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Abstract

Background: Roseobacter litoralis OCh149, the type species of the genus, and Roseobacter denitrificans OCh114
were the first described organisms of the Roseobacter clade, an ecologically important group of marine bacteria.
Both species were isolated from seaweed and are able to perform aerobic anoxygenic photosynthesis.

Results: The genome of R. litoralis OCh149 contains one circular chromosome of 4,505,211 bp and three plasmids
of 93,578 bp (pRLO149_94), 83,129 bp (pRLO149_83) and 63,532 bp (pRLO149_63). Of the 4537 genes predicted for
R. litoralis, 1122 (24.7%) are not present in the genome of R. denitrificans. Many of the unique genes of R. litoralis
are located in genomic islands and on plasmids. On pRLO149_83 several potential heavy metal resistance genes
are encoded which are not present in the genome of R. denitrificans. The comparison of the heavy metal tolerance
of the two organisms showed an increased zinc tolerance of R. litoralis. In contrast to R. denitrificans, the
photosynthesis genes of R. litoralis are plasmid encoded. The activity of the photosynthetic apparatus was
confirmed by respiration rate measurements, indicating a growth-phase dependent response to light. Comparative
genomics with other members of the Roseobacter clade revealed several genomic regions that were only
conserved in the two Roseobacter species. One of those regions encodes a variety of genes that might play a role
in host association of the organisms. The catabolism of different carbon and nitrogen sources was predicted from
the genome and combined with experimental data. In several cases, e.g. the degradation of some algal osmolytes
and sugars, the genome-derived predictions of the metabolic pathways in R. litoralis differed from the phenotype.

Conclusions: The genomic differences between the two Roseobacter species are mainly due to lateral gene transfer
and genomic rearrangements. Plasmid pRLO149_83 contains predominantly recently acquired genetic material
whereas pRLO149_94 was probably translocated from the chromosome. Plasmid pRLO149_63 and one plasmid of R.
denitrifcans (pTB2) seem to have a common ancestor and are important for cell envelope biosynthesis. Several new
mechanisms of substrate degradation were indicated from the combination of experimental and genomic data. The
photosynthetic activity of R. litoralis is probably regulated by nutrient availability.

Background

The genus Roseobacter comprises the two species Roseo-
bacter litoralis OCh149 and Roseobacter denitrificans
OCh114. Both species were isolated from marine seaweed
and were the first described organisms of the Roseobacter
clade [1]. R. denitrificans is able to grow anaerobically
using nitrate or trimethyl-N-oxide (TMAO) as electron
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acceptors [1-3], whereas R. litoralis showed no denitrifying
activity [1]. R denitrificans and R. litoralis as well as some
other members of the clade have the ability to use light
energy and perform aerobic anoxygenic photosynthesis
[1,4]. In R. litoralis, the photosynthesis genes are located
on a plasmid, which is unusual for aerobic anoxygenic
phototrophs (AAnPs) [5].

The genome sequences of more than 40 Roseobacter
clade members are available, but only five of them are
finished [6]. The genome sequence of Roseobacter deni-
trificans OCh114 was published in 2007 by Swingley
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and co-workers [7] and was the first genome of an aero-
bic anoxygenic phototrophic bacterium. The absence of
ribulose bisphosphate carboxylase and phosphoribuloki-
nase supports the assumption that AAnPs do not fix
carbon dioxide via the Krebs-Cycle. Genes coding for
other anaplerotic enzymes were found in the genome of
R. denitrificans and the importance of mixotrophic
growth was evident [7].

Plasmid-encoded functions are of great interest in
genome analysis because plasmids often provide
exchangeable niche specific fitness factors. Heavy metal
resistances, e.g., are often encoded by plasmids [8,9] and
are important for marine organisms as heavy metals
accumulate in sediments [10,11], in macroalgae [12-14]
but also in other aquatic organisms [15]. Consequently,
many of the sequenced Roseobacter clade members har-
bour plasmids, but due to the fact that the majority of
the sequences are not finished, not much is known
about these plasmids. However, it is assumed that trans-
location processes between chromosomes and plasmids
occur frequently [16].

The aims of our study were the genome characteriza-
tion, comparative genomics and genome-guided physio-
logical analysis of R. litoralis, the type strain of the
genus Roseobacter. The genome of R. litoralis was com-
pared to the genome of the closely related R. denitrifi-
cans as well as to 38 genomes of other members of the
Roseobacter clade. Metabolic pathways were recon-
structed and verified by physiological tests. Heavy metal
tolerance tests with both Roseobacter species were per-
formed to confirm differences of the species indicated
by genomic data. Furthermore, insights into the regula-
tion mechanism of the photosynthetic activity of R. litor-
alis are given.

Results and discussion
General genomic features and comparison of the two
Roseobacter species

The manually curated and annotated final genome
sequence of R. litoralis OCh149 comprises a chromo-
some with the size of 4,505,211 bp and three plasmids
of 93,578 bp (pRLO149_94), 83,129 bp (pRLO149_83)
and 63,532 bp (pRLO149_63), respectively (Table 1, Fig-
ures 1 and 2). The genome encodes 4537 predicted
genes. The average G+C content of the genome is
57.23%. According to reciprocal BLAST analysis, the
two Roseobacter species share a core genome consisting
of 3415 genes (75.3% of the genes of R. litoralis). The
chromosomes of the two organisms have been subject
to many genomic rearrangements that are evident in the
chromosomal alignment (Figure 3). Of the 1122 unique
genes (24.7%) of R. litoralis, 226 are located on plas-
mids. In R. denitrificans, 714 (17.3%) genes are unique
of which 148 are plasmid-encoded. Many of the unique
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genes on the chromosomes occur in genomic islands
(GEIs), but a variety of species-specific genes are scat-
tered over the chromosomes. According to Clusters of
Orthologous Groups (COG) -categories, the majority of
these genes are involved in amino acid and carbohydrate
metabolism. The unique genes with assigned function of
R. litoralis and R. denitrificans are listed in Additional
File 1.

Genomic islands

Ten GEIs were identified on the chromosome of R.
litoralis (Figure 1, tagged with Arabic numerals) making
up ~665 kb (14.8%). In R. denitrificans, in contrast, only
~300 kb (7.1%) were identified as genomic islands. The
excess of 365 kb of alien genetic material in R. litoralis
corresponds to the larger chromosome size (~372 kb,
see also Table 1) of the organism. Thus, the additional
genetic material of R. litoralis was most likely acquired
via horizontal gene transfer.

