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Abstract

Functional linear regression models are effectively used in gene-based association analysis

of complex traits. These models combine information about individual genetic variants, tak-

ing into account their positions and reducing the influence of noise and/or observation

errors. To increase the power of methods, where several differently informative components

are combined, weights are introduced to give the advantage to more informative compo-

nents. Allele-specific weights have been introduced to collapsing and kernel-based

approaches to gene-based association analysis. Here we have for the first time introduced

weights to functional linear regression models adapted for both independent and family

samples. Using data simulated on the basis of GAW17 genotypes and weights defined by

allele frequencies via the beta distribution, we demonstrated that type I errors correspond to

declared values and that increasing the weights of causal variants allows the power of func-

tional linear models to be increased. We applied the new method to real data on blood pres-

sure from the ORCADES sample. Five of the six known genes with P < 0.1 in at least one

analysis had lower P values with weighted models. Moreover, we found an association

between diastolic blood pressure and the VMP1 gene (P = 8.18×10−6), when we used a

weighted functional model. For this gene, the unweighted functional and weighted kernel-

based models had P = 0.004 and 0.006, respectively. The new method has been imple-

mented in the program package FREGAT, which is freely available at https://cran.r-project.

org/web/packages/FREGAT/index.html.

Introduction

Rapid progress in next-generation whole-exome and whole-genome sequencing technologies

provides new opportunities for detection of rare genetic variants that control complex traits.

However, statistical methods using single-variant association tests that are commonly

adopted in genome-wide association studies are generally underpowered for rare variants.
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The statistical power of association analysis increases when the genetic variants in a genomic

region are tested all at once, not individually [1, 2].

Several approaches have been proposed for region-based association analysis of rare vari-

ants. These include burden tests based on collapsing rare variants within a region [2–6], the

kernel machine technique based on variance component analysis [7–11], and functional data

analysis (FDA) using a continuous functional description of sets of discrete real data [12–16].

Each of these approaches has its own advantages and disadvantages. The collapsing-based

methods are the fastest and simplest. They can be very powerful when the majority of variants

are causal and their effects are unidirectional. The power of association analysis decreases if

these assumptions do not hold [17]. In contrast to collapsing-based methods, the kernel-based

methods are more resistant to the opposite direction of causal variant effects and the limited

proportion of causal variants [11, 18, 19]. However, they are more complex than collapsing-

based methods computationally.

Methods using the FDA approach have additional advantages. Their main rationale is

reduction of the influence of noise and/or observation errors [20]. Moreover, they consider

not only the genotypes of multiple genetic variants within a particular genomic region, but

also the physical locations of these variants, that is, the order of these variants and the distances

between them [12, 13]. These methods are expected to be particularly effective for regions with

a large number of genetic variants because they reduce the number of estimated parameters

[20].

The key of all gene-based methods is to combine information about the association between

the trait and genotypes of every genetic variant to calculate a single value of the statistical test

for the entire region. This pooling can be achieved by merging genotypes for collapsing-based

methods [21], combining score-tests for the kernel-based methods [22] or constructing con-

tinuous smoothing functions for FDA-based methods [20].

For methods where information of different genetic variants about a tested hypothesis is

summarized, the variant weights can be introduced to the model. Good choices of weights can

improve power. The weights are prespecified using any kind of data (for example, genotypes,

covariates or external biological information) that is estimated without using the outcome and

reflects the relative contribution of each variant to the test statistics [11]. Weights allow intro-

duction of any a priori information on which variants are more likely to be causal. This can

yield improved power.

Weights have been introduced to the models assuming random genotype effects: collaps-

ing-based and kernel-based methods. However, none of the models assuming fixed genotype

effects use weights.

In this paper, we introduce weights to a functional linear regression model of fixed geno-

type effects described for testing an association using both independent and structured sam-

ples. We estimate the statistical properties of our new method using Genetic Analysis

Workshop 17 mini-exome independent and family data [23] and a wide range of simulation

scenarios. Additionally, we apply the new method to real data on blood pressure in the Orkney

Complex Disease Study (ORCADES) sample [24].

