND DISCUSSION

The CanPredict application can be used to submit a single
full-length RefSeq protein sequence or accession and
multiple associated changes (Figure 1). Additionally, from
the Batch Submission page, the application will accept
multiple RefSeq protein accessions and associated
changes. There is no limit to the number of changes that
can be analyzed from the Batch Submission page. Changes
are validated by the server to ensure that the amino acid
specified in the change string occurs in the indicated
sequence. For testing the application, users can either
enter their own mutations or use the test-it link to submit
example mutations. Included in these examples are known
cancer-causing mutations in BRAF, KRAS and EGFR.

Results of the analysis are returned to the user in
a summary page where they can also access all other

submitted changes using links at the top of the summary
(Figure 2). There is also a link directing users to a detailed
description of the scores produced from each metric.
Within the submission summary is a prediction from the
classifier indicating likely cancer, likely non-cancer or not
determined. The sequence flanking the change is included
to allow the user to confirm the precise sequence used in
the analysis. Below the submission summary are data from
the SIFT, logR.E-value and GOSS analyses. As alignment
files used by the SIFT algorithm are time-consuming
to produce, they are available for download using the
provided link. SIFT scores and median information
content are also presented and only scores with a
median information content of 53.25 are considered
reliable (9) and will be used to generate a prediction
from the classifier. The logR.E-value analysis indicates the
domain altered by the submitted mutation. If there are
multiple domains covering the same mutation, the domain
with the most deleterious (largest) logR.E-value score will
be selected for display and will be used by the classifier.
The GOSS score is indicated last, and will be present
only if the submitted change resides in a gene with a gene
ontology description. The result pages can be book-
marked, and the associated data are saved in the server for
a week. Finally, a link presented on the results summary
page allows users to download their results in a tab-
delimited format. Results from the batch submission page
will be returned in a similar tab-delimited format.

Figure 1. The home page of the CanPredict application.
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The CanPredict application provides an easily acces-
sible interface for users to determine if an amino acid
change is likely to be cancer-causing. This application will
likely be very useful for large-scale cancer genome
projects.
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