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Deciphering the molecular networks that discriminate organ-confined breast cancer

from metastatic breast cancer may lead to the identification of critical biomarkers

for breast cancer invasion and aggressiveness. Here metabolomics, a global study of

metabolites, has been applied to explore the metabolic alterations that characterize

breast cancer progression. We profiled a total of 693 metabolites across 87 serum

samples related to breast cancer (46 clinically localized and 41 metastatic breast

cancer) and 49 normal samples. These unbiased metabolomic profiles were able to

distinguish normal individuals, clinically localized and metastatic breast cancer

patients. 9-cis-Retinoic acid, an isomer of all-trans retinoic acid, was identified as a

differential metabolite that significantly decreased during breast cancer progression

to metastasis, and its levels were also reduced in urine samples from biopsy-positive

breast cancer patients relative to biopsy-negative individuals and in invasive breast

cancer cells relative to benign MCF-10A cells. The addition of exogenous 9-cis-reti-

noic acid to MDA-MB-231 cells and knockdown of aldehyde dehydrogenase 1 fam-

ily member A1, a regulatory enzyme for 9-cis-retinoic acid, remarkably impaired cell

invasion and migration, presumably through preventing the key regulator cofilin

from activation and inhibiting MMP2 and MMP9 expression. Taken together, our

study showed the potential inhibitory role for 9-cis-retinoic acid in breast cancer

progression by attenuating cell invasion and migration.
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1 | INTRODUCTION

Breast cancer is the most frequently diagnosed and death-related

cancer in women.1 Recently, breast cancer has represented 15% of

all newly diagnosed female cancers in China, the incidence of which

is increasing at a rate of 3% to 4% per year.2 Cancer metastasis3 is

the major cause of death for breast cancer patients, which is

accompanied by complex molecular events. Deciphering the molecu-

lar networks that discriminate organ-confined breast cancer from

metastatic breast cancer may lead to the identification of critical

biomarkers for breast cancer invasion and aggressiveness. Currently,

however, little is known about the global metabolomic alterations

that characterize breast cancer invasion and progression.

Metabolomics is a new, rapidly expanding field dedicated to

extensive analysis of hundreds of metabolites in biological systems

Jing Wu and Rui Yang contributed equally to this work.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any

medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

© 2018 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

Received: 18 January 2018 | Revised: 12 April 2018 | Accepted: 20 April 2018

DOI: 10.1111/cas.13629

Cancer Science. 2018;109:2315–2326. wileyonlinelibrary.com/journal/cas | 2315

http://orcid.org/0000-0002-7020-2797
http://orcid.org/0000-0002-7020-2797
http://orcid.org/0000-0002-7020-2797
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.wileyonlinelibrary.com/journal/CAS


(ie, its “metabolome”),4 which is a useful complement to the charac-

terization of several physiological and pathological conditions and

offers promise as a clinical tool for disease diagnosis and predic-

tion.5,6 The metabolome can be considered the downstream end

product of the complex interaction of genome, transcriptome and

proteome, and affected by perturbations as a result of physiology,

pathology and iatrogenic factors.7,8 Discovery of regulatory enzymes

and genes through differential metabolites and the known pathways

will help us to gain better understanding of dysregulated metabolism

in disease initiation and progression.

Breast cancer has been associated with profound alterations in

metabolic systems, which have been demonstrated in many preclini-

cal and clinical metabolomics studies of breast cancer cells, tissues,

serum and urine.9-12 For example, glutamate was found to success-

fully differentiate breast cancer patients from normal controls.13

Plasma metabolic profiles of breast cancer patients showed that a

panel of 8 differential metabolites, including carnitine, lysophos-

phatidylcholine (20:4), proline and alanine, was identified to distin-

guish between subtypes of breast cancer.14 However, metabolomics

biomarker and differential pathways are difficult to replicate among

different studies, primarily as a result of the heterogeneity of

patients and the different analytical and clinical protocols.15,16 More-

over, limited data are available to characterize the metabolomics

changes during breast cancer progression by metabolic profiling of

biospecimens.

Liquid chromatography coupled with mass spectrometry (LC/

MS), gas chromatography coupled with mass spectrometry (GC/MS),

and NMR are the three most commonly used techniques for meta-

bolomics studies.17,18 LC/MS and GC/MS techniques have the

advantage of higher sensitivity19 and greater separation efficiency,

respectively.20 Combined use of LC/MS and GC/MS could be a bet-

ter choice to profile different classes of metabolites.