Weighted functional linear regression model

Consider a genomic region containing m genetic variants with known physical locations

ti (i = 1, . . ., m). Let the genetic variants be ordered as t1<. . .<tm and scaled from [t1, tm] to

[0, 1].

For a sample of n individuals, let y denote an (n×1) vector of known trait values, X denote

an (n×(1+c)) matrix, in which the first column is a vector of units and the other columns are
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c covariates, and G denote an (n×m) matrix of genotypes of m variants. Here, Gij is equal to the

number of minor alleles of the i-th individual for the j-th variant with the location tj.
The traditional linear regression model of multiple additive effects for an arbitrarily struc-

tured sample of n individuals is expressed as:

y ¼ Xaþ Gbþ hþ ε: ð1Þ

Here α is a fixed ((1+c)×1) vector of regression coefficients, whose first element measures

the intercept and the others measure the effects of c covariates; β is an (m×1) vector of

regression coefficients describing the fixed effects of m genetic variants; h is an (n×1) ran-

dom vector of polygenic effects distributed as N(0; σ2
gR), and ε is an (n×1) random vector of

errors distributed as N(0; σ2
eI), where σ2

g and σ2
e are the respective components of the total

variance σ2 = σ2
g + σ2

e of the trait. Here R and I are an (n×n) relationship and identity matri-

ces, respectively. Model (1) assumes that the phenotypes y follow a multivariate normal dis-

tribution with a mean vector E(y) = Xα + Gβ and a covariance matrix Ω = σ2
gR + σ2

eI. If the

sample consists of unrelated individuals, then R = I and O = σ2I.
In the framework of the FDA approach, discrete genotypic values of ordered variants (for

each individual) and effects of the variants are interpreted as continuous data [12]. In this case,

a functional linear regression model (FLM) is defined as

y ¼ Xaþ

Z 1

0

~GðtÞ~bðtÞdt þ hþ ε: ð2Þ

Here ~GðtÞ ¼ ~G1ðtÞ; . . . ; ~GnðtÞ
� �T

denotes an (n×1) unknown vector of genetic variant func-

tions (GVFs), and ~bðtÞ denotes an unknown beta-smoothing function (BSF) of t in [0,1].

By applying FDA, GVFs and BSF can be described by sets of KG and Kβ basis functions,

respectively. According to [14], ~GðtÞ and ~bðtÞ are estimated as

~GðtÞ ¼ GFðFTFÞ
� 1
�ðtÞ

and

~bðtÞ ¼ c
T
ðtÞbF;

where ϕ(t) = (ϕ1(t),. . .,ϕKG(t))T is a (KG×1) vector of basis functions that are used to smooth

the genotypes; F is an (m×KG) matrix with an element Fij = ϕj(ti); ψ(t) = (ψ1(t),. . .,ψKβ(t))T is

a (Kβ×1) vector of basis functions that are used to smooth the genetic effects; and, finally,

bF ¼ bF1
; . . . ; bFKb

� �T
is a (Kβ×1) vector of model regression coefficients.

Substituting the expressions for ~GðtÞ and ~bðtÞ to Eq (2) yields

y ¼ Xaþ GWbF þ hþ ε; ð3Þ

where

W ¼ FðFTFÞ
� 1

Z 1

0

�ðtÞcT
ðtÞdt:

The (m×Kβ) smoother-matrix W is formed from two sets of basis functions, ϕ(t) and ψ(t),
intended for smoothing genotypes and their effects, respectively. It depends on the type and

number of the predefined basis functions, as well as on the positions of genetic variants in the

region. In fact, the matrix W converts the (n×m) design matrix, where each row is a set of m
individual’s real genotypes, into a new (n×Kβ) design matrix where each row is a set of Kβ

Weighted functional linear regression models
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linear combinations of m real genotypes. So, models (1) and (3) differ by region-specific

genetic components: Gβ versus GWβF. Moreover, the parameters associated with genotype

effects appear as vector βF of size (Kβ×1) in model (3) and as vector β of size (m×1) in model

(1).