Typically, GEIs contain a G+C content and a Codon
Adaptation Index (CAI) different from the average [17].
Furthermore, transposases within the islands and tRNAs
flanking the GEIs are indicators for translocation pro-
cesses [17,18]. Many of the genes located in GEIs are of
unknown function and several do not exhibit significant
similarities to other genes in the databases (orphan
genes). These orphan genes are thought to be phage-
derived genetic material [19]. Although no complete
prophages are present in the genome of R. [itoralis, in
some of the islands phage-like genes were identified, e.g.
in island 8 three putative phage tail proteins are located
(RLO149_c037250 - RLO149_c037270).

In other GEIs, however, genes were identified that
were probably derived from other bacterial species. Fre-
quently, amino acid and carbohydrate transport and
metabolism genes are present in the GEIs, providing R.
litoralis with additional abilities for substrate utilization.
For example island 5 contains genes for rhamnose trans-
port and degradation (RLO149_c023060 - RLO149_
¢c023140) that have been described in Rhizobia [20].
Genes involved in nitrogen metabolism were identified
in islands 1, 6 and 9 including different amidases
(RLO149_c009550, RLO149_c040080, RLO149_c040170,
RLO149_c028370), a second uncommon urease gene
cluster (RLO149_c028310 - RLO149_c028360) and
assimilatory nitrite and nitrate reductases (RLO149_
039830 - RLO149_c039850). Island 4 contains a carbon
monoxide dehydrogenase encoding gene (CODH,
RLO149_c017450 - RLO149_c017470), which is not pre-
sent in R. denitrificans. The carbon monoxide dehydro-
genase was believed to be common in the Roseobacter
clade, as all members contain the corresponding genes
[21-23]. However, recently it was shown that only a
small proportion of Roseobacter clade members, among
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Table 1 General features of the genomes of R. litoralis and R. denitrificans

R. litoralis chromosome RLO149c¢ pRLO149_94 pRLO149_83 pRLO149_63

Size [bp] 4,505,211 93,578 83,129 63,532

Protein coding sequences 4,311 86 93 47

Pseudogenes 77 14

G+C content [%] 57 58 59 55

rRNA operons 1

tRNAs 37

R. denitrificans chromosome pTB1 pTB2 pTB3 pTB4
Size [bp] 4,133,097 106,469 69,269 16,575 5,824
Protein coding sequences 3,946 105 56 16 6
Pseudogenes 20 1

G+C content [%] 58 55 59 55 55
rRNA operons 1

tRNAs 38

Data for R. denitrificans according to the NCBI database [96].

those R. litoralis, are able to oxidise carbon monoxide
and that a wide variety lacks an essential subunit of the
CODH-complex [24]. R. denitrificans is not able to oxi-
dise carbon monoxide, but instead, has genes coding for
a nitrate reductase that enables the organism to reduce
nitrate under anaerobic growth conditions. Island 8
contains genes for coenzyme PQQ biosynthesis
(RLO149_c036920 - RLO149_c036960) that are also
located in a GEI of R. denitrificans. In island 10,
genes for antigen biosynthesis were identified, e.g. UDP-
N-acetylglucosamine 2-epimerase WecB (RLO149_
c044390) and UDP-4-amino-4-deoxy-L-arabinose—
oxoglutarate aminotransferase ArnB (RLO149_c044340).
The latter is also similar to the perosamine synthetase
from Brucella melitensis, with GDP-perosamine being
part of the O-antigen of the organism [25]. Antigens are
polysaccharides and lipopolysaccharides that define the
structure of the bacterial cell surface. Genes important
for cell envelope biosynthesis are often found in islands
of environmental bacteria [26]. The cell surface struc-
ture is important for biofilm formation and host associa-
tion of the organisms and structural alteration can
provide niche adaption and phage defence [19,26-28].

Unique genes on plasmids

Several species-specific genes, of which the majority is
associated with heavy metal resistance (Table 2), are
located on plasmid pRLO149_83. Therefore, the two
Roseobacter species were compared with respect to zinc
and copper tolerance. R. litoralis showed a higher toler-
ance of zinc, whereas R. denitrificans showed a higher
copper tolerance. R. litoralis could grow without impair-
ment up to 0.08 mM of zinc, but was inhibited in its
growth in the presence of low copper concentrations
(0.04 mM). In contrast, R. denitrificans could not grow
with 0.02 mM zinc added to the medium, but was able

to grow with 0.1 mM of copper. The higher zinc toler-
ance of R. litoralis could be due to the Zn-Cpx-type
ATPase and/or the putative cobalt-zinc-cadmium resis-
tance protein CzcD (Table 2), a member of the cation
diffusion efflux (CDF) family [29]. Substrates of CDF
proteins can be various cations [29], but mainly Zn?
“-transporting CDFs such as ZitB from Escherichia coli
[30] are also known.

Most of the other putative heavy metal resistance
genes on plasmid pRLO149_83 have weak similarities to
known copper and silver efflux proteins (Table 2). But
since no higher copper tolerance of R. litoralis com-
pared to R. denitrificans was observed, the efflux sys-
tems might be involved in transport of other cations.
Two other members of the Roseobacter clade, Dinoro-
seobacter shibae DFL-12 and Roseovarius nubinhibens
ISM, have orthologous heavy metal resistance genes on
their plasmids (Figure 2B).