In the present study, metabolomics was applied to identify the

distinct metabolite signatures of patients with metastatic breast can-

cer and screen the metabolic markers associated with breast cancer

metastasis, which could provide a theoretical basis for early diagno-

sis, prognosis evaluation and therapeutic target research of breast

cancer. The initial training study was conducted with the use of 46

clinically localized breast cancer serum samples (LC), 41 metastatic

breast cancer serum samples (MT), and 49 normal control samples

(NC), which were profiled using ultra-performance liquid chromatog-

raphy-linear ion trap mass spectrometry (UPLC-LTQ/MS), and fur-

ther validated with 50 LC and 50 MT profiled using gas

chromatography-triple quadrupole mass spectrometry (GC-QQQ/

MS). Moreover, breast cancer urine samples and invasive breast can-

cer cells were used to support the identified metabolic feature.

2 | MATERIALS AND METHODS

2.1 | Cells, reagents, and instruments

MCF-10A, MDA-MB-231, MDA-MB-468 and MCF-7 cells were

obtained from ATCC (Shanghai, China). The cells were grown in

DMEM (Invitrogen, Carlsbad, CA, USA) under 5% CO2. MDA-MB-

231 and MCF-7 cells were grown in charcoal-stripped serum con-

taining media for 24 hours, before treatment with indicated concen-

trations of 9-cis-retinoic acid (9-cisRA; KGaA Merck, Darmstadt,

Germany). Antibodies to cofilin, P-cofilin, MMP2, MMP9, aldehyde

dehydrogenase 1 family member A1 (ALDH1A1) and b-actin were

from Cell Signaling Technology, Inc. (Beverly, MA, USA).

Formic acid and acetonitrile (ACN) were obtained from Merck

(KGaA Merck). All standard (L-phenylalanine, glycerophosphocholine,

chenodeoxycholic acid glycine conjugate and lysophosphatidylcholine

[lysoPC] [18:0]) preparations were purchased from Sigma-Aldrich (St

Louis, MO, USA).

The ultra-performance liquid chromatography/mass spectroscopy

(UPLC/MS) portion of the platform is based on an Accela UPLC

(Thermo Fisher Scientific Corporation, Waltham, MA, USA) and a

LTQ-Orbitrap XL hybrid mass spectrometer (Linear Ion Trap mass

spectrometer with Orbitrap; Thermo Fisher Scientific Corporation).

The GC/MS portion is based on an Agilent 7890A Series GC and a

QQQ mass spectrometer (Triple Quadrupole mass spectrometer;

Thermo Fisher Scientific Corporation).

2.2 | Sample collection

All samples were collected from Tianjin Medical University Cancer

Institute & Hospital with informed consent according to approval of

the Institutional Review Board. Detailed clinical characteristics of

serum samples used in the profiling phase of this study are provided

in Table 1. Analogous characteristics for urine samples used in the

validating phase of this study are given in Table S1. All samples were

stored at �80°C until use.

2.3 | Sample preparation

Serum sample (100 lL each) was mixed with 400 lL methanol to

precipitate proteins, and then centrifuged (4°C, 15 000 g, 30 min-

utes). The supernatant was filtered using a 0.22-lm membrane and

detected by LC/MS.

Serum and urine samples were centrifuged at 4°C, 15 000 g for

30 minutes, and the supernatant was extracted with 1 mL degassed

isopropanol/acetonitrile/water (3/3/2) at 4°C for 5 minutes. The

extracts were subsequently dried down and resuspended in 50%

aqueous acetonitrile to remove most of the complex lipids. After dry

evaporation, extracts were derivatized and subjected to GC/MS

analysis.

As part of the quality control (QC) and system conditioning pro-

cess, a pooled QC sample was prepared by mixing equal volumes

(20 lL) of each sample.

2.4 | Liquid chromatography coupled with mass
spectrometry analysis

The chromatography system was equipped with a binary solvent

delivery manager, and a sample manager. Chromatographic
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separation was carried out using a gradient of ACN : water (both

solvents were modified by the addition of 0.1% formic acid) from

5% to 95% over a 10-minute period, followed by 95% ACN for

4 minutes. Then, the chromatographic elution gradient was

immediately reduced to 5% ACN, which was used to balance the

analytical column (Hypersil GOLD C-18; Thermo Fisher) for the

final 4 minutes. The LTQ Orbitrap XL hybrid MS21 was set for

continuous monitoring of positive ions, and data were collected

over 15 minutes in centroid mode over the mass range

50-1000 m/z. MS resolution was at 100 000 full-width half-

maximum (FWHM) and the calibration standards (caffeine,

Ultramark 1621) were used to assure chromatographic

consistency.