Usually, identical sets of basis functions (being equal in type and number) are used for

GVFs and BSF. In this case, the model with both genotypes and their effect smoothed becomes

equivalent to that without genotypes smoothing (the beta-smooth only model) [15]. However,

different types and/or numbers of basis functions may be used for GVFs and BSF.

Model (3) assumes that the phenotypes y follow a multivariate normal distribution with the

mean vector E(y) = Xα + GWβF and the covariance matrix Ω = σ2
gR + σ2

eI. In this case, two

hypotheses are compared, H0: βF = 0 versus H1: βF 6¼ 0. The number of parameters of interest

is Kβ in model (3) and m in model (1). See more details about association analysis using FLM

in [12, 14].

We modified model (3) by introducing to it weights preset for every genetic variant:

y ¼ Xaþ GYWbF þ hþ ε: ð4Þ

HereΘ is an (m×m) diagonal matrix of weights for m genetic variants. The new smoothing

matrix ΘW in model (4) is constructed not only using the values of the given basis functions at

the positions of the genetic variants, but also using the weights predefined for every genetic

variant. The introduction of the diagonal matrix of weights modifies the (n×Kβ) design matrix.

Before the weighing procedure, each element of the design matrix (GW) represents some lin-

ear combination of m real genotypes. In the new design matrix (GΘW), the influence of each

genetic variant in this combination is controlled by weight prespecified for this variant. For

the variants with higher weights, their impact in the design matrix is higher than that in model

(3) as well as for the variants with lower weights, their impact in the design matrix is lower

than that in model (3).

The stronger the differences between weights of causal and non-causal variants, the higher

the power of an association test. A simplest a priori supposition about what variants are causal

is that deleterious mutations are expected to be rare. In this case, the weights are defined by

the minor-allele frequency (MAF), for example, as the beta distribution density function
p

wj = Beta(MAFj; a1, a2) with the prespecified parameters a1 and a2 evaluated at MAF for the

j-th variant [11].

Statistical properties of the method

We compared two standard beta-smooth only models: 15 B-spline or 25 Fourier basis func-

tions. Such numbers of B-spline and Fourier basis functions have been recommended by Fan

et al. [12] and tested in our previous study [14] (see [14] for discussion on the optimal choice

of the number of the basis functions (K)).

We used genotypes of Genetic Analysis Workshop 17 (GAW17 [23]) family-based and pop-

ulation samples, each consisting of 697 individuals. The trait was modelled as random realiza-

tion from the multivariate normal distribution N(Gβ, h2R + (1 –h2)I), where G is a matrix of

genotypes for variants selected to be causal, β is a vector of additive effect sizes of genetic vari-

ants, R and I are the relationship and identity matrices (R = I for the population sample), h2 is

heritability (we set h2 = 0.29, as in the GAW17 quantitative trait Q2).

To estimate the type I error, we simulated the trait without effects of genetic variants

(β = 0). We analyzed gene regions with> 25 polymorphic exome genetic variants of the

GAW17 data sets to avoid overparametrization under chosen Kβ = 25 (see [14] for details). In

the population sample, we analyzed 215 gene regions (9,909 genetic variants in total) and

Weighted functional linear regression models
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simulated 1×105 replicates under the null hypothesis to obtain 2.15×107 regional P values. In

family sample, we analyzed 60 genes (2,598 genetic variants in total) and simulated 5×105 rep-

licates to obtain 3×107 regional P values. The type I error was estimated as the proportion of P
values that are less than alpha, with alpha ranging from 0.05 to 2.5×10−6.

Table 1 shows type I errors obtained as the proportion of the simulations of the null hypoth-

esis with P� α. The type I errors are very close to the declared levels.