Plasmids are important mobile genetic elements and
therefore often contain recently acquired genetic mate-
rial. Thus, the occurrence of species-specific and also
alien genes on two of the plasmids (Figure 2B and 2C)
was not surprising. Plasmid pRLO149_94, however, is an
exception as no alien genes or genomic islands were
identified on the plasmid. Nearly the entire genetic
information of pRLO149_94 was found on the chromo-
some of R. denitrificans, with approximately 78 kb being
syntenic. Also in R. denitrificans the area was not identi-
fied as GEIL Only nine ORFs on the plasmid are not pre-
sent in the genome of R. denitrificans. The genes for the
photosynthetic apparatus comprise ~45 kb and are part
of the syntenic area with the plasmid replication genes
located amidst the photosynthesis genes in R. litoralis
(Figure 2A). The remaining 33 kb that are syntenic in
both organisms are located upstream of the photosynth-
esis genes in R. denitrificans and encode other functions.
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Figure 1 Circular plot of the chromosome of R. litoralis. Rings from the outside to the inside: 1 and 2: open reading frames (ORFs) on the
leading strand and on the complementary strand, respectively. Colours according to Clusters of Orthologous Groups (COG) -categories. 3: rRNA
cluster (pink); 4: transposases (light green) and tRNAs (black); 5: genomic islands (dark green); 6-18: orthologous ORFs according to the
Needleman-Wunsch-algorithm in the following organisms in the order of appearance: Roseobacter denitrificans OCh114, Oceanibulbus indoliflex
HEL-45, Sulfitobacter NAS-14.1, Dinoroseobacter shibae DFL-12, Jannaschia sp. CCS1, Phaeobacter gallaeciensis DSM17395, Ruegeria pomeroyi DSS-3,
Roseovarius nubinhibens ISM, Roseobacter AzwK-3b, Octadecabacter arcticus 238, Loktanella vestfoldensis SKA53, Maritimibacter alkaliphilus
HTCC2654, Rhodobacterales bacterium HTCC2150. Two organisms were chosen of each phylogenetic group outlined by Newton et al. [7]. The
shade of red illustrates the value of the algorithm with red bars representing the ORFs with the best conformity to the respective ORFs of R.
litoralis and the grey bars showing the ORFs that have no orthologs in the respective organism. 19: G+C-content of the chromosome of R.
litoralis with violet areas below average and olive areas above average. Genomic islands (GEls, labelled with Arabic numerals) and hypervariable
regions (HVRs, labelled with Roman numerals) are separated by black lines. Special features within the GEIs and HVRs are outlined and are
further discussed in the text.
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Figure 2 Circular plots of the plasmids of R. Litoralis. A-C: The inner rings display the G+C-content with violet areas below average and olive
areas above average. Orthologous ORFs in other organisms (red and grey bars) are according to the Needleman-Wunsch-algorithm. The shade of
red illustrates the value of the algorithm with red bars representing the ORFs with the best conformity to the respective ORFs of R. litoralis and
the grey bars showing the ORFs that have no orthologs in the respective organism. A: Plasmid pRLO149_94 of Rlitoralis. Rings from the outside
to the inside: 1 and 2: ORFs on the leading and complementary strands, respectively. Pink ORFs are associated with photosynthesis, blue ORFs
have different functions, dark red ORFs show the replication genes of the plasmid. 3: orthologs in the genome of R. denitrificans. All orthologs
can be found on the chromosome of R. denitrificans with ~60 kb being syntenic. Only nine ORFs do not have orthologs in the genome of R.
denitrificans including the replication genes of the plasmid. B: Plasmid pRLO149_83 of R. litoralis. Rings from the outside to the inside: 1:
predicted alien genes on the plasmid; 2 and 3: ORFs on the leading and complementary strands of the plasmid, respectively; 4-6: orthologous
ORFs in R. denitrificans, D. shibae and R. nubinhibens in the order of appearance. Nearly all orthologs in the two latter organisms are also
encoded on plasmids. C: Plasmid pRLO149_63 of R. litoralis. Rings from the outside to the inside: 1: predicted alien genes on the plasmid; 2 and
3: ORFs on the leading and complementary strands of the plasmid, respectively; 4: orthologous ORFs in R. denitrificans. The orthologs in the
genome of R. denitrificans are all located on the 69 kb-plasmid of the organism. More than half of the plasmid encodes putative alien genes.
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Table 2 Heavy metal resistance genes encoded on plasmid pRLO149_83 of R. litoralis

Accession No. Gene Name Annotation Metal lons
Copper oxidase systems
RLO149_p830810 copper resistance-like protein cu?t
RLO149_p830800 copper resistance-like protein cu?t
RLO149_p830790 putative copper resistance protein A cu’*
RLO149_p830650 copper resistance-like protein cu’*
RLO149_p830640 cupredoxin-like protein cu’t
RLO149_p830630 cupredoxin-like protein cu?t
CPx-type ATPases
RLO149_p830740 actP copper-transporting P-type ATPase (EC 3.6.3.4) Cu*/Ag”
RLO149_p830520 actP copper-transporting P-type ATPase (EC 3.6.34) Cu*/Ag”
RLO149_p830380 cation transport ATPase (P-type) family Zn**
HME-RND-proteins
RLO149_p830440 cation efflux system protein CusB-like protein aerobically Ag*/anaerobically Cu*
RLO149_p830430 CUsA cation efflux system protein CusA aerobically Ag*/anaerobically Cu*
RLO149_p830420 cusF cation efflux system protein CusF aerobically Ag*/anaerobically Cu*
CDF
RLO149_p830240 putative cobalt-zinc-cadmium resistance protein CzcD Zn**
Others

RLO149_p830340 putative ZIP Zinc transporter Zn’*
RLO149_p830610 putative integral membrane protein DUF6 ?

The proteins are categorized into different heavy metal efflux protein families. Based on sequence similarities the metal ions most likely transported by the efflux
systems are indicated in column 4. HME-RND, Heavy Metal Efflux - Resistance-Nodulation-Cell division protein family; CDF, cation diffusion efflux proteins.

on the chromosomes of AAnPs [5] and are thought to
be rather vertically than horizontally acquired genetic
material in Roseobacter clade bacteria [23].

Comparison with other members of the Roseobacter clade
To identify the genes specific for the genus Roseobacter,
the genomes of both species were compared to 38 gen-
omes of other Roseobacter clade bacteria. The results of
the comparison are shown for two representatives of
each phylogenetic subgroup of the Roseobacter clade
outlined by Newton et al. [22] in Figure 1. Six hypervari-
able regions (HVR I-VI), areas of low conservation in
the Roseobacter-clade, were found adjacent to the geno-
mic islands predicted on the chromosome of R. litoralis
(Figure 1). The HVRs of R. litoralis are characterized by
a mosaic-like structure, with regions conserved in all
Roseobacter clade bacteria alternating with genus-unique
but also species-unique genes. Frequently, tRNAs were
found flanking the HVRs, but not many transposases
were present inside the areas indicating that the regions
are permanently anchored in the chromosome [31]. The
G+C-content and also the codon-adaptation index vary
inside the HVRSs.

