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Radiation concomitant with the DNA methylating drug temozolomide (TMZ) is the gold
standard in the treatment of glioblastoma. In this adjuvant setting, TMZ is regarded to be a
radiation sensitizer. However, similar to ionising radiation, TMZ induces DNA double-
strand breaks and is itself a potent trigger of apoptosis, cellular senescence and
autophagy, suggesting that radiation and TMZ act independently. Although cell culture
experiments yielded heterogeneous results, some data indicate that the cytotoxic effect of
radiation was only enhanced when TMZ was given before radiation treatment. Based on
the molecular mechanism of action of TMZ, the importance of specific TMZ and radiation-
induced DNA lesions, their repair as well as their interactions, possible scenarios for an
additive or synergistic effect of TMZ and radiation are discussed, and suggestions for an
optimal timing of radio-chemical treatments are proposed.
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INTRODUCTION

Temozolomide (TMZ), an orally deliverable alkylating chemotherapeutic agent, is essential part of
the standard treatment of glioblastoma (GBM). It is applied after tumor resection in a dose of 75
mg/m2 once per day, concomitantly with fractionated ionizing radiation (IR), with 2 Gy per
fraction, cumulating up to 60 Gy (1). After radio-chemotherapy, adjuvant treatment consists of
TMZ at higher dose (150-200 mg/m2, six cycles day 1-5/28) (1). At relapse, several modified
protocols are applied that deviate from this classic “Stupp” regimen (2). Dose-dense schedules
consist of TMZ at lower doses, i.e. 150 mg/m2 day 1-7/14, 100 mg/m2 day 1-21/28, 100 mg/m2 day
1-5/7 or 50 mg/m2 administered continuously (3). Even at these low dose levels, TMZ is effective, as
indicated by clinical studies (4, 5). Moreover, at least in O6-methylguanine-DNA methyltransferase
(MGMT)-deficient tumors, repeated TMZ treatments very likely lead to an accumulation of critical
DNA damages that trigger cell death, which is supported by our studies on glioblastoma cells in
vitro (6). The concurrent administration of TMZ with IR results in a prolongation of overall survival
(OS) and progression free survival (PFS) by a few months (1).

An alternative therapy regimen is based on lomustine (CCNU), a chloroethylating agent that
induces O6-chloroethylguanine and subsequently interstrand-crosslinks in the DNA (7). It is
administered at day 1, followed by TMZ day 2-6 of the 6-week cycles. In this setting, the PFS is
identical to the Stupp protocol, but the OS is increased, albeit at the expense of additional side effects
(8). In this setting, IR is not included even though it is conceivable that IR together with lomustine
ameliorates glioblastoma cell death, given the cell death pathway triggered by chloroethylating
agents (7). However, it is expected that the side effects in the irradiation field are more severe since
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the toxicity of lomustine and IR is likely not restricted to the
proliferating tumor cell pool, but also to the non-proliferating
healthy brain tissue. In contrast, the toxic effect of TMZ is strictly
limited on replicating cells (9) and, therefore, specifically affects
the proliferating tumor cell population. Nearly nothing is known
about the complex interaction of TMZ, IR and lomustine-
induced DNA damage and signaling.
TMZ AND RADIATION

In chemoradiation, TMZ is believed to be a radiosensitizer (10).
This view is based on a series of experimental studies which,
taken together, led to the conclusion that pretreatment with
TMZ or simultaneous treatment with TMZ and IR increases
cytotoxicity above the additive effect. Actually, these studies are
quite heterogeneous, ranging from additive to near-synergistic
effects (11–15). Thus, treatment with a low dose of TMZ 2 h
before irradiation exacerbated the cytotoxic effects that were
described as supra-additive, which was not the case when TMZ
was administered after IR (11). We repeated this experiment and
were able to confirm that TMZ pretreatment enhances the level
of IR-induced apoptosis. However, this was only the case if a high
dose of TMZ was used (100 µM instead of 20 µM). It is important
to note that in this setting IR (6 Gy) and TMZ alone did not
enhance apoptosis (which was measured 5 h after IR treatment)
above the control level (Figure 1A).

