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ABSTRACT

Bacterial conjugation, transfer of a single conjuga-
tive plasmid strand between bacteria, diversifies
prokaryotic genomes and disseminates antibiotic
resistance genes. As a prerequisite for transfer,
plasmid-encoded relaxases bind to and cleave the
transferred plasmid strand with sequence specific-
ity. The crystal structure of the F TraI relaxase
domain with bound single-stranded DNA suggests
binding specificity is partly determined by an intra-
strand three-way base-pairing interaction. We
showed previously that single substitutions for the
three interacting bases could significantly reduce
binding. Here we examine the effect of single and
double base substitutions at these positions on
plasmid mobilization. Many substitutions reduce
transfer, although the detrimental effects of some
substitutions can be partially overcome by substitu-
tions at a second site. We measured the affinity
of the F TraI relaxase domain for several DNA
sequence variants. While reduced transfer generally
correlates with reduced binding affinity, some oriT
variants transfer with an efficiency different than
expected from their binding affinities, indicating
ssDNA binding and cleavage do not correlate abso-
lutely. Oligonucleotide cleavage assay results sug-
gest the essential function of the three-base
interaction may be to position the scissile phos-
phate for cleavage, rather than to directly contribute
to binding affinity.

INTRODUCTION

Bacterial conjugation is a DNA transfer process in which
a single strand of a conjugative plasmid is transferred
from donor to recipient. Conjugative plasmid transfer

assists in diversifying bacterial genomes, contributes to
an accelerated evolution rate in pathogenic Escherichia
coli lineages (1), and may directly participate in patho-
genic processes (2). Numerous conjugative plasmids have
been identified and studied, and while the plasmids display
enormous diversity, the transfer process is analogous for
most plasmids (3).
Conjugative transfer is highly regulated in numerous

ways. For example, in one type of temporal regulation,
a stable intercellular contact, or mating pair, is usually
formed between donor and recipient prior to transfer.
On the molecular level, the site at which the plasmid is
cleaved, and from which transfer initiates, is also highly
regulated. This regulation is mediated at least partially
through the sequence specificity of the plasmid-encoded
relaxase protein (4–8). Relaxases, or nickases, are single-
strand DNA (ssDNA) nucleases that cleave one strand of
the conjugative plasmid at the nic site within the plasmid
oriT (origin of transfer). As part of the reaction, the pro-
tein forms a long-lived covalent linkage with the DNA
(9,10). The relaxase may serve as a pilot protein, guiding
the attached DNA into the recipient cell and joining the
plasmid ends together to circularize the plasmid to termi-
nate transfer (11).
For conjugative plasmid F factor, the bifunctional TraI

protein both serves as the relaxase and possesses an essen-
tial helicase activity. Using in vitro binding assays, we
previously demonstrated that TraI36, the 36-kDa relaxase
domain of F TraI, recognizes its binding site within the
ForiT with subnanomolar KD and remarkable sequence
specificity (8). The crystal structure of F TraI36 in com-
plex with its ssDNA oriT binding site revealed that the
protein binds the ssDNA in a cleft in the protein, and
additional contacts are provided by a flap of the protein
that folds over the bound ssDNA (12). TraI36 interacts
with ssDNA both through nonspecific electrostatic inter-
actions with backbone phosphates and more specific
interactions with the bases, including a knobs-into-holes
interaction between two DNA bases and pockets
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within the binding cleft. We also observed an intrastrand
three-way base-pairing interaction in the bound ssDNA
(12). As shown in Figure 1, the base immediately 50 to
nic, T1410 [numbered according to Frost and colleagues
(13), with the prime indicating the position on the
‘bottom’ strand] forms hydrogen bonds with both G1440