Of special interest is HVR I as many genes identified
in this area seem to be connected to the relation of R.
litoralis to the algal host. For example, several genes for
the degradation and transport of algal osmolytes like
taurine (RLO149 c007790 - RLO149_c007880) and

sarcosine (RLO149_c006600 - RLO149_c006630) were
identified in HVR 1. Furthermore, the genes for vitamin
B12 biosynthesis (RLO149_c006160 - RLO149_c006260)
are present. Vitamin B12 was shown to be important for
the symbiosis of D. shibae with its dinoflagellate host
[32]. A degradation pathway of erythritol is also located
in HVR T (RLO149_c008260 - RLO149_c008410). The
pathway is only present in R. litoralis and R. denitrifi-
cans and is known from Rhizobia [33,34]. In Rhizobium
leguminosarum erythritol catabolism is important for
competitiveness of the organism in the nodulation of
pea plants [34]. Thus, erythritol catabolism might also
be associated with the algal host relation of the Roseo-
bacter species. The mosaic-like structure of HVR I
resembles the symbiosis islands of Rhizobia [18,35].
Two different areas can be identified on the chromo-
some of R. denitrificans that correspond to HVR I of
R. litoralis. In the alignment of the chromosomes of
the two species, the HVRs of the two organisms form
an X-like structure (Figure 3) which is probably due to
the tendency of genes in closely related organisms to be
located in the same distance from the origin [36].
Uncharacterized sugar and amino acid transporters
are frequently found in the HVRs, e.g. in HVRs
II and V. Genes for glucoside (RLO149_c021710
- RLO149_c021770) and galactose/arabinose
(RLO149_c021930 - RLO149_c021980) transport and
degradation as well as an arsenite resistance system
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(RLO149_c022030 - RLO149_c022040) are located
in HVR III. The genes for sulfur oxidation
(RLO149_c031760 - RLO149 c031920) and the denitrifi-
cation genes (RLO149_c031300 - RLO149_c031570)
were identified in HVR IV. Due to the lack of the nitrate
reductase in R. litoralis the organism is not able to
reduce nitrate; however, genes encoding all other
enzymes required for denitrification are present. Thus, it
is possible that the organism is able to reduce nitrite to
molecular nitrogen under anoxic conditions. HVR V
contains genes for formaldehyde degradation that are
more common in the mixotrophic than in the hetero-
trophic group of Roseobacter clade members [22].

rfb-genes and host association
A rfb-gene cluster essential for the development of O-
antigens, i.e. lipopolysaccharides of the outer membranes
of Gram-negative bacteria [37], was identified on plasmid
pRLO149_63 of R. litoralis. Many of the Roseobacter
clade bacteria have rfb-genes in their genomes and in
about half of those the genes are located on plasmids. In
R. denitrificans the rfb-gene cluster is encoded on a plas-
mid of 69 kb (pTB2), a size similar to pRLO149_63.
Approximately 50% of the genes on pTB2 and
pRLO149_63 are orthologs (Figure 2C). The remaining
parts contain unique genes for each organism, and many
of these are associated with cell envelope biosynthesis.
These findings suggest that the plasmids are important
for the cell surface structure of the two Roseobacter spe-
cies and may have originated from a common ancestor.
In E. coli the O-antigens are known to interact with
the host defences and are therefore important virulence
factors of pathogenic bacteria [37]. Many other Roseo-
bacter clade bacteria with plasmid-located rfb-genes
were also isolated from surfaces of algal or animal hosts.
Therefore, we investigated whether a correlation
between the replicon location of the rfb-genes and host-
association exists. The genome sequences of marine
Rhodobacterales species available in the IMG database
[38,39] were searched for rfb-genes and the replicon
location was determined if possible (see Additional File
2). For the unfinished genomes, co-occurrence of plas-
mid replication genes with the rfb-genes on the same
DNA-contig was regarded as an indicator for plasmid
localisation. Chromosome location was confirmed by
rRNA clusters or chromosome partitioning genes on the
DNA-contigs that harbour the rfb-genes. In 24 of the 39
genomes rfb-genes were present and their location
could be identified. Chromosomal rfb-genes were found
in 12 organisms and 11 of those were isolated from the
water column. Nine of the 12 plasmid-located rfb-gene
clusters were found in organisms that were isolated
either from host surfaces, aquacultures, algae blooms or
the like. Thus, the replicon analysis of the rfb-genes of
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20 of the 24 organisms supports the hypothesis that
plasmid-location of the rfb-genes is coherent with host-
association of Roseobacter clade bacteria.

Photosynthesis

To confirm the functionality of the plasmid-encoded
photosynthesis apparatus in R. litoralis, the photosyn-
thetic activity of the strain was measured via oxygen
consumption (Figure 4). Whereas almost no reaction to
light was observed during growth, cells in the stationary
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Figure 4 Respiration rates of R. litoralis cells. A: exponential
growth phase; B: stationary growth phase. The values in mV
min™ indicate the respiration rates in the respective time intervals.
Cells were kept anoxic under nitrogen gas until oxygen was
supplied. At the beginning of each respiration measurement the cell
suspension was saturated with oxygen and the oxygen
consumption of the cells was measured in mV min™'. The response
of R. litoralis to light differs remarkably between the two growth
phases. During the exponential growth phase the initial respiration
rate in the dark was higher (220 mV min'w) than in the stationary
growth phase (140 mV min™). When exposed to light, the cells that
were in the exponential growth phase showed only a slight
decrease to 200 mV min™ (10%) of the respiration rate whereas in
the stationary phase culture the respiration rate was reduced to
43% (60 mV min™") of the original rate in the first light period and
to 25% (30 mV min’') in the second. Cells resumed 95%
(exponential growth phase) and 86% (stationary growth phase) of
their original respiration rate when darkened again.
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growth phase were highly responsive to light and
showed a reduced respiration rate when exposed to light
(Figure 4). Even though pigmentation occurred already
during the exponential growth phase, the organism did
not use the photosynthetic apparatus until the culture
reached the stationary growth phase. The use, but not
the expression, of the photosynthesis apparatus might
therefore be influenced by nutrient availability in R.
litoralis, as stationary phase cultures are nutrient
depleted. We obtained similar results for R. denitrifi-
cans, with cells in the late stationary phase showing a
stronger response to light than cells from the exponen-
tial growth phase (data not shown). For the alpha-Pro-
teobacteria Labrenzia alexandrii DF1-11 and Hoeflea
phototrophica DFL-43 periodic nutrient starvation has
been reported to trigger bacteriochlorophyll-a produc-
tion whereas only slight effects were observed for D. shi-
bae [40]. Obviously, the regulation mechanisms differ
between the aerobic phototrophic bacteria and so does
the architecture of their photosynthesis genes. In Addi-
tional File 3, the organization of the photosynthesis gene
clusters of the organisms mentioned above is compared,
showing that organisms with similar physiological traits
also have similar gene organizations. The suggestion
that the organization of genes within purple bacterial
photosynthesis gene clusters reflects regulatory mechan-
isms, evolutionary history, and relationships between
species was also made by other authors [7,41,42]. In the
oligotrophic environment of the ocean, the use of the
photosynthesis apparatus during nutrient depletion may
be an important advantage for Roseobacter species in
the competition with non-photosynthetic organisms.