Apoptosis induced by TMZ in glioblastoma cells is a late
response, starting 3 d after TMZ treatment and reaching a
maximum 5 d later, while senescence reaches a plateau after 7
d (17). To see whether IR has an impact on TMZ-induced cell
death, we treated glioblastoma cells with a therapeutically
relevant low dose of 20 µM TMZ 2 h before or 6 h after IR
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(6 Gy) and measured apoptosis and cellular senescence (CSEN) 7
days later. Under these conditions, both TMZ and IR alone
induced significant apoptosis. Interestingly, TMZ pre- and post-
treatment were effective in enhancing the apoptosis level
(Figure 1B). For the endpoint cellular senescence we also
observed, similar to apoptosis, a significant increase
(Figure 1B). However, the effects were less than additive,
indicating that IR provokes rather an inhibiting effect on
TMZ-induced genotoxic pathways. Overall, our data support
the notion that the timing (pre-treatment) and the TMZ dose are
critical as to the amelioration of the cytotoxic effect of IR.
TMZ - A RADIOSENSITIZER?

Whether TMZ is a real radiosensitizer has not yet been critically
questioned. As we know the mechanism of action of TMZ quite
precisely (7, 18), it is pertinent to answer this question anew. A
genuine radiosensitizer is characterized by provoking an increase
in the radiation effect, whereby the radiosensitizer itself is not
toxic (19). In tumor therapy, the intended endpoint of the
biological radiation effect is death of the tumor cell, with the
number of unrepaired DNA double-strand breaks (DSBs) being
the critical, decisive factor (20). Theoretically, radiosensitization
can occur through the following mechanisms: a) increase in the
number of radiation-induced DSBs, b) reduced repair of the
induced breaks resulting in an enhanced level of critical breaks,
c) amelioration of the DNA damage response that triggers cell
death, d) stimulation of pro-apoptotic pathways, e) inhibition of
antiapoptotic pathways, f) inhibition of autophagy and cellular
senescence, which counteract the cell death response.

Does TMZ meet these requirements? TMZ does not impact
the repair of radiation-induced DSBs. However, it is conceivable
A B

FIGURE 1 | TMZ and IR- induced apoptosis and senescence. (A) Effect of TMZ pretreatment on radiation-induced apoptosis. Human LN229 glioblastoma cells in
the exponential growth phase were treated with TMZ (20 or 100 µM) and 3 h later irradiated with g-rays (6 Gy). Apoptosis (annexin V+, PI-), late apoptosis/necrosis
(annexin V+, PI+) and total cell death were measured 5 h later by flow cytometry. Data are the mean of 4 independent experiments +/- SEM. *p < 0.05; ***< 0.001.
(B) Effect of IR pre- and post-treatment on TMZ-induced apoptosis and cellular senescence. Human LN229 glioblastoma cells in the exponential growth phase were
treated with TMZ (20 µM) and 3 h later irradiated with g-rays (6 Gy) (TMZ-IR). In a parallel setting, they were irradiated (6 Gy) and 6 h later treated with TMZ (20 µM)
(IR-TMZ). Apoptosis (early apoptosis: annexin V+/PI-; late apoptosis: annexin V+/PI+) and senescence (C12FDG+) were measured 7 d later by flow cytometry. Data
are the mean of 3-4 independent experiments +/- SEM. *p < 0.05; **< 0.01; ***< 0.001 ; ****<0.0001. Experiments were essentially performed as previously
described (16).
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that the genotoxic properties of TMZ itself contribute to an
increase in the amount of toxic DSBs. How this can occur
requires a closer look at the mode of action of TMZ.
Chemically, the drug is a triazene derivative that does not need
metabolic activation. It decomposes spontaneously in the cell
yielding 3-methyl-(triazen-1-yl)imidazole-4-carboxamide and,
in a second step, 5-aminoimidazole-4-carboxamide and
monomethyl hydrazine, which finally methylates all
nucleophilic centers in the cell. However, as revealed by studies
with DNA repair mutants and isogenic cell lines (21), the main
cytotoxic target of TMZ is the nuclear DNA. Similar to other SN1
alkylating agents, TMZ alkylates the DNA at 12 nucleophilic sites
(22). The major methylation products are N-methylpurines such
as N7-methylguanine, N3-methylguanine, and N3-
methyladenine (comprising about 80% of total alkylation),
whereas base oxygen methylations are less frequent. Thus, O6-
methylguanine (O6MeG) accounts for only 7% of the total DNA
alkylation. Although produced in minor amounts, O6MeG is the
main mutagenic, carcinogenic, genotoxic, and cytotoxic lesion
(23). It is also responsible for autophagy and cellular senescence,
which are induced by TMZ concomitant to apoptosis and which
counteract cell death (17, 24).