and G1420 (the fourth and second bases 50 to nic, respec-
tively). An intrastrand base-pairing interaction also occurs
in the crystal structure of the complex of ssDNA with the
TrwC relaxase domain (14). For the F TraI relaxase, our
examination of a limited panel of variants demonstrated
that single base substitutions for the three bases involved
in the interaction can dramatically reduce in vitro binding
affinity and in vivo transfer efficiency (8). We wondered,
however, whether the wild-type trio of bases was the only
combination conducive to transfer. To examine this ques-
tion, we generated a set of plasmids containing variant
ForiT regions having all possible individual substitutions
at positions 1410, 1430 and 1440, and having pairwise sub-
stitutions at position 141’ and at position 1420 or 1440. We
then measured the efficiency with which these plasmids
were transferred. In addition, we examined the in vitro
binding of a subset of these variant sequences to the
F TraI relaxase domain to determine how well transfer
efficiency correlates with ssDNA binding affinity. We
found that nearly all substitutions for T1410, G1440

and G1420 reduced transfer efficiency, although substitu-
tions at a second position could at least partially compen-
sate for some of the single substitutions. We also found
that while reduced affinity generally correlated with
reduced transfer, there were exceptions, suggesting that
requirements for binding and cleavage are to some
extent distinct.

MATERIALS AND METHODS

Strains, plasmids and proteins

E. coli strain ER2738 (F0 proA+B+ lacIq i(lacZ)M15
zzf::Tn10(TetR)/fhuA2 glnV i(lac-proAB) thi-1
i(hsdS-mcrB)5 and TB1 (F� ara i(lac-proAB)
[f80dlaci(lacZ)M15] rpsL(StrR) thi hsdR)), and plasmid
pACYC177, were obtained from New England BioLabs,
Ipswich, MA, USA. Plasmid pACYC177-ForiT was con-
structed as described (15) and includes bp 1–530 [num-
bering according to Frost and colleagues (13)]. The
region contains nic, sbyA, sbyC, sbmC, sbmB, sbmA and
IHF-binding sites A and B.

Variant oriT segments were engineered in pACYC177-
ForiT using the QuikChange Mutagenesis kit (Stratagene,
Cedar Creek, TX, USA). Wild-type TraI36 and variant
proteins were expressed and purified as described (16).
The 30 carboxytetramethylrhodamine (TAMRA)-labeled
FTAM oligonucleotide (50-TTTGCGTGGGGTGT^GG
TGCTTT-30) and the 30-TAMRA-labeled T1410G variant
of FTAM (50-TTTGCGTGGGGTGG^GGTGCTTT-30,
with the base substitution underscored), were purchased
from Integrated DNA Technologies, Coralville, IA, USA
and purified as described (8). Variant oriT oligonucleo-
tides used in competition binding assays were purchased
from Integrated DNA Technologies and used without
further purification.

DNA-binding affinity measurements

Affinities of TraI36 for wild-type and variant single-
stranded oriT DNA sequences were measured in an affin-
ity assay by determining the effect of the presence of
unlabeled inhibitor oligonucleotide on binding affinity
for the labeled FTAM oligonucleotide. Competitor oligo-
nucleotide (at final concentrations as low as 5 nM for wild-
type oriT and as high as 400 nM for low affinity binders)
was mixed with 4 nM FTAM oligonucleotide in binding
buffer (100mM NaCl, 50mM Tris pH 7.5, 0.1mM
EDTA) and TraI36 was titrated into the mixture. The
resulting increase in fluorescence emission intensity of
FTAM was measured in an AVIV (Lakewood, NJ,
USA) ATF-105 automatic titrating fluorometer. KI

values (KD values for the interaction of wild-type TraI36
with an unlabeled inhibitor oligonucleotide) were esti-
mated by fitting volume corrected fluorescence emission
data with the model described by Wang (17) using
KaleidaGraph (Synergy Software, Reading, PA, USA).
In these fits, the concentration of ligand was set at 4 nM
and the KD for the interaction between TraI36 and wild-
type FTAM oligonucleotide was set at 0.6 nM. The
method works well with high affinity interactions as
assessed by the excellent agreement between our KI

value for the wild-type F oriT sequence (Table 1) and
our previous KD values for the same interaction measured
by direct binding (8,18–20). Because of the nature of the
inhibition assay, oligonucleotides that bind to TraI36 with
KI values greater than �3 mM do not affect the binding
curve significantly and therefore their affinities cannot be
reliably estimated. The relative KI of these oligonucleo-
tides is listed as >3500 nM.