Substrate tests and pathway reconstruction

Growth on different substrates was tested for R. litoralis
to substantiate the reconstruction of metabolic pathways
based on the genomic analyses. The results of the growth
experiments are shown in Additional File 4. For each
substrate the growth characteristics of R. litoralis and the
genomic data were combined and the putative degrada-
tion pathways for the substrates allowing growth are
shown in Figures 5 and 6. For the use of amino acids and
amino acid derivatives, the predictions from the genome
are mainly consistent with the experimentally achieved
data (Additional File 4). However, for the degradation of
sugars, sugar derivatives and algal osmolytes, genomic
and experimental data differ in several cases (Additional
File 4). Selected examples are discussed below.

D-mannose and D-glucosamine

For D-mannose and D-glucosamine the process of phos-
phorylation could not be revealed from the genomic data
(Figure 5). In other bacteria, a phosphotransferase system
(PTS) mediates phosphorylation of monosaccharides
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already during transport (for reviews see [43,44]). As for
the majority of the Roseobacter clade members, no com-
plete PTS is encoded in the genome of R. litoralis. Present
are genes for an EIIA component, Hpr and HprK, but no
permease was identified. The function of the incomplete
PTS is to date unknown. It rather exhibits a regulatory
function as proposed for the spirochaetes Treponema pal-
lidum and Treponema denticola [45] and as shown for
Sinorhizobium meliloti [46], which also lack the permease
component of the PTS. Therefore, a PTS-independent sys-
tem for transport and phosphorylation of D-mannose and
D-glucosamine must be present in R. litoralis.

D-galactose, L-arabinose and D-fucose

R. litoralis grew with D-galactose, L-arabinose and D-
fucose, but no complete pathways could be assigned to
the degradation of these monosaccharides. A known
mechanism for D-galactose degradation in bacteria is the
DeLey-Doudoroff pathway (DD-pathway, [47]). Parts of
the DD-pathway are encoded in the genome of R. litoralis,
namely the genes coding for 2-dehydro-3-deoxygalactoki-
nase (DgoK, RLO149_c015740) and 2-dehydro-3-deoxy-6-
phosphogalactonate aldolase (DgoA, RLO149_c015730).
The other genes required for the degradation of D-galac-
tose via the DD-pathway are not present in this gene
cluster (cluster 1, see Table 3). However, a gene with
high similarity to galactose 1-dehydrogenase (Gal,
RLO149_c021980) that catalyzes the first step of the path-
way [47] was found elsewhere in the genome (cluster 2,
see Table 3). This protein has also a high similarity to L-
arabinose 1-dehydrogenase of Azospirillum brasilense. In
this organism a pathway for L-arabinose degradation was
described that is analogue to the DD-pathway for galactose
degradation [48-50]. Beside L-arabinose 1-dehydrogenase,
also arabonate dehydratase of A. brasilense has an ortholog
in R litoralis (RLO149_c021970) which is also located in
cluster 2 (Table 3). The other proteins of the pathway
known in A. brasilense cannot be assigned to proteins of
R. litoralis. Thus, both pathways are incomplete in R. litor-
alis; however, if the two clusters are combined, a degrada-
tion mechanism based on the DD-pathway may be
functional for both sugars (Figure 5). Correspondingly, the
regulators as well as the sugar-binding periplasmic protein
of the transport system in cluster 2 are known to interact
with D-galactose, L-arabinose and D-fucose [51-54], and
also other enzymes are known to act on all three sugars
[55,56]. As no mechanism for D-fucose degradation was
identified in the genome of R. litoralis and only weak
growth was observed with this sugar, it is possible that the
enzymes also act on D-fucose but with a lower affinity.

Glycogen
R. litoralis was not able to grow with glycogen as a car-
bon source, probably due to the fact that no genes exist
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Figure 5 Predicted glycogen metabolism and catabolic pathways of sugars and sugar derivatives degraded by R. litoralis. The
substrates that were used by R. litoralis as carbon sources in the experiments are framed. Metabolites are shown in red, enzyme and gene
names as well as the EC numbers in black. If available, the corresponding gene names of the enzymes are given. Question marks indicate that
no genes for the respective reaction were predicted from the genome of R. litoralis. If question marks are combined with enzyme names, the
genes were not unambigously annotated and the given enzyme is proposed to be involved in the reaction.

in the predicted secretome coding for extracellular glyco-
gen cleavage enzymes, and also no putative transporters
for glycogen were identified. Intracellular glycogen, how-
ever, was detected in cells of both Roseobacter species
when grown in mineral medium. In contrast, no glycogen
formation was observed when the cells were grown in
complex medium. The glycogen biosynthesis and degra-
dation genes in the two organisms are therefore probably
involved in intracellular glycogen production under limit-
ing conditions. The proposed pathway for glycogen meta-

that Roseobacter clade members use the ED-pathway for
sugar breakdown [60,61]. The co-location of the genes
coding for the ED-pathway with those of the glycogen
biosynthesis and degradation indicates a close relation
of the central carbon metabolism and glycogen storage
in the Roseobacter species.

Algal osmolytes
The algal osmolytes tested in this study all served as
carbon and nitrogen sources for both Roseobacter spe-

bolism in R. litoralis is shown in Figure 5.

Glycogen formation is often induced by nitrogen star-
vation [57-59]; however, both Roseobacter species were
not nitrogen-starved. Thus, another limiting factor must

be the inducer of glycogen production
medium.
In contrast to the other Roseobacter cla

both Roseobacter species the genes for glycogen bio-
synthesis and degradation are co-located with essential
genes of the ED-pathway. It is known from other studies

cies, except for dimethylglycine. Additionally, R. litoralis
used taurine as sulfur source. It was possible to recon-
struct the pathways for algal osmolyte degradation from
the genome of R. litoralis with the three exceptions
creatinine, glycine betaine and putrescine (Figure 6,
Additional File 4).

in the mineral

de members, in

Creatinine

Whereas the degradation mechanism for creatinine is
clear in R. denitrificans, in R. litoralis the enzyme
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Figure 6 Predicted catabolic pathways of amino acids, amino acid derivatives and algal osmolytes degraded by R. litoralis. The
substrates that were used by R. litoralis as carbon sources in the experiments are framed. Metabolites are shown in red, enzyme and gene
names as well as the EC numbers in black. If available, the corresponding gene names of the enzymes are given. Question marks indicate that
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genes were not unambigously annotated and the given enzyme is proposed to be involved in the reaction.

encoding the initial step of the pathway is not encoded
in the genome (Figure 6). Nevertheless, no differences
were observed between the two organisms when grown
on creatinine. Furthermore, the enzymes mediating the
second step of both possible pathways for creatinine
degradation are present in the genome of R. litoralis
(Figure 6). Thus, the organism is able to degrade creati-
nine, but the mechanism cannot be completely recon-
structed from the genome.