For power estimation, we selected gene regions that contained� 30 polymorphic genetic

variants and� 10 rare variants with MAFs� 0.03 (41 and 146 gene regions in the family and

population samples, respectively). In each replicate, we randomly selected one of these regions

for simulation of the region-specific genetic component of the trait (Gβ in the above formula).

The following scenarios were considered: 1) the proportion of causal variants in the regions is

0.05, 0.1, or 0.2; 2) the proportion of effects that have the same direction is 0.5, 0.8, or 1; 3)

either all genetic variants or only rare variants with MAFs� 0.03 used to select causal variants;

4) for each causal variant j, the effect size was simulated as (i) |βj| = log(s)|log10(MAFj)|/2 simi-

lar to [12], with s being equal to 2, 3, 5, or 7 (larger β for lower MAF, but still a lower propor-

tion of variance explained by rare variants) or as (ii) jbjj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s=2MAFjð1 � MAFjÞ

q
, with s

being equal to 0.01, 0.02, 0.03, 0.05, or 0.1 (the same proportion of variance explained by each

causal variant).

We compared the powers of the new method and the unweighted FLM test. The latter has

been well studied and shown to be more powerful than collapsing and kernel-based methods

for many simulated scenarios [12–14].

We analyzed the association between the quantitative traits and the genotypes of genetic

variants in the region using F-statistics for testing fixed effects in the mixed model. Under each

scenario, the power was estimated as the proportion of P values that were less than 2.5×10−6 in

2000 replicates.

All the power estimates were made for the weighted models with two standard weighting

parameter sets (a1, a2): 1) a1 = a2 = 0.5 and 2) a1 = 1; a2 = 25. To varying degrees, these func-

tions give more weights to rare variants (Fig 1). The beta function parameters a1 = a2 = 1 were

used to represent a standard unweighted FLM. Each weighting function was tested for two

standard beta-smooth only FLM: 15 B-spline and 25 Fourier basis functions. Analysis was per-

formed using the FREGAT package [25].

Fig 2 and S1 Fig illustrate the powers of the tested models under different scenarios in fam-

ily and population data, respectively. All causal variants had MAFs� 0.03 and the effect size of

the j-th variant was modeled as |βj| = log(s)|log10(MAFj)|/2. Increasing the weights of rare

(causal) variants allows increasing the power of functional linear models. For the test using the

Table 1. Type I error rates of weighted FLM tests�.

Alpha Population sample Family sample

B-spline Fourier B-spline Fourier

0.05 0.049698 0.040754 0.04952 0.044309

0.01 0.009905 0.007961 0.009793 0.008516

0.001 0.000978 0.000793 0.00094 0.000797

10−4 8.79×10−5 7.77×10−5 8.93×10−5 7.47×10−5

10−5 8.37×10−6 7.44×10−6 8.57×10−6 6.80×10−6

2.5 × 10−6 1.40×10−6 1.40×10−6 1.77×10−6 1.40×10−6

�The standard weighted function defined by the beta distribution with a1 = 1 and a2 = 25 was used.

https://doi.org/10.1371/journal.pone.0190486.t001
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weighting function with the parameters a1 = 1 and a2 = 25, the power is higher than the powers

of the unweighted test for all the scenarios. For family data, the test using the weighting func-

tion with a1 = a2 = 0.5 has the power higher than does the unweighted model, but lower than

does the weighted model with a1 = 1 and a2 = 25. For population data, the effect of weighting

is less than that for the family sample, and weighting with the parameters a1 = a2 = 0.5 seems

to have advantage over the unweighted model only for large effect sizes. This pattern is consis-

tent for both types of basis functions.

The same effect of weighting was observed for scenarios, where the effect size was simulated

as jbjj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s=2MAFjð1 � MAFjÞ

q
(Fig 3). In this case, the difference between the powers of

weighted and unweighted models was higher than that for previously described scenarios

(compare Figs 2 and 3).

