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Abstract

In many Gram-negative bacteria, the stress sigma factor of RNA polymerase, σS/RpoS,

remodels global gene expression to reshape the physiology of quiescent cells and ensure

their survival under non-optimal growth conditions. In the foodborne pathogen Salmonella

enterica serovar Typhimurium, σS is also required for biofilm formation and virulence. We

have previously identified sRNAs genes positively controlled by σS in Salmonella, including

the two paralogous sRNA genes, ryhB1 and ryhB2/isrE. Expression of ryhB1 and ryhB2 is

repressed by the ferric uptake regulator Fur when iron is available. In this study, we show

that σS alleviates Fur-mediated repression of the ryhB genes and of additional Fur target

genes. Moreover, σS induces transcription of the manganese transporter genes mntH and

sitABCD and prevents their repression, not only by Fur, but also by the manganese-respon-

sive regulator MntR. These findings prompted us to evaluate the impact of a ΔrpoS mutation

on the Salmonella ionome. Inductively coupled plasma mass spectrometry analyses

revealed a significant effect of the ΔrpoS mutation on the cellular concentration of manga-

nese, magnesium, cobalt and potassium. In addition, transcriptional fusions in several

genes involved in the transport of these ions were regulated by σS. This study suggests that

σS controls fluxes of ions that might be important for the fitness of quiescent cells. Consis-

tent with this hypothesis, the ΔrpoS mutation extended the lag phase of Salmonella grown in

rich medium supplemented with the metal ion chelator EDTA, and this effect was abolished

when magnesium, but not manganese or iron, was added back. These findings unravel the

importance of σS and magnesium in the regrowth potential of quiescent cells.

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0265511 March 31, 2022 1 / 20

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Metaane S, Monteil V, Ayrault S, Bordier

L, Levi-Meyreuis C, Norel F (2022) The stress

sigma factor σS/RpoS counteracts Fur repression

of genes involved in iron and manganese

metabolism and modulates the ionome of

Salmonella enterica serovar Typhimurium. PLoS

ONE 17(3): e0265511. https://doi.org/10.1371/

journal.pone.0265511

Editor: Roy Martin Roop, II, East Carolina

University Brody School of Medicine, UNITED

STATES

Received: December 20, 2021

Accepted: March 2, 2022

Published: March 31, 2022

Copyright: © 2022 Metaane et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the manuscript and its Supporting

Information files.

Funding: This work was supported by the French

National Research Agency (ANR-19-CE44-0005-01

to FN, https://anr.fr) and the Foundation for

Medical Research (FRM FDM201806005943 to

SM, https://www.frm.org). The funders had no role

https://orcid.org/0000-0001-8320-6917
https://orcid.org/0000-0001-5130-8054
https://doi.org/10.1371/journal.pone.0265511
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0265511&domain=pdf&date_stamp=2022-03-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0265511&domain=pdf&date_stamp=2022-03-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0265511&domain=pdf&date_stamp=2022-03-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0265511&domain=pdf&date_stamp=2022-03-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0265511&domain=pdf&date_stamp=2022-03-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0265511&domain=pdf&date_stamp=2022-03-31
https://doi.org/10.1371/journal.pone.0265511
https://doi.org/10.1371/journal.pone.0265511
http://creativecommons.org/licenses/by/4.0/
https://anr.fr
https://www.frm.org


Introduction

In many Gram-negative bacteria, the alternative sigma subunit of RNA polymerase, σS/RpoS,

remodels global gene expression to reshape the cell physiology and ensure survival under star-

vation and various stress conditions (the so-called general stress response) [1]. The σS network

has been intensively studied in the model organism, Escherichia coli K-12 (E. coli) [1–3]. In the

closely related foodborne pathogen Salmonella enterica serovar Typhimurium (S. Typhimur-

ium), σS is required for stress resistance, biofilm formation and virulence [1,4]. Global tran-

scriptomic studies have revealed the composition of the Salmonella σS network, and a major

effect of σS on remodeling of membrane and metabolic functions, and have highlighted the

importance of down-regulation of gene expression by σS [5,6].

Until recently, the σS response was believed to be predominantly transcriptional. However,

using a MS-based proteomics approach to unravel the impact of σS on global protein produc-

tion, we identified a large number of genes down-regulated at the protein level, but not at the

transcript level, suggesting that post-transcriptional regulation plays a larger role in σS gene

regulation than previously recognized [7]. Small RNAs (sRNAs) might be mediators in some

of these post-transcriptional effects. Indeed, we have identified several sRNAs genes under

positive control by σS in ATCC14028 [5]. σS-dependent expression of most of these sRNAs has

been subsequently observed by Colgan et al. in another strain of S. Typhimurium [8]. Analysis

of gene expression in 18 mutants in regulatory genes, including rpoS, was reported in the Sal-
monellaGene Expression Compendium (SalCom) database [8], and we noticed that several

σS-activated sRNA genes were up-regulated in a Δfurmutant (S1 Fig) deficient for the iron-

binding global ferric uptake regulator Fur. This observation prompted us to address the possi-

bility that σS alleviates Fur-mediated repression of those sRNAs genes when iron is available.

The present study addresses this hypothesis focusing on two paralogous sRNA genes, ryhB1
and ryhB2/isrE.