Glycine betaine

The gene coding for the enzyme converting glycine
betaine to dimethylglycine (betaine-homocysteine S-
methyltransferase, BHMT) was not identified in the gen-
omes of the two Roseobacter species. However, a poten-
tial candidate gene is RLO149_c039100 which is co-
located with the genes for dimethylglycine dehydrogen-
ase (DMGDH4, RLO149_c039110) and a sarcosine
dehydrogenase (SARDH, RLO149_c039090) that are
both directly involved in osmolyte degradation (Figure
6) and are annotated according to eukaryotic enzymes.
The domain homocysteine S-methyltransferase (InterPro
database [62], entry IPR003726) that was identified in

the protein sequence of RLO149_c039100 is known to be
part of mammalian BHMTs [63], but the predicted protein
of R. litoralis shares only 26% identical amino acids with
the mammalian enzymes (E-value 6e-09). A similar ORF
(RD1_0018, 96% identity to RLO149_c039100) is encoded
in the genome of R. denitrificans that is located in the
same genomic neighbourhood as RLO149_c039100.

Only eight bacterial enzymes annotated as BHMT are
present in the UniProt database [64]. An enzyme of S.
meliloti has been described to mediate this step in gly-
cine betaine degradation [65], but the protein sequence
of RLO149_c039100 shows only weak similarity to this
protein. The genomic location, the functional domain
and the fact that both Roseobacter strains are able to
grow with glycine betaine as carbon and nitrogen
sources point to RLO149_c039100 and RD1_0018 being
involved in the degradation of glycine betaine in Roseo-
bacters, representing a new class of bacterial BHMTs.

Dimethylglycine

Even though several genes coding for dimethylglycine
dehydrogenases (DMGDH) were identified in the gen-
omes of both Roseobacter species, the strains were
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Table 3 Putative galactose degradation gene clusters in

R. litoralis

Accession No.

Annotation

Cluster 1

RLO149_c015710
RLO149_c015720
RLO149_c015730

RLO149_c015740

RLO149_c015750
RLO149_c015760
RLO149_c015770

RLO149_c015780

RLO149_c015790
RLO149_c015800
RLO149_c015810

BgaB: beta-galactosidase 1 (EC 3.2.1.23)
putative gluconolactonase

DgoA: 2-dehydro-3-deoxy-6-phosphogalactonate
aldolase (EC 4.1.2.21)

DgokK: 2-dehydro-3-deoxygalactonokinase (EC
2.7.1.58)

short chain dehydrogenase
RafA: alpha-galactosidase (EC 3.2.1.22)

putative galactoside ABC transporter inner
membrane component

putative galactoside ABC transporter inner
membrane component

putative extracellular galactoside-binding protein
HTH-type transcriptional regulator, IcIR family
putative galactoside ABC transporter ATP-

binding protein
Cluster 2
RLO149_c021930

putative HTH-type transcriptional regulator gbpR
(Galactose-binding protein regulator)

RLO149_c021940
RLO149_c021950

SbpA: multiple sugar-binding periplasmic protein
putative multiple sugar transport ATP-binding
protein

RLO149_c021960 putative multiple sugar transport permease

protein
AraC: L-arabonate dehydratase (EC 4.2.1.25)
Gal: D-galactose 1-dehydrogenase (EC 1.1.1.48)

RLO149_c021970
RLO149_c021980

neither able to utilize dimethylglycine (DMG) as carbon
nor as nitrogen source. It is possible that the DMGDHs
are only mediating the degradation of intracellular
DMG derived from the cleavage of glycine betaine.

Putrescine

The degradation of the osmolyte putrescine is likely to
occur via 4-aminobutyrate, as some of the genes of the
pathway are present (Figure 6). However, the enzymes
mediating step three and four of the pathway were not
predicted in the genome of R. litoralis and also the ami-
notransferase responsible for the last step of the pathway,
i.e. the degradation of 4-aminobutyrate to succinate-
semialdehyde, was also not identified. Steps three and
four might be mediated by RLO149_c025400 (putative
gamma-glutamyl-gamma-aminobutyrate hydrolase) and
RLO149 _c025390 (putative D-beta-hydroxybutyrate
dehydrogenase). The last step of the pathway might be
carried out by one of the uncharacterized aldehyde ami-
notransferases encoded in the genome of R. litoralis.

Taurine
Two different pathways are postulated for the transport
and degradation of taurine by microorganisms [66].
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Apparently both pathways with different transport sys-
tems are present in R. litoralis. A taurine TRAP trans-
port system in combination with a taurine
dehydrogenase (TDH) also occurs in R. denitrificans, D.
shibae, Rhodobacter sphaeroides and Paracoccus denitri-
ficans, whereas a taurine ABC transporter and a taurine:
pyruvate aminotransferase (Tpa) are present in most of
the other genome sequenced Roseobacter clade mem-
bers. Only D. shibae, R. denitrificans and R. litoralis
have both uptake and degradation systems. Common
features of these three organisms are their photosyn-
thetic activity and the association with algal hosts
[1,4,32,67,68]. The common feature of all taurine TRAP
transporter-containing organisms is their ability to grow
anaerobically [2,3,69-71]. The exception is R. litoralis,
for which no anaerobic growth was reported yet. Never-
theless, the ability to grow anaerobically is indicated by
the presence of genes for nitrite reduction (see above)
and for dimethyl sulfoxide (DMSO)/TMAO reductases
(RLO149_c007970, RLO149_c001820-RLO149_c001840).
Anoxic conditions can occur during the collapse of algal
blooms [72] which might also be the situation when
high amounts of taurine and other algal osmolytes
become available.