We estimated the effect of weighting on the scenarios where causal variants were selected

from both rare and common variants. The weighted models demonstrate an increased power

only for the scenarios where the effect size was simulated as jbjj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s=2MAFjð1 � MAFjÞ

q
(S2

Fig). For the scenarios where the effect size was simulated as |βj| = log(s)|log10(MAFj)|/2, we

did not observe an increase in power (S3 Fig). For all these scenarios, the weighting function

Fig 1. Weights calculated as Beta(MAF; a1, a2) for three weighting modes. Numbers in parentheses are the values of

the beta function parameters a1 and a2.

https://doi.org/10.1371/journal.pone.0190486.g001
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with a1 = a2 = 0.5 demonstrates a higher power than does that with a1 = 1, a2 = 25. Addition-

ally, we used a filtering technique when common variants (MAF > 0.03) were excluded from

analysis. S2 and S3 Figs show that in this case the filtering technique is less effective than the

weighting procedure.

Fig 2. The statistical power of regional association analysis with weighted FLM on the familial data with effect modeled as |βj| = log(s)|log10(MAFj)|/2 and all

causal variants having MAFs� 0.03. Proportion of causal variants is the proportion of all rare variants (MAF� 0.03) within the region (all rare variants = 100%).

B—B-spline basis functions; F—Fourier basis functions; (1, 1)—the unweighted model; (0.5, 0.5)—the weighted model with a1 = a2 = 0.5; (1, 25)—the weighted

model with a1 = 1 and a2 = 25.

https://doi.org/10.1371/journal.pone.0190486.g002
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As can be seen, for most scenarios, the models using Fourier basis show a higher power

than the models using B-spline basis. This can be in part explained by a different number of

basis functions: 15 for B spline and 25 for Fourier bases. However, we compared the power of

these two models using the same numbers of basis functions and demonstrated that the mod-

els using Fourier basis have a higher power for both 15 and 25 basis functions (S4 Fig).

Fig 3. The statistical power of regional association analysis with weighted FLM on the familial data with effect modeled as jβjj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s=2MAFjð1 � MAFjÞ

q
and

all causal variants having MAFs� 0.03. Other model parameters and the notations are the same as in Fig 2.

https://doi.org/10.1371/journal.pone.0190486.g003
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Therefore, the different number of B-spline and Fourier basis functions cannot fully explain

the difference in power. The decreased power of models using B-spline basis might be due to a

uniform distribution of knots used in our study (see [14] for details). It is known that the

power can be increased by the optimal choice of knots [20].

Real data analysis

We analyzed blood pressure traits measured in the ORCADES sample [24, 26]. The study has

ethical approval from NHS Orkney. All participants provided written, informed consent prior

to participation. 1647 people were measured for SBP and 1645 for DBP. We considered 14,640

genes containing > 25 (mean 182.5) genetic variants suitable for the chosen FDA-based mod-

els. We used the same functional models as were applied to the simulated data: 15 B-spline

basis functions or 25 Fourier functions; an unweighted model or models with the weighting

function parameters a1 = 1; a2 = 25 or a1 = a2 = 0.5. No loci reached a common sense Bonfer-

roni-corrected significance level in an exome-wide screen of the BP traits. Two loci reached

P< 10−5 for DBP: P = 8.2×10−6 for the VMP1 gene (encoding vacuole membrane protein 1)

with the B15 model and the weighting function parameters a1 = 1; a2 = 25, and P = 9.1×10−6

for the MC1R gene with the unweighted F25 model. The unweighted functional and weighted

kernel-based models had P = 0.004 and 0.006, respectively, for the VMP1 gene. MC1R has

already been found to be associated with heart failure (https://www.ncbi.nlm.nih.gov/projects/

SNP/GaPBrowser_prod/callGaPBrowser2.cgi?snp=885479&aid=2884). For VMP1, an associa-

tion with lipoprotein-associated phospholipase A2 activity (a marker of increased cardiovascu-

lar risk) has been shown [27].