RyhB homologs are found in several bacterial genera [9]. In E. coli, the primary function of

RyhB is in the iron-sparing response [9–11]. Under iron-rich conditions, RyhB expression is

repressed by Fur [12,13]. Upon iron starvation, RyhB is produced and prevents the expression

of nonessential iron-using proteins to allow a better usage of the newly acquired iron by essen-

tial proteins [9,10]. S. Typhimurium carries two ryhB orthologs; ryhB1 (96 bps) that is sur-

rounded by the same flanking genes as in E. coli, and ryhB2 (isrE, 98 bps) that is located on a

pathogenicity island [14]. There is a 33 bp sequence of perfect homology between RyhB1 and

RyhB2 [14]. The production of both sRNAs is influenced in response to iron-availability by

the activity of Fur and is induced by σS during late stationary phase in rich medium [5,8,14].

The Salmonella RyhB sRNAs are induced upon invasion of host cells and appear to be involved

in diverse functions including acid resistance, oxidative and nitrosative stress resistance, motil-

ity and intracellular survival [12,14–19].

In this study, we show that σS counteracts Fur-mediated repression of the Salmonella ryhB
genes and of additional Fur targets. Moreover, σS alleviates repression of manganese trans-

porter genes, not only by Fur, but also by the manganese transport regulator MntR. Consistent

with a global role for σS in ion trafficking, analysis of the Salmonella ionome by inductively

coupled plasma mass spectrometry demonstrated that the cell content in manganese, magne-

sium, cobalt and potassium is affected by the ΔrpoSmutation. In addition, transcriptional

fusions in genes involved in the transport of these ions through the inner membrane were reg-

ulated by σS. These findings suggest that σS controls the homeostasis of metal ions modulating

the survival and/or regrowth potential of quiescent cells. In agreement with this hypothesis, σS

was required for optimal regrowth of quiescent cells in rich medium in the presence of the
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metal ion chelating agent EDTA, and our data pinpoint to a major role for magnesium in this

phenomenon.

Material and methods

Bacterial strains, bacteriophage, plasmids and growth conditions

Strains and plasmids are listed in S1 Table. Bacteriophage P22HT105/1int was used to transfer

mutations and lacZ fusions between Salmonella strains by transduction [20]. Green plates, for

screening for P22-infected cells or lysogens, were prepared as described previously [21]. Bacte-

ria were routinely grown in LB medium [22] at 37˚C under aeration. When indicated, the LB

medium was supplemented with the iron chelator 2,20-dipyridyl (DP), the metal chelating

agent ethylenediaminetetraacetic acid (EDTA), magnesium chloride (MgCl2), iron chloride

(FeCl2) and manganese chloride (MnCl2), at the indicated concentrations. Antibiotics were

used at the following concentrations (in μg per ml): carbenicillin (Cb), 100; chloramphenicol,

(Cm) 15 for the chromosomal resistance gene and 30 for the plasmid resistance gene; kanamy-

cin, (Km) 50; and tetracycline, (Tc) 20.

DNA manipulations, lacZ fusions and inactivation of chromosomal genes

Standard molecular biology techniques were used [22,23]. Oligonucleotides were obtained

from Sigma-Aldrich and are listed in S2 Table. Functional annotations and DNA sequences of

ATCC14028 genes were obtained from the KEGG server (www.genome.jp/kegg/kegg2.html).

DNA sequencing was performed by Eurofins Genomics (Cologne, Germany). Chromosomal

deletions and lacZ fusions were generated in Salmonella ATCC14028 using PCR-generated

linear DNA fragments (S2 Table) and λ-Red recombination-based method [5,6,24–26]. All

strains were confirmed to contain the expected mutation by DNA sequencing.

Enzymatic assays

β-galactosidase activity was measured as described by Miller [27] and is expressed in Miller

units which normalizes the enzymatic activity to the culture OD600.

Northern analysis

Total RNA was isolated from Salmonella strains grown aerobically until late stationary phase

(18h growth) in LB at 37˚C, using TRIzol as previously described [5]. Total RNA was fraction-

ated on an 8% polyacrylamide–7M urea gel and transferred to Hybond-N+ membranes

(RPN1520B GE Healthcare). Blots were hybridized to DNA oligonucleotides specific to the

RyhB1, RyhB2 and 5S sRNAs (S2 Table) labeled at the 50 ends with T4 polynucleotide kinase

using the UltraHyb-OLIGO buffer (AM8663, Ambion). ImageJ (http://rsb.info.nih.gov/ij/

index.html) was used to compare the density of bands.

Inductively coupled plasma mass spectrometry (ICP-MS)

Cell-associated contents of twenty-three cell-associated elements were measured as follows. To

minimize element contamination to samples by glass materials, we used acid-washed erlens

and bottles and disposable polypropylene tubes and pipets (Tubes 14 ml PP Falcon 352059

and pipets 25 ml Falcon 357535). Wild type and ΔrpoS Salmonella strains (VF6910 and

VF8158 respectively, S1 Table) were grown in LB at 37˚C for 18h. For complementation exper-

iments, both strains harboring the vector pACYC184 and the cloned rpoS gene on pSTK4 (S1