TMZ has a short half-life (about 2 h in serum) and therefore
exposures can be considered pulse-treatments. O6MeG in the
DNA arrives a peak level within 3-4 h after TMZ treatment of
glioblastoma cells (16). In cells with the DNA repair protein
MGMT the damage is repaired within minutes and therefore
cannot develop any toxic effects. However, in tumor cells without
MGMT, which are classified as promoter-methylated (25),
O6MeG remains and accumulates following repeated
treatments in the tumor cell DNA.
MOLECULAR MECHANISM OF
TMZ AND IR

The mechanisms of O6MeG-triggered cell death responses have
been thoroughly investigated (26). O6MeG itself is not a
cytotoxic DNA damage, but in proliferating cells the lesion
results in O6MeG/thymine mismatches during DNA
replication. These are recognized by the cell’s mismatch repair
(MMR) system. The MMR proteins (MSH2, MSH6, MLH1 and
PMS2) repair the damage by removing thymine, but the
mispairing properties of O6MeG results in restoring the
mismatch; the repair is on the spot, leading to futile repair
cycles. This finally causes gaps in the DNA and, in a subsequent
round of replication, inhibition of the DNA synthesis and open
replication forks with vulnerable single-stranded DNA, whose
cleavage by nucleases inevitably leads to DSBs. This occurs in the
post-treatment cell cycle (i.e. two DNA replication cycles after
induction of O6MeG are required), which is compatible with the
time-course of apoptosis and DSB formation (27). Results
obtained with synchronized cells confirmed this model (28). It
was further shown that DSBs, induced by the processing of
O6MeG/thymine, trigger complex DNA damage response
pathways, which are activated primarily by ATR, and
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secondary by ATM, and downstream by CHK1 and CHK2,
respectively (29), as well as activation of the SIAH1-HIPK2–
p53 axis (30). In this scenario, the following factors determine
drug resistance: MGMT, MMR, the proliferation level, DNA
damage response (DDR) activation, and DSB repair by
homologous recombination (HR). Repair of TMZ-induced
DSBs by non-homologous end-joining (NHEJ) plays only a
marginal role (31, 32). In contrast to TMZ, IR induces DSBs
replication independently and the main pathway of DSB repair
following IR in G1 is NHEJ (33). Non-repaired IR-induced DSB
activate the DDR mainly via ATM, while O6MeG mediated
replication blocks and DSBs activate both ATR and ATM,
which trigger downstream cell death pathways (7, 29).

In view of this scenario, it is conceivable that the DSB rate in the
tumor cells is increased, and cell death pathways are activated to
a greater extent if TMZ is administered together with IR
(see Figure 2A). This presupposes, however, that a) the tumor
cells are MGMT-deficient, b) the tumor cells proliferate (since the
conversion of O6MeG into DSB is strictly replication-dependent)
and c) MMR as well as the DDR are not affected by IR. It should be
noted that IR is a potent inducer of genes, which has also been
discussed for the MGMT gene (34). However, MGMT silencing is
caused by promoter methylation and IR would therefore have to
change the promoter methylation status, which according to
available data is not the case. Moreover, we have not been able to
demonstrate any MGMT induction by IR in glioblastoma cells
in vitro (35).