Figure 1. The intramolecular base pairing in the F TraI36:ssDNA crys-
tal structure [PDB ID 2A0I; (12)]. TraI36 is shown as a turquoise
ribbon while DNA bases are shown as sticks, with oxygen in red,
phosphorus in orange, carbon in yellow and nitrogen in blue.
Labeled DNA bases are those for which substitutions were made.
Arrows indicate the position of nic, the scissile phosphate, both in
the structure and the sequence underneath. The sequence shown is
that of the 22-base oligonucleotide used in binding studies. Bases visible
in the structure are boxed. The figure was generated using the program
PyMOL (http://pymol.sourceforge.net).
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One variant, T1410G, yielded highly variable KI values
using the competition binding method described above.
The affinity of TraI36 for the T1410G sequence was instead
estimated from a direct binding assay using a 30-TAMRA-
labeled T1410G oligonucleotide as described (21).

Plasmid transfer assays

Plasmid mobilization assays were performed as described
(8) with minor changes. Donors (ER2738 with wild-type
or variant pACYC177-ForiT) and recipients (TB1) grow-
ing at log phase were washed in sterile PBS, mixed at a
ratio of 1 donor to 9 recipients (final volume of 1ml) and
incubated for 1min at ambient temperature. Transfer was
stopped by vortexing cells and placing them on ice. Cells
were serially diluted in PBS and plated on LB agar plates
with tetracycline and ampicillin to detect donors; and
streptomycin and ampicillin to detect transconjugants.
Plasmid pACYC177 is a low copy number plasmid, pre-
sent at approximately 15 copies per cell.

Oligonucleotide cleavage assays

The ability of TraI36 to cleave wild-type and variant
single-stranded oligonucleotides was assessed as described
(8) except that either 20mM MgCl2 or 2mM MnCl2 was
added to the reaction.

Ligation assays

The ability of TraI36 to ligate single-standed oligonucleo-
tides was tested using wild-type or variant 17-base oriT

30-Cy5-labeled oligonucleotides (Integrated DNA Tech-
nologies). A 20 ml reaction containing 1 mM TraI36,
4 nM 30-Cy5-labeled wild-type (50-TTTGCGTGGGGT
GT^GGT-30, where ^ denotes the nic cleavage site) or
G1400A (50-TTTGCGTGGGGTGT^AGT-30, where the
base substitution is underscored) oriT oligonucleotide,
and either 20mM MgCl2 or 2mM MnCl2 in reaction
buffer (100mM NaCl and 20mM Tris–HCl at pH 7.5)
was incubated at 378C for 60min. Unlabeled wild-type
(50-CTTGTTTTTGCGTGGGGTGT-30) or variant oligo-
nucleotides consisting of the 20 bases 50 to the oriT nick
site were then added to the reactions to final concentra-
tions ranging from 20 nM to 20 mM. Samples were incu-
bated at 378C for 3 h, then the reactions were stopped by
adding sodium dodecyl sulfate (0.1% final concentration)
and incubating for 10min at 378C. Samples were applied
to a 16% urea denaturing polyacrylamide gel (National
Diagnostics, Atlanta, GA, USA) and results were visua-
lized using a Typhoon 9410 Variable Mode Imager (GE
Healthcare, Piscataway, NJ, USA).