2.5 | Gas chromatography coupled with mass
spectrometry analysis

Samples were redried under vacuum desiccation for a minimum

of 24 hours prior to being derivatized under dried nitrogen using

bis(trimethylsilyl)trifluoroacetamide (BSTFA). During the course of

the run, temperature was ramped from 80°C to 300°C in a 35-

minute period, followed by 300°C for 8 minutes. Collision gas

velocity was 2.25 mL/min for helium and 1.5 mL/min for nitro-

gen. QQQ mass spectrometry was set for continuous monitoring

of positive ions using electron impact ionization and high resolu-

tion.

Level of target metabolite was quantified by selected ion moni-

toring (SIM) using isotope dilution electron-impact ionization GC/

MS, and relative area counts were obtained by manual integration of

its chromatogram peaks using Xcalibur software.

2.6 | Statistical analysis

MZmine 2.0 and SIMCA (version 14.1; Umetrics, Malm€o, Sweden) were

used for peak detection and establishing the principal component anal-

ysis (PCA) and orthogonal partial least squares discriminant analysis

(OPLS-DA) model.22,23 Preliminary selection of differential metabolites

was accomplished using the corresponding variable importance (VIP)

value, coefficient plot and s-plot. IBM SPSS Statistics for Windows,

version 19.0 (IBM Corp., Armonk, NY, USA) was used for data analysis.

Two-tailed Wilcoxon rank-sum tests were used to compare metabolite

expression levels for 2-sample tests: NC vs LC, LC vs MT. Steel-Dwass

tests were used for multiple comparisons between all groups: NC vs LC

vs MT. Two-tailed t test was used to compare pairwise differences in

expression in cells, and ANOVA was used for comparisons involving

multiple cells. The threshold for significance was P < .05 for all tests.

Association between metabolite expression level and cell invasiveness

was assessed by Pearson correlation coefficients. Hierarchical clustering

was carried out on the log transformed normalized data using the MeV

software package (version 4.9.0).

2.7 | Metabolomics pathway analysis

Database sources including the Human Metabolome Database,

KEGG and MetaboAnalyst were used for the identification of altered

metabolic pathways.

2.8 | RNA interference

Following the manufacturer’s instructions, transient transfection was

carried out by using Lipofectamine 2000 (Invitrogen) with

TABLE 1 Clinical characteristics associated with serum specimens used for metabolomic profiling

Samples LC group MT group NC group

Sample no. 46 41 49

Age (yr) 54.1 (33-64) 58.3 (37-66) 50.5 (30-59)

Luminal B (HER2 positive and ER positive) 23 11 —

Basal-like (HER2 negative and ER negative) 4 21 —

Luminal A (HER2 negative and ER positive) 7 4 —

HER2-enriched (HER2 positive and ER negative) 12 5 —

TNM stage IIA 15 — —

IIB 18 — —

IIIA 8 — —

IIIB 5 — —

IV 0 41 —

Metastatic sites Liver — 13 —

Lung — 15 —

Bone — 8 —

Soft tissue — 4 —

Diaphragm — 1 —

ER, estrogen receptor; HER2, human epidermal growth factor receptor 2; LC, clinically localized breast cancer serum group; MT, metastatic breast can-

cer serum group; NC, normal control serum group. “—” represents the number is 0.
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ALDH1A1-specific siRNA (insert CATGATTCAGTGAGTGGCAA-

GAAAT) and scramble sequence siRNA from Invitrogen. BLOCK-iT

Fluorescent Oligo was used to examine transfection efficiency (Invit-

rogen). Seventy-two hours after transfections, cells were harvested

and used for further experiments.

2.9 | Reverse transcription-PCR

Total RNA was extracted using Trizol (Invitrogen, Carlsbad, CA, USA).

For the RT-PCR, the One Step RNA PCR Kit (AMV) was used (TaKaRa,

Dalian, China). The PCR procedure was done at 94°C for 1 minute, at

56°C for 1 minute and at 72°C for 1 minute with a total of 35 cycles.

Specific primers for GAPDH (forward, 50-GCCACTAGGCGCT-

CACTGTTCT-30; reverse, 50-TGGGGTCGGGTCAACGCTAGG-30),

ALDH1A1 (forward, 50- GAAGGAGATAAGGAGGATGTTGA-30;

reverse, 50- CATTGACTCCATTGTCGCCAG-30) were from TaKaRa.

2.10 | Western blotting assay

Western blotting assay was carried out as described by Sun et al.24

Briefly, cells were lysed by 19 SDS lysis buffer (Tris-HCl, pH 6.8,

62.5 mM, 2% SDS, 10% glycerol). Equal amounts of cell lysates

(20 lg per lane) were loaded onto 10% SDS-PAGE systems and

transferred onto PVDF membranes (Immobilon-P; Millipore, Burling-

ton, MA, USA). The membranes were probed with primary antibodies

followed by HRP-conjugated secondary antibody and visualized by

using ECL reagents (Pierce, Rockford, IL, USA).