The possible influence of IR on mismatch repair, DNA
synthesis and tumor cell proliferation is critical. In vitro, the
MMR genes MSH2 and MSH6 were shown to be downregulated
by IR (17). Whether this also occurs in vivo is unknown.
Radiation inhibits cell cycle progression, arresting cells in the
G1/S (36), and dose response curves do not display a no-effect
threshold for DNA synthesis inhibition (37). It is therefore
conceivable that DNA synthesis is inhibited already by a single
therapeutic dose of 2 Gy, and even more so by repeated doses.
Under these conditions TMZ will inevitably become ineffective
since the conversion of O6MeG into DSB cannot take place.
According to these considerations, radiation prior to the
administration of TMZ would be counterproductive, at least if
the radiation dose is sufficiently high to cause DNA synthesis
inhibition through G1 blockage (Figure 2A). It is conceivable
that concurrent daily treatments with 2 Gy plus TMZmay lead to
even stronger inhibition of replication and therefore to a
significant attenuation of the TMZ-induced cytotoxic response.
POSSIBLE INTERACTIONS BETWEEN
RADIATION- AND TMZ-INDUCED
LESIONS

As already mentioned, experimental evidence suggests that
treatment of GBM cells with TMZ + IR can have both
synergistic and additive effects. A detailed study showed that
dosage and timing are crucial. Using very low doses of TMZ,
radiosensitization was only recorded when TMZ was given to the
June 2022 | Volume 12 | Article 912821
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cells before irradiation; TMZ post-treatment had no effect (11). It
was concluded that toxic N-alkylations induced by TMZ (such as
3-methyladenine) and O6MeG interact, leading to an increase in
the DSB rate. A model based on this supposition is shown in
Figure 2B. This model claims that base excision repair in
O6MeG/T mismatch repair patches may lead to DSB
formation. If one additionally assumes that following
irradiation oxidative base damages (such as 8-oxoG or thymine
glycol) were generated in the immediate vicinity of O6MeG, it is
conceivable that MMR of O6MeG/T and, concomitantly, BER of
oxidative damage (e.g. through the repair enzyme OGG1) in the
O6MeG harboring strand lead to the formation of
DSB (Figure 2C).

This model applies to radiation exposure in the TMZ post-
treatment cell cycle. It does not explain, however, why pretreatment
with TMZ has a radio-sensitizing effect (Figure 1A). An
explanation for this finding rests on the supposition that base
damage through alkylation (N7-MeG, N3-MeG, N3MeA) and
oxidation (e.g. 8-oxoguanine) in overlapping BER patches may
lead to DSB, similar to what was proposed for extensive alkylation
damage in overlapping repair patches (38). Given a patch size of
about 25 nucleotides during long-patch BER (39) this likely
happens at high DNA alkylation and oxidation levels. Since BER
peaks immediately after damage induction, DSB formation in
overlapping BER patches is anticipated to occur in the first hours
after treatment. This is entirely different from DSBs resulting from
O6MeG/T processing, which results in a wave of DSB >3 days after
TMZ treatment (own unpublished data). Interestingly, apoptosis
inducedby IR inTMZpretreated glioblastoma cells canbeobserved
already 5 h after irradiation. It is also important to note that a low
doseofTMZis insufficient;onlywithahighdoseof100µMtheyield
of radiation-induced apoptosis was significantly enhanced
(Figure 1A). This data confirms what was reported by Bobola
et al. (11), and is compatible with the model shown in Figure 2D.
Theobservation thatTMZpretreatment leads to radio-sensitization
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in both MGMT proficient and deficient cells, i.e. independent of
O6MeG (11), further supports this model. In summary, TMZ
appears to be a radiosensitizer when TMZ treatment occurs prior
to irradiation.