RESULTS

Transfer efficiency of oriT variants

To examine the importance of the bases involved in the
intrastrand base-pairing interaction seen in the
TraI36:ssDNA crystal structure, base substitutions for
T1410, G1420 and G1440 were engineered into an oriT
region cloned into pACYC177. Because G1400 stacks
with T1410 in the complex and could potentially affect
the position of T1410 or the stability of interactions invol-
ving T1410, we tested substitutions for G1400 as well. We
then measured the efficiency with which plasmids with
variant oriT sequences having substitutions at one or
two of these positions were mobilized to a recipient. The
results are summarized in Figure 2 as fractions of the wild-
type transfer efficiency. For some variants with reduced
transfer efficiency, transfer was not observed in some or
any of the experiments. For these, efficiencies were calcu-
lated as if a single transconjugant was observed and effi-
ciencies are reported as being less than the calculated
value. Those variants showing no transfer in some
assays are marked with two asterisks, and those showing
no transfer in any assay are marked with three asterisks.
In our analysis, we assume that variants for which transfer
was not detected in any assay have a lower transfer effi-
ciency than those variants for which transconjugants were
observed in at least some experiments.
Of the four positions tested, 1400 was the most accom-

modating of substitutions. G1400T, the substitution caus-
ing the greatest reduction, reduced relative transfer
efficiency to 0.27� 0.13 (27% of wild-type). This decrease
is not statistically significant when significance is defined
as a P-value <0.05 by a two-sided student’s t-test. Position
1420 was less accommodating than 1400, with G1420C
(0.16� 0.06) and G1420A (0.14� 0.06) causing relatively
small but significant reductions in transfer efficiency, and
G1420T (0.27� 0.09) producing a smaller reduction.
Some single substitutions for G1440 and T1410 caused

more profound effects than any substitution at the other

Table 1. Inhibition constants of oriT variant oligonucleotides

oriT variant KI� SD (nM) na Relative KI
b Relative

transfer
efficiencyc

Wild-type oriT 0.44� 0.22 5 1.0 1.0
G1400A 11� 3.6 3 25 1.0
G1400C 74� 24 5 170 0.73
G1400T 40� 23 9 91 0.27
T1410A >3500d 3 >8000 <0.030
T1410C 43� 22 5 98 0.35
T1410G �1000e 3 �2300 <0.0024
G1420A >3500d 8 >8000 0.14
G1420C 800� 220 2 1800 0.16
G1420T 2400� 2000 6 5500 0.27
G1440A 3100� 2300 3 7000 0.12
G1440C >3500d 4 >8000 <0.0016
G1440T 945� 500 2 2100 0.24
T1410G/G1400A 370� 28 4 840 5.9
T1410C/G1400A 71� 37 5 160 0.44
T1410C/G1400C 410� 130 4 930 0.60
T1410C/G1400T 380� 170 4 860 0.19
G1440T/T1410A 435� 35 2 990 0.32
G1440T/T1410G >3500d 6 >8000 0.068

aNumber of binding measurements.
bKI value relative to KI for wild-type oriT sequence (variant KI/wild-
type KI).
cTransfer efficiency of pACYC177-ForiT containing the listed sequence,
relative to transfer efficiency of wild-type pACYC177-ForiT.
dEstimated from absence of observed effect of 400 nM unlabeled variant
oligonucleotide on binding of labeled wild-type oligonucleotide.
eEstimated from binding assays using 4 nM labeled variant oligonucleo-
tide performed because of unusual variability in measurements using
inhibition assays.
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two sites. G1440C reduced transfer to undetectable levels
(<0.2% of wild-type), and G1440T (0.24� 0.07) and
G1440A (0.12� 0.04) also reduced transfer to a statistically
significant degree. T1410G reduced transfer to <0.2% of
wild-type (<0.002� 0.0001; transfer not observed in some
assays), and T1410A also significantly affected transfer
(<0.03� 0.005; transfer not observed in some assays)
while T1410C had a relatively minor effect (0.35� 0.08).
Reasoning that a base substitution might be compen-

sated for by a substitution at a second site, we generated
and tested the transfer efficiency of plasmids containing
most of the possible combinations of pairs of bases with
substitutions at 1410 and at 1440, 1420 or 1400. While many
of the second substitutions had little or no effect, we
observed improved transfer in four cases. The reduced
transfer resulting from a purine at position 1410

(T1410A< 0.03� 0.005; T1410G< 0.002� 0.0003) could
be partially compensated for by a G1440T substitution
(G1440T/T1410A=0.32� 0.10; G1440T/T1410G=0.07�
0.01). In another case involving these two positions, trans-
fer of G1440C (<0.002� 0.0001) is improved by T1410C
(G1440C/T1410C< 0.03� 0.004; transfer not observed in
some assays). Finally, in the largest improvement
observed, the T1410G substitution (<0.002� 0.0003) is

more than compensated for by a G1400A substitution
(T1410G/G1400A=5.8� 3.1).