2.11 | Proliferation assay

Cells were exposed to different concentrations of 9-cisRA for 24

and 48 hours in 96-well plates. Proliferation assay was carried out

as described by the manual of CCK-8 (CK04; Dojindo, Kumamoto,

Japan).

2.12 | Invasion assay

Cell invasion assay was done as previously described.25 Briefly, the

upper surface of a Transwell (8-lm pore size; Corning, Corning, NY,

USA) was coated with 20 lL diluted Matrigel (BD Biosciences,

Franklin Lakes, NJ, USA). Equal numbers of the indicated cells were

seeded in the upper chamber of the Transwell in serum-free med-

ium, with FBS added to the lower chamber. After incubation for

48 hours, non-invading cells were removed with a cotton swab, and

the invaded cells were stained with crystal violet. Average invaded

cell number per field of view was obtained from 5 random fields.

F IGURE 1 Metabolomic profiling of
breast cancer. A, Venn diagram of 693
metabolites measured across 49 NC, 46
LC, and 41 MT serum samples. LC,
localized breast cancer serum sample; MT,
metastatic breast cancer serum sample;
NC, normal control sample. B, Heat map
representation of unsupervised hierarchical
clustering of (A) (rows) grouped by sample
type (columns). Shades of red and green
represent elevation and decrease of a
metabolite, respectively, relative to the
median metabolite levels (see color scale).
C, Z-score plots for (A) normalized to the
mean of NC samples (truncated at 10 SD
for clarity)
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2.13 | Scratch assay

Cells were pretreated with different concentrations of 9-cisRA (50,

200 lmol/L) for 12 hours; thereafter, a linear scratch was lined out

in the middle using a pipette tip. The cells were then incubated at

37°C, and the widths of the wounds were measured at different

time points under a light microscope.

3 | RESULTS

3.1 | Serum metabolite profiling of breast cancer
patients

Clinical characteristics of the patients with breast cancer and NC

subjects are summarized in Table 1. Total ion chromatograms (TIC)

of the LC group, MT group and NC group acquired by the UPLC/MS

platform are shown in Figure S1A. Stability of the UPLC/MS system

was adequately assessed by the analysis of QC samples during the

entire experimental period.26 From the QC principal component

score plot (Figure S1B) we found that the UPLC/MS system was

stable throughout the analytical process.

A total of 693 metabolites were quantified from the detected

spectral features of serum samples, of which 79.8% (553/693) were

shared by the 3 groups (Figure 1A). Notably, there were 69 metabo-

lites found in the LC and/or MT group but not in the NC group.

These profiles are displayed as a heat map (Figure 1B) and as an

NC-based z-score plot for each of the 693 metabolites (Figure 1C).

The z-score plots showed robust metabolic alterations in the MT

group (z-score range: �5.63 to 15.32) compared to fewer changes in

LC group samples (z-score range: �3.94 to 8.81).

Principal component analysis was carried out to assess the sepa-

ration tendency between groups based on the 693 annotated

metabolites. As shown in Figure 2A, the NC group, LC group and

MT group showed a clustering tendency in the direction of the first

predictive principal component (X axis), which could assess the pro-

gression of breast cancer. Further, an Orthogonal Projections to

Latent Structures Discriminant Analysis (OPLS-DA) model with 2

predictive principal components and 6 orthogonal principal compo-

nents (R2X(cum) = 0.784, R2Y(cum) = 0.952, Q2(cum) = 0.867) was

established using the 3 group samples. As shown in Figure 2B, the

score plot of its first 2 principal components showed significant

clustering tendency in the X axis direction, which also reflected the

F IGURE 2 Establishment of metabolic profiles and selection of differential metabolites between NC and LC, and LC and MT. LC, localized
breast cancer serum sample; MT, metastatic breast cancer serum sample; NC, normal control sample. A, Score plot of the first 2 components [t
(1)/t(2)] of the serum metabolic profiling principal component analysis model. B, Score plot of metabolic profiling orthogonal partial least
squares discriminant analysis (OPLS-DA) model. OPLS-DA score plots obtained between (C) NC vs LC, and (F) LC vs MT. Each point in the
above figures represents a sample. Chance permutation at 200 times was used for the discrimination between (D) NC vs LC, and (G) LC vs
MT. S-plot of selected metabolites between (E) NC vs LC, and (H) LC vs MT (red points represent differential metabolites)
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progression of breast cancer. The main focus of the present study

was to discover the characteristic metabolites that significantly con-

tributed to the clustering tendency and highly related to the pro-

gression of breast cancer. Therefore, clear discriminations were

obtained by OPLS-DA between NC and LC groups (Figure 2C), and

between LC and MT groups (Figure 2F). Chance permutations at

200 times for the OPLS-DA models produced R2-intercept/Q2-

intercept at 0.711/�0.582 (Figure 2D) and at 0.786/�0.623 (Fig-

ure 2G), respectively, indicating that no over-fitting was observed.