It is important to note that apart from being a radiosensitizer,
TMZ itself is a powerful cytotoxic agent that induces not only
apoptosis but also autophagy and cellular senescence (24).
Importantly, dose-response studies revealed that O6MeG
adducts in the DNA, DSBs, apoptosis and senescence increase
linearly with dose, without a clear threshold (16, 40). This
supports the notion that low doses of TMZ are effective in
MGMT lacking tumors. The cytotoxic potency of TMZ leads
to the question of whether, conversely, IR can cause an
amplification of the TMZ effect, i.e. acting as drug sensitizer.
This is conceivable given the cell death cascade evoked by
O6MeG. In this scenario, blocked replication forks that activate
ATR, and DSBs generated through O6MeG/T-MMR activating
ATM (29) are the decisive downstream events triggering the
DDR (Figure 2A). If in this window additional DSBs were
induced by radiation treatment, it is conceivable that the toxic
effect of TMZ is ameliorated. However, own unpublished data
showed that no synergistic, but at best only additive effects were
recorded under these treatment conditions.
CONCLUSIONS

What are the conclusions regarding dose and timing in TMZ-
radiotherapy? If we translate these considerations into the
clinical application, we would like to suggest modification of
the therapy protocol in a following way.

a) Given the facts that IR inhibits DNA synthesis and TMZ
requires DNA replication, it is reasonable to conclude that the
TMZ treatment should initially be carried out for 3 days
A B DC

FIGURE 2 | Mechanism of TMZ-induced cytotoxicity and cellular senescence and possible mode of interaction of TMZ and IR. MGMT and IR inhibiting the cytotoxic
pathway are indicated. DDR: DNA damage response involving the kinases ATR, ATM and the transcription factor p53. (A) Genotoxic pathway triggered by O6MeG;
futile MMR cycle model. (B) MMR and BER of N-methylation lesions cooperate in inducing DSBs. (C) MMR and BER of oxidative lesions cooperate in inducing
DSBs. (D) DSBs are formed in overlapping base excision repair patches of lesions induced by TMZ and radiation. BER, long-patch base excision repair; MPG, N-
methylpurine-DNA glycosylase; OGG1, 8-oxo-guanine-DNA glycosylase.
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without radiotherapy. This TMZ boost is anticipated to be
most effective as it targets the proliferating glioblastoma cell
population. For this boost a high dose (200 mg/m2/day),
which is usually used for maintenance therapy, is
recommended since it is expected to be effective also in
cancer cells expressing MGMT at a very low level.

b) We further recommend starting the radio-chemotherapy cycle
with a high dose of TMZ (200 mg/m2 + 2 Gy) for a short
period (3 days) to enable DSBs to be formed according to the
model in Figure 2D. After this TMZ-IR boost, therapy
according to the classical scheme (TMZ 75 mg/m2 + RT 2
Gy) should be continued. With this boost TMZ-radiotherapy
it is anticipated that in the initial phase of treatment the
tumor cell cytotoxicity through TMZ can fully be expressed.

c) Given the fact that TMZ pretreatment is most effective in
exerting radiosensitization, TMZ should be administered 2-4
hours before irradiation (the peak plasma level after oral TMZ
is reached after about 2 hours and DNA alkylation is at its
maximum after 3-4 hours).

d) Not only IR, but also TMZ causes cell cycle arrest, which limits
apoptosis induction. If this immediate-early effect is transient (in
contrast to senescence), it is anticipated that therapy-free intervals
(of 2 days) may enhance the tumor-cytotoxic effect because of
replication recovery. At the same time limiting side effects
(notably hematotoxicity) might be reduced because of MGMT
restoration in the stem cell compartment. Of note, CD35+
hematopoetic stem cells contain very low MGMT levels (41).

e) A benefit of concomitant TMZ-radiotherapy was recorded not
only for promoter methylated, but also unmethylated
(MGMT+) cases (42). This supports the view that an
MGMT-independent minor pathway does exist, which is
stimulated in the concurrent TMZ-radiotherapy setting
(outlined in Figure 2D). Thus, on the basis of this model,
Frontiers in Oncology | www.frontiersin.org 5
a benefit of concurrent TMZ-radiotherapy is expected
independent of the MGMT status.

f) Both IR and TMZ are strong inducers of cellular senescence,
causing an irreversible proliferation arrest. This will necessarily
negate the cytotoxicity of TMZ, although attenuating
(transiently) tumor growth. Thus, the role of senescence-
associated secretory phenotype, exhibited by glioblastoma
cells upon TMZ treatment (17), for the progression of the
disease remains to be established and the use of senolytic drugs
in glioblastoma radio-chemo therapy a reasonable challenge.
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