Table) were grown in LB supplemented with chloramphenicol at 37˚C for 18h. Three biologi-

cal replicates of each strain were used. Twenty-eight ml of each culture were centrifuged in
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50-ml polypropylene tubes (Sarstedt 62-547-254) for 10 min at 4˚C and 6,300xg. Cell pellets

were washed twice with distilled water containing 1 mM EDTA (pH 8) to chelate extracellular

traces of metals, and centrifuged again. Cells were resuspended in 2.8 ml distilled water with

EDTA (pH 8) 1 mM. The OD600 was measured and the number of viable cells was estimated

by plating serial dilutions on LB. Each of the three independent biological replicates was subse-

quently treated in duplicates. Cell suspensions were each transferred in two pre-weighed

microtubes (1.3 ml per tube, eppendorf 033297), centrifuged 10 min at 4˚C and pellets were

dried in a heat block overnight at 65˚C. Dried cell pellets were digested in 2 ml of nitric acid

(67%) and 4 ml H2O2 (30%) in pre-weighed 50-ml polypropylene tubes (DigiTube1, SCP Sci-

ences, France) previously checked for element contamination. The tubes were left at room

temperature for 24 hours and then evaporated, at 60˚C for ~2 h and at 95˚C for ~2 h, to near

dryness to a final volume of 100 μl, and then diluted to 7.5 ml in 0.5 N HNO3. Ultrapure

reagents were used (Normatom grade, VWR, France for HNO3, and ANALAR Normapur

grade, VWR, France for H2O2). Digestion blanks were run to check for contamination. Major

(Na, Mg, Al, K) and trace element concentrations (Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se,

Sr, Mo, Ag, Cd, Sb, Ba, Tl, Pb) were determined in mineralized solutions and in the growth

medium using an inductively coupled plasma quadrupolar mass spectrometer (ICP-QMS)

(X-Series, CCT II+ Thermo-electron, France). Internal standards (Re, Rh and In; SPEX, SCP

Science, France) were used to correct for instrumental drift and plasma fluctuation. To limit

interferences, analysis was performed using a collision cell technology (CCT), which intro-

duces a supplementary gas mixture of H2 (7%) and He (93%) for the determination of V, Cr,

Mn, Fe, As, Se, Ag, and Sb concentrations. A certified river water sample (SRM 1640a, NIST,

Gaithersburg, USA) was repeatedly analyzed to check for data quality for all elements, except

for Ti for which no certified values are provided. The SRM 1640a was 10-fold and 100-fold

diluted to fit sample concentration range. The measured concentrations fall with 5% of the cer-

tified values for all elements, except Al (6.5%), As (7%) and Sb (8%).

Statistical analysis

Student’s t-test was performed for pairwise comparisons. Values were presented as

means ± standard error of the mean (SEM). Differences were considered significant when

p� 0.05.

Results and discussion

σS activates transcription of the ryhB1 and ryhB2 sRNA genes

In previous RNA sequencing experiments using wild-type and ΔrpoS strains of S. Typhimur-

ium ATCC14028 grown to stationary phase in LB rich medium, the RyhB1 and RyhB2 sRNAs

were detected in lower amounts in the ΔrpoSmutant than in the wild-type strain [5]. The posi-

tive effect of σS on these sRNAs levels was also observed in northern experiments [5,14] (Fig

1B and 1F). We used transcriptional lacZ fusions located downstream of the ryhB1 and ryhB2
promoters [14] to demonstrate that this σS control operates at the transcriptional level (Fig

2A). Introduction in the ΔrpoSmutant of plasmid pSTK4, carrying the Salmonella rpoS gene,

restored wild-type levels of expression of ryhB1-lacZ and ryhB2-lacZ (Fig 2B), thus confirming

that σS activates transcription of both sRNAs. Unexpectedly however, the ΔrpoSmutation did

not abolish, and even slightly increased the amounts of RyhB1 and RyhB2 and the expression

levels of the ryhB1-lacZ and ryhB2-lacZ fusions in the Δfurmutant (Figs 1A, 1E and 2A). In

addition, expression levels of the RyhB1 and RyhB2 sRNAs (Fig 1C, 1D, 1G and 1H) and the

ryhB1-lacZ and ryhB2-lacZ fusions (Fig 2A) were increased, in both the wild-type strain and

ΔrpoSmutant, by 2,2-dipyridyl (DP) that sequesters free iron and consequently likely impairs
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Fur activity. Altogether, these results were consistent with a model where σS is required for

ryhB1 and ryhB2 transcription under Fur repressing conditions only (Fig 2C). In our global

analyses, the ΔrpoSmutation had no effect on the abundance of the fur transcripts [5] and Fur

Fig 1. Regulation of ryhB1 and ryhB2 by σS in Salmonella. The RyhB1 and RyhB2 sRNAs (of 96 and 98 nucleotides,

respectively) were detected in Northern experiments as previously reported [5]. Blots were stripped and re-probed

with 5S RNA probe to confirm loading of equal quantities of total RNA of the strains grown to stationary phase for 18

h at 37˚C. (A, E) Effect of the ΔrpoSmutation on ryhB1 and ryhB2 expression was assessed in a Δfur genetic

background. (B, F) Control experiments showing the negative effect of the ΔrpoSmutation on ryhB1 and ryhB2
expression [5]. (C, D, G, H) Detection of the sRNAs in the wild-type and ΔrpoS strains grown in LB supplemented or

not with FeCl2 100 μM and 2,2’-dipyridyl (DP) 100 μM. Relative quantification of bands intensity (normalized to the

5S RNA) indicated that the ΔrpoSmutation decreased by about ten-fold the amounts of RyhB1 and RyhB2 detected in

the wild-type strain, as previously reported [5]. In contrast, in the Δfur background, the ΔrpoSmutation had no major

impact on the amount of RyhB2 and increased the amount of RyhB1 by about three-fold. Blocking Fur-mediated

repression by DP increased the expression levels of both sRNAs by more than 10-fold in the ΔrpoSmutant. In the wild-

type strain, the impact of DP was stronger on RyhB1 than RyhB2 production (10 and 3.5 -fold, respectively).

https://doi.org/10.1371/journal.pone.0265511.g001
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protein [7], indicating that σS does not alleviate ryhB1 and ryhB2 repression by decreasing Fur

expression.