Performance of the OPLS-DA models was further tested in another

group of 50 clinically localized breast cancer serum samples, 50

metastatic breast cancer serum samples and 50 normal control sam-

ples, and all test samples were correctly classified by the OPLS-DA

models.

The metabolites with VIP in the project higher than 1 in OPLS-

DA models, and the metabolites with a high degree of variation (high

horizontal ordinate value) and reliability (high vertical ordinate value)

from the s-plots (Figure 2E,H) were selected as differential variables

between NC and LC groups, and between LC and MT groups. Addi-

tionally, the 2-tailed Wilcoxon rank-sum test was used to validate

the significance of the difference in intensities between variables.

3.2 | 9-cisRA, a metabolic marker of breast cancer
progression

A total of 57 metabolites were identified as differential variables

between the LC and NC samples (P < .05). Their relative normal-

ized quantities across samples were plotted in a heat map shown

F IGURE 3 Metabolomic alterations of breast cancer progression. A, Heat map showing 57 differential metabolites in LC relative to NC
samples (P < .05). B, NC-based z-score plot of named metabolites from (A). Each point represents 1 metabolite in 1 sample, colored by
different groups (jade = NC, yellow = LC). C, As in (B) except for the comparison between MT (red) and LC (yellow), with data represented
relative to the mean of LC samples. For clarity, the plots in (B) and (C) have been truncated at 10 SD above the mean of NC and LC samples,
respectively. LC, localized breast cancer serum sample; MT, metastatic breast cancer serum sample; NC, normal control sample
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in Figure 3A. Among the perturbed metabolites, 26 were elevated

in LC whereas 31 were downregulated. Figure 3B shows the rela-

tive levels of the 46 named metabolites that were differential

between NC and LC groups. Similarly, 13 metabolites were found

to be elevated in the MT samples compared to the LC samples

whereas 8 metabolites were downregulated (P < .05) (Table S2).

Figure 3C shows the levels of the 21 named metabolites altered in

MT samples. A subset of 5 metabolites including L-dihydroorotic

acid, lysophosphatidic acid (LPA)(18:1(9Z)/0:0), sphinganine, LysoPC

(0:0/18:0) and sphingomyelin (SM)(d18:0/16:1(9Z)) were signifi-

cantly elevated upon disease progression from NC to LC to MT

whereas 9-cisRA was markedly downregulated (Table 2). These

metabolites could potentially serve as biomarkers for breast cancer

progression, and 9-cisRA was the most significant differential

metabolite between groups (Figure 4). Moreover, 9-cisRA was

found to be significantly lower in urine supernatants (n = 55,

P = 4.354E-17) derived from biopsy-positive breast cancer patients

as compared to negative individuals (n = 54) (Figure 5A). Overall

receiver operator characteristic (ROC) curve for 9-cisRA suggested

its predictive value was modest with the area under the curve

(AUC) of 0.71 (95% CI: 0.53, 0.88) for urine supernatants (Fig-

ure 5B).

Using MetaboAnalyst 3.0 (http://www.metaboanalyst.ca/Metab

oAnalyst/), the key metabolic pathways dysregulated in breast can-

cer patients were identified as retinol metabolism, glycerophospho-

lipid metabolism, sphingolipid metabolism and pyrimidine

metabolism. Among these, the retinol metabolic pathway had the

most differential metabolite 9-cisRA and showed a profound change

(Figure 5C).

3.3 | 9-cis-Retinoic acid levels correlated with
breast cancer cell invasion

To determine whether 9-cisRA decrease in breast cancer has biologi-

cal relevance, we measured its endogenous levels in breast cancer

cell lines MDA-MB-231, MDA-MB-468 and MCF-7 (n = 3 each), and

benign MCF-10A breast cells (n = 3). Significantly reduced levels of

the metabolite were found in breast cancer cells compared to benign

MCF-10A cells (ANOVA, P = 2.571E-6). Additionally, 9-cisRA levels

negatively correlated with cell invasiveness (Pearson correla-

tion = �.988, P = .0124) (Figure 6A).