Other second site substitutions decreased binding rela-
tive to single substitutions. Combining T1410A (<0.03�
0.005) with G1440C (G1440C/T1410A <0.003� 0.0005;
transfer undetected), G1440A (<0.005� 0.001; transfer
undetected), G1400A (<0.003� 0.0004; transfer unde-
tected) or G1400C (<0.002� 0.0006; transfer undetected)
reduced transfer. Transfer also decreases when T1410C
(0.35� 0.08) is combined with G1440T (<0.03� 0.005;
transfer not detected in some assays), G1440C
(<0.03� 0.004; transfer not detected in some assays),
G1440A (0.03� 0.006) or G1420C (<0.002� 0.00009;
transfer undetected).

Binding affinity of oriT variants

The reduced transfer of the variants could be due to a
reduced binding affinity of TraI for their oriT sequences.
To test this, we measured the in vitro binding of a subset of
the variant oriT sequences, as single-stranded oligonucleo-
tides, to TraI36, the F TraI relaxase domain. The KI

values for the sequences were estimated by measuring
binding of TraI36 to a TAMRA-labeled wild-type oriT
sequence in the presence of an unlabeled variant

Figure 2. Transfer efficiencies of plasmids containing oriT variants. The results are grouped into columns based on the DNA base at position 1410,
and into rows based on the second position (1440, 1420 or 1400) that was varied. Transfer efficiencies from 3 to 33 assays were averaged and the
standard deviation of each measurement is shown as an error bar. Constructs with transfer reduced significantly relative to wild-type (where
significance is defined as a P-value <0.05 by a two-sided student’s t-test) are marked with asterisks. Two asterisks indicate constructs for which
one or more assay yielded no detectable transfer. Three asterisks indicate constructs that yielded no detectable transfer in any assay. For assays in
which no transfer was observed, the upper limit of transfer was estimated by calculating efficiencies as if a single transconjugant was observed and
these values are reported. ND means assay not done because construct not generated.
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oriT oligonucleotide. We use this method rather than
using increasing concentrations of unlabeled variant oli-
gonucleotide to compete with binding of the labeled oli-
gonucleotide because we discovered that at high (�1 mM)
concentrations some unlabeled oligonucleotides could
affect the fluorescence of the labeled oligonucleotide, per-
haps due to interactions between the oligonucleotides.
Using the assay described here, we obtain a KI value for
the wild-type oriT oligonucleotide (0.4 nM) within error of
the measurement of the KD measured by direct binding
(0.6 nM). In contrast, the competition assay that we used
before (20) yielded a somewhat higher KI value for the
same oligonucleotide (2.7 nM). Given the potential pro-
blems caused by use of high concentrations of oligonu-
cleotides (noted above), the highest concentration of
inhibitor we used was 400 nM. At this concentration of
inhibitor, we estimate that the KI value for an oligonucleo-
tide would have to be lower than 3–4 mM for the binding
of the labeled oligonucleotide to be measurably affected
and the KI value estimated.

The results from the binding assays are listed in Table 1
and representative curves and fits are shown in
Supplementary Figure 1. The data and their relationship
to the transfer efficiency of plasmids bearing the sequences
are also depicted in Figure 3. In general, oriT sequences
that facilitated transfer at a lower rate also were bound
with lower affinities, consistent with a role for reduced
TraI binding in reduced transfer efficiency. A reduction
in affinity of 1000- to 10 000-fold usually correlated with
a reduction in transfer efficiency to 10–30% of wild-type.