σS counteracts Fur mediated repression of ryhB1 and ryhB2 transcription

The ryhB1 and ryhB2 promoters show typical features of σ70 dependent promoters [14] which

can also be recognized by σS [1,2] (Fig 3A). The Fur-binding site of regulated promoters con-

tains a consensus of three imperfect adjacent hexamers 5’-GATAAT-3’ [28] and alignment of

Fig 2. Expression of ryhB1-lacZ and ryhB2-lacZ transcriptional fusions in Salmonella. (A) Expression of the

ryhB1-lacZ and ryhB2-lacZ transcriptional fusions was followed in Salmonella wild type, ΔrpoS, Δfur and ΔrpoSΔfur
strains (S1 Table) grown 18 h in LB supplemented or not with 2,2’-dipyridyl (DP) 100 μM. (B) Empty vector

pACYC184 and plasmid pSTK4 carrying the rpoS gene (S1 Table) were used in complementation experiments. (A, B)

Bar graphs represent the mean β-galactosidase activity, and error bars represent standard error of the mean of at least

three independent experiments (� p<0.05, ns not significant). (C) Schematic illustration of regulation of ryhB genes by

σS and Fur. In stationary phase of growth, EσS and Eσ70 RNAP compete for binding to the ryhB1 and ryhB2 promoters.

When iron is available, Fur-Fe2+ dimers bind to the ryhB promoter regions and repress σ70-dependent transcription.

EσS is less sensitive to Fur-mediated repression than Eσ70 and allows transcription of ryhB1 and ryhB2. The exact

mechanisms by which EσS escapes Fur-mediated repression is unknown. Since the Fur binding sites overlap the

promoter regions (Fig 3A), it is likely that Fur inhibits ryhB1 and ryhB2 transcription by occluding the promoters to

prevent Eσ70 binding. EσS might be more efficient than Eσ70 to compete with Fur for binding to the Fur box/ -10

region. However, the possibility that counter-silencing involves a structural change at the DNA level that allows EσS

binding despite the presence of Fur cannot be excluded.

https://doi.org/10.1371/journal.pone.0265511.g002
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Fig 3. Effect of mutations in Fur binding motifs on regulation of the ryhB1-lacZ and ryhB2-lacZ fusions. (A) DNA sequences

corresponding to the 5’ end and upstream regions of the ryhB1 and ryhB2 sRNAs genes are shown. The -10 and -35 promoter regions are

underlined. The possible Fur binding sites that match the Fur consensus sequence (gataatgataatcattatc) are indicated by blue lines above

the sequences of ryhB1 and ryhB2 [14]. Mutations constructed in AAT motifs are shown (see text for details). (B) Expression of the

chromosomal ryhB1-lacZ and ryhB2-lacZ fusions carrying or not the indicated mutations was assessed in Salmonella wild type, ΔrpoS,
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Fur-regulated genes in S. Typhimurium has underlined the importance of the AAT motifs in

Fur binding [29]. Consensus binding sites for Fur overlap the ryhB1 and ryhB2 promoter

regions [14] (Fig 3A). Mutations in AAT motifs located upstream of the -10 sequence in the

predicted Fur binding sites were introduced in the promoter regions of the ryhB1-lacZ and

ryhB2-lacZ chromosomal fusions to assess σS and Fur regulation. Mutations were also intro-

duced in the AAT motif present in the -35 region of ryhB2.The mut1 mutation did not affect

the expression level and regulation of the ryhB1-lacZ fusion (Fig 3B). In contrast, the mut2

mutation abolished Fur repression of ryhB1-lacZ and the expression level of ryhB1mut2-lacZ
was slightly improved in the absence of σS (Fig 3B). Mut3 was the only mutation preventing

Fur repression of the ryhB2-lacZ fusion and expression of ryhB2mut3-lacZ did not require σS

(Fig 3B). Altogether, these data suggest that σS favors ryhB1 and ryhB2 transcription by directly

counteracting Fur-mediated repression. Since EσS binds to promoters and is sensitive to

repressors in a manner distinct from Eσ70 [1], it is possible that EσS, but not Eσ70, competes

efficiently with Fur for promoter binding or is productive to some extent in the presence of

Fur, and allows transcriptional initiation from the ryhB1 and ryhB2 promoters (Fig 2C). Levels

of ryhB1 and ryhB2 expression were slightly higher in the ΔfurΔrpoSmutant than in the Δfur
strain (Figs 1A, 1E, 2A and 3B) and the rpoS gene on pSTK4 reduced the expression level of

ryhB2-lacZ (and to a lesser extent ryhB1-lacZ) in the presence of DP (Fig 2B). These results

suggest that σS is less efficient than σ70 for ryhB transcription when Fur repression is elimi-

nated. This hypothesis is consistent with previous findings that σS can directly repress gene

expression by competing with σ70 binding at some promoters [6,30,31].