Cell proliferation assay was then carried out to test the cytotoxic

effect of exogenous 9-cisRA against the MDA-MB-231 and MCF-7

cells. As shown in Figure 6B, gradient concentrations of 9-cisRA (25,

50, 100, and 200 lmol/L) had no significant effects on cell prolifera-

tion after 24- and 48-hour treatments until the concentration of 9-

cisRA was increased to 500 lmol/L where cell proliferation was

obviously inhibited.

To investigate the inhibitory effect of 9-cisRA (50, 100, and

200 lmol/L) on the invasion and migration of cells, we carried out

Matrigel invasion and scratch assays. As shown in Figure 6C, 9-cisRA

evidently prevented MDA-MB-231 and MCF-7 cells from invading

the Matrigel-coated membrane in a dose-dependent method. In the

scratch assay, we found that the migration of MDA-MB-231 cells

was also significantly reduced in a dose-dependent method after

treatment of 9-cisRA (Figure 6D). These results suggested that 9-

cisRA was effective in preventing invasion and migration of breast

cancer cells.

Furthermore, 9-cisRA levels are downregulated by ALDH1A1,

the enzyme that can convert 9-cisRA to 9-cis-retinal. Knockdown of

ALDH1A1 in MDA-MB-231 cells resulted in approximately a 3-fold

increase in intracellular 9-cisRA levels with a significant reduction in

cell invasion (t test P = .013, n = 3) compared to control cells (Fig-

ure 6E).

To explore the synergistic effect of siALDH1A1 and 9-cisRA

treatments and identify mechanisms potentially responsible for

altered migratory and invasive ability of MDA-MB-231 cells, west-

ern blotting was carried out to quantify the expressions of various

related proteins. Cofilin, an actin-binding protein which disassem-

bles actin filaments, is one of the major regulators of cell motility

TABLE 2 Summary of potential biomarkers of breast cancer progression by UPLC/MS analysis

m/z RT (min) Metabolitea Adductb Related pathway

Contentc

LC/NC MT/LC

318.241 7.19989 9-cis-Retinoic acid M + NH4 [1+] Retinol metabolism Down* Down**

176.066 0.89564 L-Dihydroorotic acid M + NH4 [1+] Pyrimidine metabolism Up* Up**

274.092 4.90187 Sphinganine M + NH4 [1+] Sphingolipid metabolism Up* Up**

546.353 8.60841 LysoPC(0:0/18:0) M + Na [1+] Glycerophospholipid metabolism Up* Up**

459.248 7.43676 LPA(18:1(9Z)/0:0) M + Na [1+] Glycerophospholipid metabolism Up* Up**

487.280 8.81888 SM(d18:0/16:1(9Z)) M + H [1+] Sphingolipid metabolism Up* Up**

LC, localized breast cancer serum sample; LPA, lysophosphatidic acid; lysoPC, lysophosphatidylcholine; MT, metastatic breast cancer serum sample; m/z,

mass-to-charge ratio; NC, normal control sample; RT, retention time; SM, sphingomyelin; UPLC/MS, ultra-performance liquid chromatography/mass

spectroscopy.
aMetabolites formally identified by standard comparison.
bIonospheric models of mass spectrometry cationic scanning.
cComparison of characteristic metabolites’ integral peak area in the 3 groups.

Non-parametric test was used for comparisons among the groups (*P < .05, **P < .01).
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and invasion.27,28 As shown in Figure 6F, phosphorylation of cofi-

lin was obviously reduced in the combined siALDH1A1 + 9-cisRA

(200 lmol/L) group compared to the control, siALDH1A1 and 9-

cisRA groups. As the expression of MMP is crucial to ECM degra-

dation and cell invasion, it is vital to determine whether MMP are

involved in the inhibition of migration and invasion by siALDH1A1

and 9-cisRA treatments. As shown in Figure 6F, MMP2 expression

was moderately reduced in the siALDH1A1, 9-cisRA and combined

siALDH1A1 + 9-cisRA groups in comparison to the control group.

Also, MMP9 expression was significantly inhibited by combined

siALDH1A1 + 9-cisRA treatment compared to all other groups.

Taken together, our data suggest that siALDH1A1 and 9-cisRA

coordinately inhibited breast cancer cell invasion by attenuating

the phosphorylation of cofilin and the expressions of MMP2 and

MMP9.