Conclusions

Our results show that the differences between the two
Roseobacter species and the larger chromosome of R. litor-
alis are mainly due to events of horizontal gene transfer.
Furthermore, the genomes have been subject to numerous
genomic rearrangements. Plasmid pRLO149_94 of R. [itor-
alis, on which the photosynthesis genes are encoded, was
most likely translocated from the chromosome as it can
almost completely be found on the chromosome of R.
denitrificans. The photosynthetic activity of R. litoralis was
shown to be growth-phase dependent. Whereas almost no
reaction to light was observed during exponential growth,
the organism was highly responsive to light during station-
ary growth phase. These results suggest a regulation of the
photosynthetic activity according to nutrient availability
that might also be reflected in the genetic organization of
the photosynthesis genes. A plasmid with partial synteny
to pRLO149_63 is present in R. denitrificans indicating a
common ancestor of the two plasmids. Both plasmids and
11 other plasmids of Roseobacter clade bacteria harbour
rfb-genes. The majority of these organisms were isolated
from animal or algal hosts suggesting a coherence of plas-
mid location and host association. New mechanisms for
sugar and algal osmolyte degradation were indicated. The
ability to store intracellular glycogen as well as the utiliza-
tion of algal osmolytes was reported for the first time for
Roseobacter clade bacteria. Several pathways could not be
fully elucidated, indicating R. litoralis to employ alternative
enzymes compared to the known reference organisms.
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Methods

Genome sequencing and finishing

The strains R. litoralis OCh149 and R. denitrificans
OCh114 were obtained from the German Collection of
Microorganisms and Cell Cultures (DSMZ, Braunsch-
weig Germany). The genome sequencing of R. litoralis
was carried out at the J. Craig Venter Institute (Rock-
ville, MD, USA) within the Microbial Genome Sequen-
cing Project by a Sanger sequencing-based approach.
For details see the Microbial Genome Sequencing Pro-
ject [73]. The Sanger-based sequencing resulted in 7.97
coverage of the genome sequence. Gap closure and all
manual editing steps were carried out at the Gottingen
Genomics Laboratory (University of Goéttingen, Ger-
many) using the Gap4 (v 4.11) software of the Staden
package [74]. Remaining gaps in the sequences were
closed by primer walking on PCR products. Sequences
were obtained using the Big Dye 3.0 chemistry (Applied
Biosystems), customized sequencing primers and
ABI3730XL capillary sequencers (Applied Biosystems).

Gene prediction and annotation

The prediction of coding sequences (CDS) or open
reading frames (ORFs) was done with YACOP [75]. The
results were verified and improved manually by using
criteria such as the presence of a ribosome-binding site,
GC frame plot analysis, and similarity to known protein-
encoding sequences using the Sanger Artemis tool [76].
Functional annotation of all ORFs was carried out with
the ERGO software package [77] (Integrated Genomics,
Chicago, IL, USA). The protein sequences of the pre-
dicted ORFs were compared to the Swiss-Prot and
TrEMBL databases [78]. Functional domains, repeats
and important sites were analysed with the integrated
database InterPro using the Web-based tool InterProS-
can [79].

Comparative genomics

The genomes of 38 Roseobacter clade members used for
the comparison are the same as those used for the ana-
lysis of the rfb-genes and are listed in Additional File 2.
Additionally, Roseobacter R2A57 and Loktanella sp.
SE62 were included in the comparison. For comparative
analysis, the BiBag software tool for reciprocal BLAST
analyses as well as a global sequence alignment using
the Needleman-Wunsch algorithm (pers. comm. Antje
Wollherr and Heiko Liesegang, G2L Gottingen) was
used. ORFs were considered as orthologs at a Needle-
man-Wunsch similarity-score of at least thirty percent
and an E-value < 10e-21. Circular plots of DNA
sequences were generated with the program DNAPIlotter
[80]. The comparative visualisation of the genetic orga-
nization of the photosynthesis genes of different organ-
isms was realized with the GenVision software
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(DNASTAR, Inc., Madison, WI, USA). Whole genome
alignments were performed and visualized with the
Mauve Software Tool [81].

Sequence analysis

The programs IslandViewer [82] and COLOMBO [83]
were used for the detection of alien genes and genomic
islands in the genomes of R. litoralis and R. denitrifi-
cans. To complete the computational prediction, the
predicted regions were manually checked for elements
commonly associated with GEIs like transposases, inte-
grases, insertion sequence (IS)-elements, tRNAs and
GC-content deviations [84]. For the prediction of the
secretome of R. litoralis, PrediSi [85] was used.

The Codon Adaptation Index (CAI) measures the
synonymous codon usage bias for a given DNA
sequence by comparing the similarity between the
synonymous codon usage of a gene and the synonymous
codon frequency of a reference set. For the calculation
of the CAI values the CAlcal server was used [86]. For
the functional categorization of gene products, a BLAST
search with all coding sequences was performed against
the COG database [87].

The metabolic pathways were reconstructed with the
Pathway Tools Software [88,89] from the BioCyc Data-
base collection [90]. The pathways were manually
curated if necessary.

Measurement of photosynthetic activity

R. litoralis was cultured in 500 mL Erlenmeyer flasks
containing 200 mL of modified PPES-II medium [1] (see
Additional File 5). Cells were grown at 25°C on a rotary
shaker at 120 rpm with a natural day-night-rhythm.
After 40 hours of incubation (within the exponential
growth phase) and 95 hours (stationary growth phase),
respectively, the cultures were harvested by centrifuga-
tion (7000 rpm, 10°C, 15 minutes) and washed once
with 100 mL of a salt solution containing 20 g/L NaCl,
13 g/L MgCl, x 6 H,O and 11.18 g/L KCIl. After an
additional centrifugation step, the cell pellets were
resuspended in 5 mL of the salt solution and the ODg,
was adjusted to 10. Respiration of the cells was mea-
sured via oxygen consumption [4].

Heavy metal resistance tests

The heavy metal resistance tests were carried out on
agar plates based on a modified medium described by
Shioi [91] (see Additional File 5). Heavy metal stock
solutions were prepared as aqueous solutions of 50 mM
CuCl; x 2 H,O and O4SZn x 7 H,O, respectively, and
sterile filtrated. The stock solutions were added to the
autoclaved medium directly before pouring the plates.
Each agar plate contained 20 mL of medium and 0.02,
0.04, 0.06, 0.08 or 0.1 mM of one of the heavy metals.
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Tests were prepared in duplicates. Agar plates contain-
ing no heavy metals served as controls.