σS alleviates repression of genes involved in iron and manganese

metabolism

Among genes that are strongly activated by σS in ATCC14028 [5], some are repressed by Fur

[8,32]. We thus addressed the possibility that σS counteracts Fur repression of additional

genes, besides ryhB1 and ryhB2. The suf genes encode an alternative system for iron-sulfur

clusters assembly repressed by Fur [33,34] and were strongly activated by σS in our transcrip-

tomic and proteomic analyses [5,7]. The sufS-lacZ fusion was up- and down- regulated in the

Δfur and ΔrpoS strains, respectively, but its expression in the Δfurmutant did not require σS

(Fig 4). Similarly, expression of the lacZ fusions in the iroBCDE operon and iroN gene,

involved in biosynthesis and utilization of the salmochelin siderophore [35], and the

STM14_5469/yjjZ gene, involved in tolerance to biofuels and antibiotics [36–38] was depen-

dent on σS in the presence of Fur only (Fig 4). These data suggest that σS counteracts Fur

repression of these genes, as it was observed for ryhB1 and ryhB2.

The sitABCD andmntH genes, encoding manganese transporters, are also repressed by Fur

[39,40] and activated by σS [5], but their expression was still dependent on σS in the absence of

Fur (Fig 4). Since these genes are also repressed by the manganese-responsive repressor MntR

[39,40], their expression was also assessed in a ΔmntR background. The sitA-lacZ fusion was

expressed to similar levels in the wild-type strain and the ΔrpoSΔfurΔmntRmutant (Fig 4),

indicating that σS was dispensable only when both repressors were absent. The expression level

of themntH-lacZ fusion increased in the ΔrpoSΔfurΔmntRmutant compared to that in the

ΔrpoS strain, but was lower than that in the wild-type strain (Fig 4). This result suggests that,

even in the absence of Fur and MntR, σS is necessary, directly or indirectly, formntH

Δfur and ΔrpoSΔfur strains (S1 Table) grown 18 h in LB. Bar graphs represent the mean β-galactosidase activity, and error bars represent

standard error of the mean of at least three independent experiments (� p<0.05, ns not significant). The finding that mut3 relieves Fur

repression of ryhB2 suggests that Fur binds to the more distal predicted binding site.

https://doi.org/10.1371/journal.pone.0265511.g003

PLOS ONE σS/RpoS modulates the ionome of Salmonella

PLOS ONE | https://doi.org/10.1371/journal.pone.0265511 March 31, 2022 8 / 20

https://doi.org/10.1371/journal.pone.0265511.g003
https://doi.org/10.1371/journal.pone.0265511


expression. σS might alleviate repression ofmntH by a third unknown repressor molecule or

favor the production of an activator. Altogether, these data demonstrated that σS allows expres-

sion of genes involved in iron and manganese metabolism under environmental conditions

where their transcription by σ70 is repressed. Of note, the regulatory interplay between Fur

and σS, highlighted here, is not a general phenomenon since several genes sensitive to Fur

repression are not activated by σS in the SalCom database [8] (S2 Fig).

Effects of σS on the Salmonella ionome in stationary phase

The observed control by σS of genes involved in iron and manganese metabolism prompted us

to assess the impact of σS on the Salmonella ionome. Inductively coupled plasma mass spec-

trometry (ICP-MS) was used to compare levels of cell-associated metals in the wild-type and

ΔrpoS strains grown to stationary phase in LB (Fig 5A and S1 Dataset experiment 1). The

ΔrpoSmutation had no significant effect (p>0.05) on the cellular concentration of Se, Ni, Cu,

Sr, Ba and Ti and modest effects on the cellular concentration of Na, V, Zn, Fe, As, Mo, Cd

and Tl (fold change< 2, p<0.05, S1 Dataset experiment 1). In contrast, a marked effect of the

ΔrpoSmutation (fold change > 2, p<0.001) was observed on the cell-associated concentration

Fig 4. σS alleviates repression of genes involved in iron and manganese metabolism. Expression of the indicated

lacZ fusions was assessed in the wild type ΔrpoS, Δfur and ΔrpoSΔfur strains grown for 18 h in LB at 37˚C. For the sitA-
lacZ andmntH-lacZ fusions, effect of the ΔmntRmutation was also determined. Bar graphs represent the mean β-

galactosidase activity, and error bars represent standard error of the mean of at least three independent experiments (�

p<0.05).

https://doi.org/10.1371/journal.pone.0265511.g004
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of cobalt (Co), manganese (Mn), magnesium (Mg) and potassium (K) (Fig 5A, S1 Dataset

experiment 1).