The relationship between transfer efficiency and affinity
of TraI36 for the sequence is not simple, however.
For example, plasmids containing wild-type or the
G1400A oriT variant transfer with similar efficiencies
despite a 25-fold difference in TraI36 affinity for the
sequences. Plasmids containing G1400T and G1420T
yield similar mobilization efficiencies despite a 60-fold dif-
ference in affinities. T1410G showed greater than expected
binding (KI �1 mM) given that its transfer efficiency was
too low to measure in some of the assays. In contrast, the
T1410G/G1400A variant transfers with a 6-fold greater
efficiency than wild-type, but the sequence is bound with
an affinity that is reduced 370-fold relative to wild-type.
Comparison of the affinities and transfer efficiencies of

the G1400A, T1410G and T1410G/G1400A variants indi-
cates that it is possible for a second oriT substitution to
dramatically enhance plasmid transfer without a large
increase, and even a significant decrease, in ssDNA affi-
nity. Clearly, while a minimum affinity of TraI for oriT is
required, conjugative transfer has requirements beyond
simple binding of the oriT.

Cleavage and ligation of oriT variants

We showed previously that the wild-type oriT sequence is
cleaved efficiently in vitro by TraI36 while G1440C is both
cleaved and bound poorly by TraI36 (8,15). In this case,
the in vitro binding and cleavage correlates with the poor
transfer of the G1440C oriT variant. It is conceivable
though, that two variants having similar affinities for
TraI36 but different transfer efficiencies could be
explained if the sequences were cleaved or ligated by
TraI with different efficiencies. We tested a subset of var-
iant oriT sequences for their ability to be cleaved by
TraI36 (Figure 4). Cleavage assays were performed with
either 20mM MgCl2 or 2mM MnCl2 in the reaction mix-
ture. TraI36 binds Mn2+ with higher affinity than Mg2+

and has greater apparent activity with Mn2+ (12). Using
both metals allows us to examine a greater range of activ-
ity than would be possible using a single metal.
As shown in Figure 4, TraI36 cleaves a single-stranded

wild-type oriT oligonucleotide readily, while the T1410G
variant oligonucleotide is cut poorly in the presence of
either Mg2+ or Mn2+. The G1440T/T1410G variant is
not detectably cleaved in the presence of Mg2+, but is
cleaved in the presence of Mn2+, albeit with reduced effi-
ciency relative to the wild-type sequence. The results sug-
gest that the G1440T/T1410G variant, despite being bound
by TraI36 under assay conditions with an affinity too low
to reliably measure, can adopt a conformation conducive
to cleavage by TraI36 while the T1410G cannot. In con-
trast, TraI36 cleaves the T1410G/G1400A variant oligonu-
cleotide poorly even in the presence of Mn2+ despite
binding to TraI36 with a higher affinity than either
T1410G or G1440T/T1410G. The enhanced transfer of
the T1410G/G1400A variant, relative to wild-type and the
T1410G variant, cannot therefore be explained by either
enhanced binding affinity or enhanced cleavage.
Results of ligation assays (Supplementary Figure 2)

were similar to the results of the cleavage reactions.
TraI36 generated the G1440T/T1410G ligation product

Figure 3. Correlation of reduced in vitro binding affinity of an oligo-
nucleotide containing a variant oriT sequence and reduced transfer
efficiency of a plasmid containing the variant sequence. The data
for the variants are in black, except two outliers (T1410G and
T1410G/G1400A) that are marked in blue. Note that T1410G is included
even though its transfer efficiency could not be measured in all assays.
The dashed line represents a power law fit to the data excluding the
outliers performed using KaleidaGraph. The equation for the fit is
y=0.05186�x^(2.7535) (R=0.6451).
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markedly more efficiently than either the T1410G or the
T1410G/G1400A product.