For positive control, we looked at 28 known Mendelian BP genes [28]. 25 of these genes

were available within the sample; 6 of them had P< 0.1 in at least one analysis. Fig 4 and S5

Fig show the results of differently weighted functional models for these genes. The models

demonstrate gene-specific patterns. Five of these six genes (SDHB, KCNJ5 and SLC12A1
always, KCNJ1 and KLHL3 in most cases) had lower P values with weighted than unweighted

models. The unweighted model was always better for WNK4, although there was no large

difference between three models: unweighted, weighted with a1 = a2 = 0.5 and weighted with

a1 = 1; a2 = 25. The Fourier and B-spline models showed similar behavior—as did the models

with two types of weights.

Discussion

We proposed a new weighted functional linear model for gene-based association analysis and

demonstrated that the power of existing methods can be increased by introducing weights to

functional linear models.

Our new model is the first weighted model with fixed genotype effects for region-based

association analysis. Although weighting of predictors into the complete multiple linear regres-

sion model is meaningless, we showed how weights can be introduced into reduced models

such as FLM. We propose that our weighting procedure can be generalized to other models of

the same class, e.g. to principal component analysis based models. To date, no attempt has

been made to increase their power with the help of weights assigned to different genetic vari-

ants in a way similar to what was successfully done for the models using collapsing and vari-

ance component approaches [4, 21, 22]. We show that weights can be introduced to functional

linear regression models. Our findings suggest that this weighting can be beneficial and allows

identification of additional loci that are not found with unweighted FLM or kernel-based

methods.

Weighted functional linear regression models

PLOS ONE | https://doi.org/10.1371/journal.pone.0190486 January 8, 2018 9 / 14

https://www.ncbi.nlm.nih.gov/projects/SNP/GaPBrowser_prod/callGaPBrowser2.cgi?snp=885479&aid=2884
https://www.ncbi.nlm.nih.gov/projects/SNP/GaPBrowser_prod/callGaPBrowser2.cgi?snp=885479&aid=2884
https://doi.org/10.1371/journal.pone.0190486


The weights are defined as allele-specific coefficients that control the relative importance of

each variant to test the association. Only some of the variants in the region are causal, and the

rationale for introducing weights is to increase the impact of exactly these variants in the test

statistics.

In addition to the common disease—common variants hypothesis, the common disease—

rare variants hypothesis has been proposed to explain missing heritability [29]. The latter

hypothesis assumes that complex traits are caused collectively by multiple rare variants with

moderate to high penetrance. Under this hypothesis, it was proposed that rare genetic variants

are more likely to be causal. Therefore, without a priori information about causality of the vari-

ants, the weights can be defined on the basis of allele frequencies, for example, via the beta

Fig 4. The results of regional association analysis of the known Mendelian BP genes having P< 0.1 in at least one analysis. The differently

weighted FLM based on the Fourier basis functions was used.

https://doi.org/10.1371/journal.pone.0190486.g004
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distribution density function
p

wj = Beta(MAFj; a1, a2) with the prespecified parameters a1

and a2 evaluated at the MAF for the j-th variant. The beta density is flexible and can accommo-

date a broad range of scenarios. By setting 0< a1� 1 and a2� 1, the weight of each rarer vari-

ant can be increased and the weight of each common variant, decreased. Normally the a1 = 1

and a2 = 25 values are used in the kernel-based methods, because in this case the weight of

each rare variant is increased, while for variants with MAF 1%–5% still put decent nonzero

weights [11]. We have seen that the model with the weighting function parameters a1 = 1 and

a2 = 25 had the highest power under many simulation scenarios, but this benefit was not obvi-

ous on real data. This could be explained by the difference in sample sizes and, therefore,

MAFs. As it can be seen in Fig 1, models with the parameters a1 = 1 and a2 = 25 differentiate

well between MAFs from 0.1 to 0.001, but assign almost equal weights to all MAFs < 0.001.

On the contrary, model with a1 = a2 = 0.5 assigns increasingly higher weights to lower MAFs.

The effectiveness of the weighted FLM also depends on the effect sizes of common variants.