The pre-cultures were grown as follows: single colo-
nies of the strains were transferred from agar plates to
20 mL of modified 70% Marine Broth medium (MB,
Difco 2216, see Additional File 5) in 100 mL Erlenmeyer
flasks. Cells were grown at 22°C on a rotary shaker (80
rpm) with a natural day-night-rhythm to an optical den-
sity (600 nm) between 0.3 and 0.4. The cell suspensions
were diluted 10 fold and 800 pL of the dilution were
plated on each agar plate containing zinc or copper.

Substrate tests

Substrate tests were performed with R. litoralis to com-
pare the experimental data with the genomic informa-
tion. As genome comparisons of the two Roseobacter
species revealed some putative differences, growth on
algal osmolytes was tested for both organisms. All sub-
strates tested as carbon, nitrogen or sulfur sources are
listed in Additional File 4. Cells of R. litoralis and R.
denitrificans were grown in sterile 22.5 mL metal-
capped test tubes containing 5 mL of modified Marine
Basal Mineral (MBM) medium [92] (see Additional File
5). Tests for taurine as sulfur source were carried out in
modified MBM medium prepared without sulfate but
with 100 uM taurine. For the substrates that were tested
as nitrogen sources, Tris-HCl in the modified MBM
medium was replaced by 0.19 g/L NaHCO3 and no
NH,4Cl was added. The pH of the medium was adjusted
to 7.5 after autoclaving with sterile 100 mM HCI. Aqu-
eous stock solutions of the substrates were prepared,
sterile filtrated and stored at -20°C or at 4°C. Final con-
centrations for sugars, sugar derivatives, ethanol, glyco-
gen and urea were 1 mg/mL, 2 mM for amino acids and
amino acid derivatives, 10 mM for the algal osmolytes
and 1 mL/L for glycerol. When the substrates served as
nitrogen sources, the final nitrogen concentration was
adjusted to 2.5 mM. All tests were carried out in paral-
lels, one additional parallel was not inoculated and
served as a control. For all substrates that were tested as
carbon sources for R. litoralis, two additional parallels
were supplemented with 1% of complex medium (modi-
fied 70% MB, see Additional File 5) to investigate
whether an additional cofactor was needed by the strain.
The requirement for supplements to the mineral med-
ium was also described for other Roseobacter clade bac-
teria [93,94]. The cultures were inoculated (1% v/v) with
cells grown in liquid complex medium.

For the tests of nitrogen and sulfur sources, mannitol
was used as carbon source for R. litoralis and glycerol
for R. denitrificans, as growth of the organisms with
these substrates yielded similar optical densities and no
addition of complex medium was necessary to support
growth. As inoculum for the nitrogen tests 200 pL (4%

Page 13 of 16

v/v) of N-starved stationary phase cultures were used.
All algal osmolytes that R. [itoralis could use as carbon
and nitrogen sources in separated experiments were
additionally tested combined as carbon and nitrogen
source within one experiment with a final concentration
of 10 mM. In all tests, inoculated parallels that con-
tained no carbon, nitrogen or sulfur source, respectively,
served as negative controls. Growth was considered as
positive if the optical density was higher than in the
respective negative controls. All cultures were incubated
at room temperature with a natural day-night-rhythm.
At suitable time intervals the optical density at 600 nm
(ODgpo) was measured with a spectrophotometer
(Bausch & Lomb). After reaching the stationary phase,
cells were transferred into fresh medium containing the
respective substrate to confirm growth. When taurine
served as sulfur source, the cells were transferred twice
to fresh medium because the sulfur-free cultures were
not growth limited compared to the parallels with taur-
ine in the first two passages. After reaching the station-
ary phase in the second growth passage, purity of each
culture was tested on an agar plate.

Intracellular glycogen

R. litoralis and R. denitrificans were tested for intracellu-
lar production of glycogen when grown in complex
medium (modified 70% MB, see Additional File 5) and
in mineral medium using the method described by
Bourassa and Camilli [57]. As mineral medium, modi-
fied MBM with NaHCOj; as buffer, 5 mM ammonium
and 1 mg/mL mannitol as carbon source (1 mL/L gly-
cerol for R. denitrificans) was used. After growth the
cells were pelleted, washed once with 1 x PBS (phos-
phate buffered saline) buffer and stored frozen until
further processing.

Nucleotide sequence accession number

The complete genome sequence of Roseobacter litoralis
OCh149 was deposited in GenBank under the accession
numbers [GenBank:CP002623]-[GenBank:CP002626].

Additional material

Additional file 1: Genes with assigned function that distinguish R.
litoralis and R. denitrificans.

Additional file 2: rfb-genes (antigen biosynthesis) in the genomes
of marine Roseobacter clade members. The isolation sources are
according to the information given in the IMG database [38]. Marked in
blue are the exceptions, i.e. the organisms that were isolated from hosts
but have chromosome-located rfb-genes and the pelagic organisms with
plasmid-located rfb-genes.

Additional file 3: Comparison of the photosynthetic gene clusters
of different anoxygenic phototrophs. The data for H. phototrophica
DFL-43 and L. alexandrii DFL-11 are based on the draft genome
sequences. The gene organization of R. litoralis and R. denitrificans is
identical, as is the case for H. phototrophica and L. alexandrii. The gene
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organization of D. shibae differs from the other two types. The two
Roseobacter species show a similar, growth phase dependent response to
light. H. phototrophica and L. alexandrii are not closely related but have a
similar regulation of bacteriochlorophyll-a production, whereas the
regulation mechanism of D. shibae is different [4]. Therefore, the gene
organization and the location of the regulators may be important for the
global regulation of the photosynthetic activity in aerobic anoxygenic
phototrophic bacteria.

Additional file 4: Results from substrate tests with R. litoralis and
predictions of substrate utilization from the genome. In bold are the
substrates for which experimental and genomic data differ. -, OD600
equal or less than negative control; +, OD600 < 0.2; ++, OD600 0.2 - 0.5;
+++, OD600 > 0.5; w, negative control < OD600 < 0.2. Results are shown
for the second growth passage unless otherwise indicated. All amino
acids had L-conformation, all sugars had D-conformation unless
otherwise indicated. Growth on almost all sugars and sugar derivatives
was considerably enhanced by the addition of 1% complex medium to
the mineral medium. Glucose was not utilized without this
supplementation. Addition of complex medium did not enhance the
growth of R. litoralis on most amino acids. Exceptions were glutamate
and the amino sulfonic acid taurine which were not utilized without
supplementation.

Additional file 5: Composition of Culture Media.
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