DISCUSSION

To better understand the functional role of the intrastrand
base-pairing interactions observed in the TraI36:ssDNA
crystal structure, we studied the effect of oriT base sub-
stitutions on conjugative transfer. In the base-pairing
interaction (Figure 1), T1410 forms hydrogen bonds with
G1440. Not surprisingly, some substitutions in these posi-
tions were poorly tolerated. For example, single and
double substitution variants that contained purine substi-
tutions for T1410 generally showed reduced transfer. All
variants with purines at both 1410 and 1440 had signifi-
cantly reduced transfer efficiency. A simple explanation
for these results is that the volume of the purines is diffi-
cult to accommodate within the tight confines of the bind-
ing site, and the resulting steric clashes reduce affinity. In
addition, the scissile phosphate is located between bases
1410 and 1400. Even relatively small structural adjustments
made to accommodate the purines could move the scissile
phosphate away from the catalytic Tyr, reducing the effi-
ciency of cleavage.
Other observations are more difficult to explain. The

G1440C substitution interferes with transfer, with no com-
bination of G1440C and any base at 1410 transferring with
better than 3% of wild-type efficiency. The structural basis
for the inefficient transfer and poor in vitro binding of this
variant is not apparent when examining the
TraI36:ssDNA crystal structure. There are no obvious
steric clashes that would result from the substitution. In
addition, we cannot identify any intermolecular or intra-
molecular ssDNA interactions that might arise from the
substitution that would interfere with binding by TraI.
We also examined the effect of substitutions on in vitro

oligonucleotide binding, cleavage and ligation, and

compared these results to the effects of the substitutions
on conjugative transfer. Based on the results presented
here, we can draw several conclusions. First, as shown
in Figure 3, a reduced in vitro binding affinity of TraI36
for a single-stranded variant oligonucleotide generally cor-
relates with a reduced transfer efficiency of a plasmid bear-
ing the same variant sequence. Some previous results from
this lab on a small set of variants suggested this same
correlation (8). The result is not surprising in the sense
that DNA cleavage by TraI is essential for F conjugative
transfer, and TraI, of course, must bind oriT DNA before
it can cleave it. We do not know, however, how closely the
fluorescently labeled single-stranded oligonucleotide used
in the binding assay resembles the actual in vivo substrate.
The data presented here suggest that the resemblance is
sufficient for the in vitro binding affinity to reflect on the
in vitro transfer efficiency.

The second conclusion is that when in vitro oligonucleo-
tide binding and transfer efficiency do not correlate, the
discrepancy may reflect a bound conformation of the oli-
gonucleotide that is not conducive to cleavage and liga-
tion. The G1440T/T1410G variant transfers with
significantly higher efficiency than T1410G, yet the
G1440T/T1410G sequence is bound with an affinity too
low for us to measure (KI >3500 nM) and T1410G binds
with an �1000 nM KD. The G1440T/T1410G variant oli-
gonucleotide, though, is cleaved and ligated with a greater
efficiency than is the T1410G oligonucleotide. We believe
that although the G1440T/T1410G sequence is bound with
lower affinity than the T1410G sequence, the conformation
of the G1440T/T1410G oligonucleotide better positions the
scissile phosphate for cleavage by the active site Tyr.
Although even a subtle structural change could render
an oligonucleotide a poor relaxase cleavage substrate,
work with the telomere end-binding protein from
Oxytrichia nova (OnTEBP) has shown that, at least for
this protein, cognate and non-cognate ssDNA sequences

Figure 4. Cleavage activity of TraI36 against selected oriT variant oligonucleotides. 32P-50-end-labeled 22-base oligonucleotides were incubated with
0, 1, 10, 100 or 1000 nM TraI36 in the presence of either 20mM MgCl2 or 2mM MnCl2. Oligonucleotide cleavage is indicated by appearance of the
faster migrating 14-base band.
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can bind with similar affinities but with some dramatic
conformational differences. Theobald and Schultz
examined the affinity of OnTEBP for 10 non-cognate
ssDNA sequences and determined the structures of the
protein:ssDNA complexes (22). Based on the range of
conformational differences between the bound cognate
and non-cognate sequences, the authors conclude that it
would be difficult to predict the structural and functional
effects of the base substitutions starting from the structure
of OnTEBP with its cognate-binding site. We suspect that
the TraI-binding site, with its combination of a binding
groove and a flap that folds over the bound ssDNA, may
be somewhat less forgiving of base substitutions in its
ssDNA substrate than is the OnTEBP binding cleft. The
flexibility of the ssDNA substrate, however, certainly
complicates predicting the effect of base substitutions on
TraI function, just as it does for OnTEBP.