4 | DISCUSSION

Metabolomics provides a direct and sensitive measurement of phe-

notypic changes because it reflects the downstream molecular event

of the combination of all upstream genetic, transcriptomic and pro-

teomic alterations.29 Several studies in breast cancer have investi-

gated the metabolic profiling changes associated with cancer

subtypes,14,30 chemotherapy intervention,31 surgical treatment32 etc.,

whereas the metabolite profile changes and altered metabolic path-

ways of metastatic breast cancer have not yet been elucidated in

detail. Serum metabolomic approaches, which effectively detect con-

current signals from the host and tumor, have the advantages of

economic efficiency, rapidity and minimal invasiveness and may play

an important role in early cancer detection32 as well as in prediction

of cancer progression and metastasis.

F IGURE 4 Boxplots of the differential metabolites associated with breast cancer progression. A, Boxplot showing progressive reduction of
9-cis-retinoic acid during progression from NC to LC to MT (NC vs LC: P = 2.349E-5; LC vs MT: P = .00363; NC vs MT: P = 3.109E-11). B,
Boxplot showing progressive elevation of L-dihydroorotic acid during progression from NC to LC to MT (NC vs LC: P = 2.793E-5; LC vs MT:
P = 1.571E-6; NC vs MT: P = 1.767E-11). C, Same as (B) but for sphingomyelin (SM)(d18:0/16:1(9Z)) (NC vs LC: P = .00488; LC vs MT:
P = .01190; NC vs MT: P = 5.084E-7). D, Same as (B) but for lysophosphatidic acid (LPA)(18:1(9Z)/0:0) (NC vs LC: P = 5.212E-6; LC vs MT:
P = 3.442E-6; NC vs MT: P = 6.802E-13). E, same as (B) but for sphinganine (NC vs LC: P = .04155; LC vs MT: P = .01973; NC vs MT:
P = .00016). F, Same as (B) but for lysophosphatidylcholine (lysoPC)(0:0/18:0) (NC vs LC: P = .00625; LC vs MT: P = .03518; NC vs MT:
P = 2.502E-7). LC, localized breast cancer serum sample; MT, metastatic breast cancer serum sample; NC, normal control sample
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We used combined LC/MS and GC/MS to profile serum and

urine metabolites during breast cancer progression, indicating a

higher degree of metabolomic alteration in serum samples from the

MT group (breast cancer patients with different metastatic sites) rel-

ative to NC and LC group samples and explaining the biological vari-

ations associated with breast cancer metastasis. The current study

delineated that a subset of 5 metabolites elevated upon disease pro-

gression from NC to LC to MT, whereas 9-cisRA showed a progres-

sive decrease from NC to LC to MT. The present data suggested

that the major altered pathways in breast cancer patients compared

with healthy controls included decreased retinol metabolism, glyc-

erophospholipid metabolism and pyrimidine metabolism, and

enhanced sphingolipid metabolism. As an intermediate metabolite, 9-

cisRA is involved in retinol metabolism which motivated us to exam-

ine 9-cisRA in greater detail and further explore its possible utility in

monitoring disease progression and aggressiveness.

In addition, our analysis also showed a lowered 9-cisRA level in

urine samples from biopsy-positive breast cancer patients compared

to biopsy-negative individuals and in breast cancer cells (MDA-MB-

231, MDA-MB-468 and MCF-7) compared to MCF-10A cells. ROC

analysis using the quantitative data of 9-cisRA in urine samples

showed that 9-cisRA (AUC = 0.71; 95% CI: 0.53, 0.88) might have

the potential to distinguish breast cancer patients from healthy con-

trols. Despite the fact that the heterogeneity within breast cancer as

a result of varying gradients of metabolites and growth factors

seems to complicate the metabolite profile of breast cancer, our

results indicated that 9-cisRA offered high accuracy in a heteroge-

neous validation set of breast cancer patients, and its potential utility

will be further validated in a larger patient population.