We demonstrated that weighting by MAFs increased the power only in those scenarios where

the difference between effect sizes (β) of rare and common variants was large. When the effect

size of common variants is not small, weighted models can be ineffective. However, in this

case genetic variants can easily be identified by single point association analysis. Regional asso-

ciation analysis has been specially proposed to identify rare genetic variants.

Recently, a filtering technique has become popular. With this technique, common variants

in the study region are excluded from consideration [30]. Using the set of scenarios where the

traits were simulated on both rare and common variants, we showed that weighting is prefera-

ble over filtering as it does not totally reject the information on the variants with lower weights

(S2 and S3 Figs). Wu and the colleagues [11] have drawn the same conclusions. Filtering can

be viewed as an extreme case of weighting. For example, a logistic weighting function with the

parameter values 0.07 and 150 has recently been proposed [31]. In fact, it filters variants with

MAF < 0.1 at these parameter values.

Good choices of weights can improve power. However, different weights may be optimal

for different regions, as we have demonstrated with real data. The same behavior can be

observed for weighted SKAT models [32, 33]. Therefore, we cannot expect that the weights

would increase the test statistics for all causal regions. The good choice of weights problem is a

particular case of the good choice of test problem. Many association tests have been proposed

for gene-based analysis, but the choice of the most powerful test is uncertain because usually

we have not enough information on the underlying genetic model. In our study, FDA-based

models have relatively low P values for VMP1 and MC1R, while the SKAT P values for these

genes are > 10-4 in all three weighted models. On the other hand, unweighted SKAT detected

an association of the CRHR2 gene with SBP (P = 3.8×10−6), while all FDA-based models

showed P values from 0.05 to 2.5×10−5 for this gene. FDA-based and kernel-based methods

gather different relevant information. They model fixed and random effects, respectively, and

often identify different loci. To put together the advantages of different tests, new methods for

their combining have been proposed [32, 34]. Our weighted FDA-based model extends the list

of gene-based association tests, which can be used for such testing.

The proposed weighting via MAFs is the simplest and does not require any additional

research activity. Even so, it still appears to gain power when its assumption holds. Good a

priori knowledge about what genetic variants are more likely to be causal would allow for

even better efficiency. If a priori information is available, for example, some variants are pre-

dicted as functional, damaging or loss-of-function via Polyphen-2 [35] or other bioinfor-

matic predictors, weights can be selected to increase the impact of likely functional variants

[36, 37].
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Supporting information

S1 Fig. The statistical power of regional association analysis with weighted FLM on popu-

lation data with effect size modeled as jβjj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s=2MAFjð1 � MAFjÞ

q
. Other model parame-

ters and notations are as in Fig 2.

(TIF)

S2 Fig. The statistical power of regional association analysis with weighted FLM using

familial data with effect size modeled as jβjj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s=2MAFjð1 � MAFjÞ

q
using both rare and

common variants. Proportion of causal variants is the proportion of all variants within the

region (all variants = 100%). Other model parameters and notations are as in Fig 2.

(TIF)

S3 Fig. The statistical power of regional association analysis with weighted FLM on familial

data with effect modeled as |βj| = log(s)|log10(MAFj)|/2 using both rare and common vari-

ants. Proportion of causal variants is the proportion of all variants within the region (all vari-

ants = 100%). Other model parameters and notations are as in Fig 2.

(TIF)

S4 Fig. The statistical power of regional association analysis for different numbers of

basis functions (Kβ). Unweighted FLM was used on familial data. B: B-spline basis

functions; F: Fourier basis functions. The effect size for the j-th variant was modeled as

|βj| = log(s)|log10(MAFj)|/2 using rare variants. Other model parameters and notations are as

in Fig 2.

(TIF)

S5 Fig. The results of regional association analysis of the known Mendelian BP genes hav-

ing P< 0.1 in at least one analysis. The differently weighted FLM based on the B-spline basis

functions was used. The notations of the models are the same as in Fig 2.

(TIF)
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