The third conclusion is that the requirements for effi-
cient transfer extend beyond simple ssDNA sequence
recognition and cleavage. The T1410G/G1400A variant
transfers with an efficiency several-fold higher than wild-
type, yet the T1410G/G1400A variant oligonucleotide is
bound with 100-fold lower affinity than wild-type and is
cleaved and ligated inefficiently. While we have no con-
vincing explanation for the enhanced transfer efficiency of
T1410G/G1400A, there are several ways in which altering
the oriT sequence could alter the efficiency of transfer.
Changing the base composition near nic could change
the accessibility of the oriT sequence bound by TraI.
Presumably TraI recognizes its site when the region
around nic is in a melted or bubble conformation, and
base changes that alter the melting temperature or local
conformation of the region could affect TraI access and
therefore cleavage and transfer. Another possibility is that
the complex of TraI and a variant oriT sequence, follow-
ing cleavage and concurrent formation of the covalent
linkage between TraI and the transferred strand, may
have an altered stability. Altered stability of this complex
could mean that an appropriate TraI-ssDNA conjugate
would not be available to initiate transfer when a stable
mating pair was formed. Alternatively, altered stability of
the complex could prevent the TraI-ssDNA conjugate
from converting from its role as a stable component of
the relaxosome to its role as an active participant in trans-
fer once the stable mating pair was formed. Finally, pro-
teins such as F TraM, F TraY and IHF participate in the
cleavage of oriT and initiation of F conjugal transfer.
Some substitutions near nic could have unanticipated
effects on the binding of these other proteins, or could
affect their participation in oriT cleavage or in transfer
initiation. These effects could in turn lead to reduced
transfer.

Given the apparent importance of the intramolecular
DNA interactions to binding and cleavage by TraI, we
might suspect that intrastrand base pairing is a common
feature of relaxase:ssDNA interactions. Although there is
not yet published work to support the importance of such
interactions for other relaxases, a similar intramolecular
interaction is observed in one structure of the distantly
related R388 TrwC relaxase domain with bound ssDNA
(14). In addition, the three interacting bases in the F oriT

are conserved among a number of F-like and other plas-
mids (3,23), suggesting that their relaxases might use a
similar type of recognition. The recently determined struc-
ture of the relaxase domain of R1162 MobA shows that it
shares a similar structure with the relaxase domains of
R388 TrwC and F TraI, despite having little obvious
sequence identity (24). Unfortunately, the MobA structure
has no bound DNA, preventing comparison of the con-
formations of the bound DNA. Structures of some other
ssDNA binding proteins show that intrastrand base inter-
actions are formed in their complexes. In the best example,
the Schizosaccharomyces pombe Pot1 (protection of telo-
meres 1) protein uses intrastrand base-pairing interactions
to stabilize a compact ssDNA structure essential for high
affinity binding by this protein (25). While this intrastrand
base-pairing may not be used by many proteins, the evi-
dence from S. pombe Pot1 and F TraI demonstrate that it
can be a valuable mechanism to determine binding speci-
ficity of a ssDNA-binding protein.
In sum, the results we present suggest that reducing the

affinity of a sequence for TraI or impairing its cleavage
reaction can reduce its transfer efficiency. Of these two
requirements, the cleavage efficiency is probably the
more stringent of the two. Our results also underscore
the complexity of the role of both relaxase and oriT in
transfer, and point out that there are aspects of these
roles that are both important to the transfer process and
currently not fully appreciated.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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