9-cis-Retinoic acid, an isomer of all-trans retinoic acid, is pro-

duced from 9-cis-retinal by an oxidation process. It participates in

retinol metabolism and can also be converted to 9-cis-retinal by

specific regulatory enzymes. 9-cisRA which binds to both retinoic

acid receptors (RAR) and nuclear retinoid X receptors (RXR) pre-

vented prostate carcinogenesis in rats, reduced growth and induced

apoptosis of human prostate cancer cells in a dose-dependent

method.33 9-cisRA induced the downregulation of P-glycoprotein,

the overexpression of which develops MDR phenotype in L1210

lymphocytic leukemia cells.34 It also directly retarded the cell cycle

in a concentration- and time-dependent method in NCI-H295R

adrenocortical cancer cells as well as reduced tumor growth in the

in vivo xenograft model.35 A number of previous studies have shown

that 9-cisRA has an anti-tumor effect against cell proliferation but

not invasion, and might represent a promising therapeutic agent for

many types of cancers including mammary carcinoma,36 gastric carci-

noma, pancreatic carcinoma and lung carcinoma. In the present

study, we have shown that 9-cisRA strikingly inhibited the migratory

and invasive abilities of MDA-MB-231 and MCF-7 cells at non-cyto-

toxic concentrations in vitro. These results indicated that 9-cisRA

impaired breast cancer cell migration and invasion, and the effect

was not attributed to its cytotoxicity. It was consistent with the

results obtained by Flodrova et al37 that 9-cisRA markedly inhibited

the migration of MCF-7 human breast cancer cells. ALDH1A1, an

enzyme involved in retinol metabolism, could metabolize 9-cisRA,

and previous results have observed that ALDH1A1 significantly asso-

ciates with tumor growth,38,39 lymph node metastasis, and clinical

stage of breast cancer patients,40 and it has been proposed as a

potential target for anti-breast cancer therapy. Our study found that

knockdown of ALDH1A1 in MDA-MB-231 cells increased intracellu-

lar 9-cisRA levels while notably suppressing the invasive abilities of

breast cancer cells.

Furthermore, our data indicated that the synergistic effect of

siALDH1A1 and 9-cisRA against cell migration was a result of its

blocking phosphorylation of the key regulator cofilin, the activity of

which is pivotal for actin-polymerization and cell migration.41 More-

over, we also found that expressions of MMP2 and MMP9, which

F IGURE 5 Lowered level of 9-cis-retinoic acid (9-cisRA) is a metabolic feature of human breast cancer, and the disturbed metabolic
pathways in breast cancer patients compared with healthy controls. A, Boxplot showing significantly lower level of 9-cisRA in 55 biopsy-
positive breast cancer urine samples compared to 54 biopsy-negative controls (**P = 4.354E-17). B, Receiver operator characteristic curve for
9-cisRA in the 109 urine supernatants. 9-cisRA has an area under the curve (AUC) of 0.71 (95% CI: 0.53, 0.88). C, MetaboAnalyst-generated
topology map describes the impact of differential metabolites identified between breast cancer patients vs healthy controls on metabolic
pathways
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are 2 important members of the MMP family and can degrade the

ECM at tumor-invasive fronts to overcome the ECM barrier and sub-

sequently facilitate cancer metastasis,42,43 were significantly inhibited

attributable to the anti-invasive effects of siALDH1A1 and 9-cisRA

treatments. Therefore, the results presented here have established at

least part of the mechanism of siALDH1A1 and 9-cisRA in prevent-

ing migration and invasion of breast cancer cells.

Taken together, we explored the metabolomic signatures during

breast cancer progression. Specifically, we identified 9-cisRA as a

key metabolite that decreased most robustly in metastatic breast

cancer and was detectable in the urine of patients with metastatic

disease. Interestingly, 9-cisRA, and its proximal regulatory enzyme,

appear to play an inhibitory role in neoplastic progression attenuat-

ing cell invasion and migration, presumably through preventing the

key regulator cofilin from activation and inhibiting the expressions of

MMP2 and MMP9. Thus, 9-cisRA and its proximal regulatory

enzyme may have potential as biomarkers of breast cancer progres-

sion as well as exerting an inhibitory role in breast cancer progres-

sion. In the future, we will undertake a study of a larger prospective

cohort to further validate the accuracy of our research. An

F IGURE 6 9-cis-Retinoic acid (9-cisRA) levels in breast cancer cells and its association with invasion and migration. A, Decreased levels of
9-cisRA (black bars) were found in invasive breast cancer cells compared to non-invasive benign MCF-10A cells. Mean � SEM of 9-cisRA
levels (n = 3). Cell invasion (grey bars) was measured. B, Assessment of the effects of 9-cisRA on MDA-MB-231 and MCF-7 cell proliferation.
C, Assessment of MDA-MB-231 and MCF-7 cell invasiveness upon giving exogenous 9-cisRA. Photographs were taken at a magnification of
2009 (eg, MDA-MB-231). D, Assessment of MDA-MB-231 cell migration upon giving exogenous 9-cisRA. E, RT-PCR and western blotting
analysis of aldehyde dehydrogenase 1 family member A1 (ALDH1A1) in MDA-MB-231 (left panel) and assessment of 9-cisRA levels and cell
invasiveness after knockdown of ALDH1A1 (right panel). F, Western blotting analysis of P-cofilin, MMP2 and MMP9 from the 4 treatment
groups. Each result is a representative of at least 3 independent experiments. *P < .05; **P < .01
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evaluation of 9-cis-RA levels and the mechanisms of breast cancer

metastasis by tissue-targeted metabolomics as well as other system-

atic biological approaches could be used.
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