To validate these effects of σS on the ionome, a complementation experiment was con-

ducted (Fig 5B and S1 Dataset experiment 2). The cloned rpoS gene on pSTK4 was able to

restore wild-type levels of Mn, Mg and Co in the ΔrpoS strain, thus confirming the role of σS in

the control of the cell-associated amount of these cations. The potassium contents of the wild-

type strain and ΔrpoSmutant harboring pSTK4 were similar and significantly higher (fold

change>2, p<0.001) than that of wild-type and ΔrpoS strains harboring the empty vector (Fig

5B and S1 Dataset experiment 2). These data were consistent with a positive effect of σS on the

cell-associated concentration of potassium. However, the potassium amount was not signifi-

cantly different (fold change 0.96, p> 0.1) between the ΔrpoSmutant and the wild-type strain

harboring pACYC184, and was even lower than that in the absence of plasmid (Fig 5A and

5B). The potassium concentration was similar in the batches of LB used in experiments 1 and

2 (S1 Dataset). One possibility is that the presence of pACYC184 (or the tetA gene which is

inactivated in pSTK4 by insertion of rpoS) impairs K+ fluxes thereby masking the effect of σS.

In conclusion, σS modulates the amount of manganese, magnesium, cobalt and likely potas-

sium associated with quiescent cells.

Regulation by σS of genes involved in ions trafficking

A positive effect of σS on the total cell concentration of manganese was consistent with our

finding that σS activates transcription of themntH and sitABCD genes [5] (Fig 4), even though

we cannot exclude the contribution of transport systems for other metals able to accommodate

Mn. Mn is a cofactor for several enzymes in bacteria and can contribute to the catalytic detoxi-

fication of reactive oxygen species (ROS) [39,40]. Increased cell-associated Mn concentrations

Fig 5. Effect of the ΔrpoS mutation on the Salmonella ionome in stationary phase. Quantification of cell-associated

concentration of elements in Salmonella, grown to stationary phase in LB rich medium, was performed by inductively

coupled plasma mass spectrometry (see Methods). Three biological replicates were analyzed in duplicate each. A

complete set of data is provided in S1 Dataset. (A) Data are shown for element contents showing significant differences

(p<0.05, fold-change> 2) between the wild type strain (WT, VF6910) and the ΔrpoSmutant (VF8158): Magnesium

(Mg), manganese (Mn), cobalt (Co) and potassium (K). (B) Complementation experiments with the cloned rpoS gene

on pSTK4. The empty vector pACYC184 was used as a control. Error bars display the standard error of the mean for

the three independent replicates (A, B).

https://doi.org/10.1371/journal.pone.0265511.g005
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could favor the activity of enzymes requiring Mn2+ as a cofactor and involved in metabolism

and protection against oxidative stress. In addition, as previously suggested [5], in stationary

phase of growth, Mn2+ might replace the more reactive Fe2+ ion in iron-containing enzymes

to reduce oxidative damage to these proteins [40].

The ICP-MS analysis also revealed a positive effect of σS on the cell-associated concentra-

tion of magnesium. In contrast to Mn2+ that can be transported by transport systems for other

cations [41], the chemical properties of Mg2+ suggest that proteins mediating Mg2+ transport

have unusual properties [42,43]. Salmonella imports magnesium via three known transporters,

MgtA and MgtB produced under conditions of magnesium starvation and CorA, expressed

under various growth conditions and able to perform Mg2+ import and efflux [43–46]. In our

global transcriptomic analysis in LB, themgtA andmgtB genes were expressed to similar and

very low levels in the wild-type and ΔrpoS strains [5], likely because the magnesium concentra-

tion in LB is high enough (S1 Dataset) to prevent activation of these genes by the PhoP-PhoQ

system [43,44]. In contrast, the corA gene was downregulated in the ΔrpoSmutant [5], a result

that was confirmed by using a transcriptional corA-lacZ fusion (Fig 6). A reduced expression

level of corA in the ΔrpoS strain may thus contribute to lower the magnesium content of the

mutant, compared to the wild-type strain (Fig 5). Nevertheless, potential differences between

the two strains in their membrane composition and/or ribosomes and ATP contents, which

represent important reservoirs of magnesium [43,44,47,48], have also to be considered.

The potassium level of quiescent cells is also likely positively controlled by σS. Potassium is

the major monovalent cation in the bacterial cytoplasm and its concentration is regulated

through the activity of a number of different transport and efflux systems [49–51]. Some of the

corresponding genes were down regulated in the ΔrpoSmutant in our global analyses [5,7]

and this σS control was validated by using transcriptional lacZ fusions in these genes (ycgO,

trkA, trkD, KdpA, kefF, kefB, Fig 6). Consistent with a role of σS in potassium homeostasis, it

has been suggested that the small σS -dependent protein YgaU/Kbp [5,7] is a cytoplasmic K+

sensor regulating potassium homeostasis in E. coli [52]. In addition, K+ stimulates σS activity

[1,53].

In contrast to the other cations, cobalt was accumulated in the ΔrpoSmutant compared to

the wild-type strain (Fig 5). Cobalt is a trace metal in extracellular media [54–56] including LB

(S1 Dataset). In Salmonella, the cbiMNQO operon, located amongst the vitamin B12 biosyn-

thesis genes, encodes a high affinity cobalt uptake system [54,55,57]. Transport systems for

other metals, such as CorA, can also import cobalt [54,55,57] but are likely inefficient in LB

where cobalt concentration is low (S1 Dataset). In our global proteomics profiling experiments

[7], we noticed that the ATP-binding protein CbiO showed increased abundance in the ΔrpoS
mutant of Salmonella, compared to the wild-type strain. The negative effect of σS on the CbiO

relative protein levels was confirmed by using a translational cbiO-lacZ fusion (Fig 6). Two

genes are annotated as putative efflux systems for cobalt in ATCC14028, STM14_0882/ybgR
that encodes a zinc exporter ZitB [58] and STM14_3652/yohM/rcnA encoding an efflux pro-

tein for cobalt and nickel in E. coli [59,60]. Transcriptional lacZ fusions in both genes were

positively controlled by σS (Fig 6). These data suggest that σS limits cobalt accumulation in qui-

escent cells even when cobalt is present at very low extracellular concentrations. Co2+, either as

a cofactor or associated with vitamin B12, is required for many biological functions but it can

also be toxic due to non-specific interaction with proteins or DNA, the formation of reactive

oxygen species and the competition with iron which affects the biogenesis of iron-sulfur clus-

ters [54,56,61]. Quiescent cells may be very susceptible to oxidative damages and the Co effects,

thereby requiring a tight control of cobalt accumulation by σS.
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σS is required for optimal regrowth of quiescent cells in LB depleted for

magnesium

Future experiments are required to determine whether the transcriptional effects of σS on

genes involved in ion trafficking reported in this study are implicated in the observed modula-

tion of the ionome by σS and whether additional effects of σS on unspecific transport, efflux

and storage systems are involved. Nevertheless, the regulation by σS of the cell-associated levels

of Co2+, Mn2+, Mg2+ and possibly K+ suggest that a tight control of uptake and availability of

these cations might be critical for quiescent bacteria, as an imbalance in homeostasis of these

cations may be deleterious for their survival or regrowth potential.

As a first step to address this issue, the regrowth of the wild-type and ΔrpoS strains was

examined in LB supplemented either with EDTA, a metal ion chelating agent, or with the iron

chelating agent DP. The growth curves of the wild-type and ΔrpoS strains were similar in LB

and, for both strains, the entry into stationary phase occurred at lower optical density in the

presence of DP (Fig 7A–7C). Interestingly, even though similar numbers of CFU of the wild-

type and ΔrpoS strains (2.9 107 and 2.6 107 CFU/mL, respectively) were inoculated into fresh

LB medium supplemented with EDTA, the lag phase of the ΔrpoSmutant was extended, com-

pared to that of the wild-type strain (Figs 7D and S3A). This effect of the ΔrpoSmutation was

Fig 6. Expression of lacZ fusions in genes involved in magnesium, cobalt and potassium trafficking. Expression of

lacZ fusions in genes encoding potassium transport (TrkA, TrkD, KdpA) and efflux (KefCF, KefB) systems, the

potassium/proton antiporter YcgO, the magnesium transporter CorA and proteins involved in cobalt import (CbiO)

and efflux (RcnA, YbgR) was assessed in the wild type and ΔrpoS strains grown for 18 h in LB at 37˚C. Bar graphs

represent the mean β-galactosidase activity, and error bars represent standard error of the mean of at least three

independent experiments. The effect of the ΔrpoSmutation was significant in all cases (p<0.001).

https://doi.org/10.1371/journal.pone.0265511.g006
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complemented by the cloned rpoS gene on pSTK4 (Figs 7E, 7F and S3B) and was reproducibly

observed using another ΔrpoS construct (S4 Fig). Add-back experiments showed that magne-

sium, but not manganese or iron, was able to abolish the effects of EDTA (Figs 8A and S5).

Indeed, EDTA did not extend the lag phase of the ΔrpoS strain when MgCl2, but not MnCl2 or

Fig 7. The metal ion chelator EDTA extends the lag phase of the ΔrpoS mutant. (A, B, C, D) Kinetics of growth of

the wild-type strain (WT, VF6910) and the ΔrpoSmutant (VF8158) was followed in LB supplemented or not with

EDTA 2 mM or DP 200 μM. (E, F) The empty vector pACYC184 and plasmid pSTK4 carrying the rpoS gene were used

in complementation experiments. The growth phase was determined by the measurement of culture turbidity at OD

600 nm. Similar results were obtained with the two biological replicates of each strain that were tested (see S3A and

S3B Fig for the second series of biological replicates). Similar results were also observed using an independent ΔrpoS
construct (VFC331, S4 Fig).

https://doi.org/10.1371/journal.pone.0265511.g007
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FeCl2, was supplemented at 1 mM suggesting that σS was required for optimal regrowth in LB

depleted for magnesium. In addition, when supplemented at 10 mM, MgCl2, but not FeCl2,

alleviated the effect of EDTA on bacterial growth (Figs 8A and S5).

In contrast to magnesium, high concentration of manganese prevented bacterial growth

(Fig 8B). It is likely that the toxic effects of manganese on growing cells result from unspecific

interactions with transporters of other metal ions or with metallobiomolecules that are impor-

tant for growth. Interestingly, it has been proposed that excess Mn impairs bacterial growth by

competing for magnesium and/or iron [39,62–64].

Conclusion

Even though more studies are required to dissect the molecular mechanisms underlying the

σS-effects on the Salmonella ionome and their impact at the physiological level, this study

reveals that σS controls the homeostasis and/or usage of Mg, Mn, Co, K and Fe, thereby

Fig 8. Magnesium abolishes the effects of EDTA in add-back experiments. Kinetics of growth of the wild-type strain

(WT VF6910) and the ΔrpoSmutant (VF8158) was followed in LB supplemented or not with EDTA 2 mM and the

indicated metal ions. The growth phase was determined by the measurement of culture turbidity at OD 600 nm. The

experiments were repeated twice with similar results (see S5 Fig for a repeat experiment).

https://doi.org/10.1371/journal.pone.0265511.g008
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suggesting an impact of these cations on the fitness of quiescent cells. Our results pinpoint to

the importance of magnesium for optimal regrowth of quiescent cells. The reduced magne-

sium content of the ΔrpoSmutant, compared to the wild type strain, correlates with a longer

lag phase of the mutant when LB was depleted for magnesium. Magnesium concentration may

be adjusted by σS in quiescent cells to offer optimal regrowth of cells under conditions of mag-

nesium limitation.

Lag phase is a poorly understood stage of the bacterial growth cycle [65–67]. This period

prepares bacteria for the replicative phase and is thus critical for competitive growth of bacteria

and possibly antibiotic tolerance. The Salmonella lag phase in LB rich medium was shown to

involve transient metal accumulation [65]. The cell-associated concentration of magnesium

was maximal in mid-exponential phase of growth but did not change significantly during the

lag phase [65]. In contrast, it was shown that iron, calcium, and manganese are accumulated

during the lag phase whereas cobalt concentration is reduced [65]. It is tempting to speculate

that the effects of σS on the Salmonella ionome and Fur-dependent regulation reported in the

present study contribute to this phenomenon. Since σS counteracts Fur repression of several

genes, it is likely that expression of these genes provides an advantage to non-actively growing

Salmonella cells, either for long-term survival or for exit from dormancy under specific envi-

ronmental conditions. Interestingly, the sitABCD,mntH, iro and suf genes are induced at the

onset of the lag phase in LB [65]. It will be interesting to determine whether σS is involved in

this regulation at the early lag phase and contributes to the accumulation of manganese and

iron.

No effect of the ΔrpoSmutation was revealed on the cell-associated iron concentration in

stationary phase, suggesting that the σS/Fur interplay unraveled in this study does not affect

the content, but rather modulates the usage, of iron in quiescent cells. In particular, stationary

phase cells likely relay upon the alternative Suf machinery, rather than the housekeeping Isc

system, for Fe-S cluster assembly, an hypothesis consistent with the findings that Suf is more

resistant to oxidation than Isc and is functional under iron-limiting conditions [34]. Also, σS

limits production of non-essential iron containing enzymes, such as the succinate dehydroge-

nase complex Sdh (directly at the promoter level and post-transcriptionally via ryhB1 expres-

sion) and increases the production of iron storage proteins like Dps [5–7]. σS may also relieve

repression of genes important for Salmonella regrowth in host and non-host iron limiting

environments, such as the iro genes involved in production and utilization of siderophores

[35]. Interestingly, siderophore production is associated with oxidative stress protection

through iron sequestration or other mechanisms [68–71]. Accumulation of iron can promote

the formation of reactive oxygen species through the Fenton reaction [72]. σS may affect iron

usage to simultaneously control the intracellular level of free iron during the stationary phase

and prepare the cell to a rapid accumulation of iron during the lag phase to support the replica-

tive period and iron sequestration by the host during infection. This strategy would prevent

oxidative damage while maintaining the regrowth potential and virulence of quiescent cells.

Supporting information

S1 Fig. Relative expression levels of sRNA genes in Salmonella wild-type and mutants.

Heatmaps were recovered from the Salmonella SalCom database (http://bioinf.gen.tcd.ie/cgi-

bin/salcom.pl?header_rotation=45;query=prpB;db=SalComRegulon_HL). As mentioned in

Colgan et al. [8], “strains were grown either in Lennox broth to OD600 0.1 (EEP), 0.3 (MEP),

1.0 (LEP) 2.0 (ESP) and 2.0 + 6 h (LSP) or in the InSPI2 condition (slightly acidic pH and limi-

tation of inorganic phosphate) which mimics aspects of the intra-macrophage conditions and
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induces expression of SPI2 Type 3 secretion system”.

(TIF)

S2 Fig. Relative expression levels of Top 50 up-regulated genes in a Δfur mutant. Heatmaps

were recovered from the Salmonella SalCom database (http://bioinf.gen.tcd.ie/cgi-bin/salcom.

pl?header_rotation=45;query=prpB;db=SalComRegulon_HL). As mentioned in Colgan et al.
[8], “strains were grown either in Lennox broth to OD600 0.1 (EEP), 0.3 (MEP), 1.0 (LEP) 2.0

(ESP) and 2.0 + 6 h (LSP) or in the InSPI2 condition (slightly acidic pH and limitation of inor-

ganic phosphate) which mimics aspects of the intra-macrophage conditions and induces

expression of SPI2 Type 3 secretion system”.

(TIF)

S3 Fig. The metal ion chelator EDTA extends the lag phase of the ΔrpoS mutant. Biological

replicates of that in Fig 7.

(TIF)

S4 Fig. The metal ion chelator EDTA extends the lag phase of the ΔrpoS mutant VFC331.

Same experiment as in Fig 7A–7D, but using the ΔrpoSmutant VFC331.

(TIF)

S5 Fig. Magnesium abolishes the effect of EDTA in add-back experiments. Independent

repeat experiment of Fig 8.

(TIF)
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(DOC)

S1 Dataset. ICP-MS data.
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