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Abstract

The historical relevance of the Thera (Santorini) volcanic eruption is unclear because of

major dating uncertainty. Long placed ~1500 BCE and during the Egyptian New Kingdom

(starts ~1565–1540 BCE) by archaeologists, 14C pointed to dates�50–100 years earlier

during the preceding Second Intermediate Period. Several decades of debate have followed

with no clear resolution of the problem—despite wide recognition that this uncertainty under-

mines an ability to synchronize the civilizations of the eastern Mediterranean in the mid-sec-

ond millennium BCE and write wider history. Recent work permits substantial progress.

Volcanic CO2 was often blamed for the discrepancy. However, comparison of 14C dates

directly associated with the eruption from contemporary Aegean contexts—both on and

remote from Thera—can now remove this caveat. In turn, using Bayesian analysis, a

revised and substantially refined date range for the Thera eruption can be determined, both

through the integration of the large 14C dataset relevant to the Thera eruption with the local

stratigraphic sequence on Thera immediately prior to the eruption, and in conjunction with

the wider stratigraphically-defined Aegean archaeological sequence from before to after the

eruption. This enables a robust high-resolution dating for the eruption ~1606–1589 BCE

(68.3% probability), ~1609–1560 BCE (95.4% probability). This dating clarifies long-dis-

puted synchronizations between Aegean and East Mediterranean cultures, placing the

eruption during the earlier and very different Second Intermediate Period with its Canaanite-

Levantine dominated world-system. This gives an importantly altered cultural and historical

context for the New Palace Period on Crete and the contemporary Shaft Grave era in south-

ern Greece. In addition, the revised dating, and a current absence of southern Aegean chro-

nological data placed soon afterwards, highlights a period of likely devastating regional

eruption impact in the earlier-mid 16th century BCE southern Aegean.

Introduction

Likely the largest global volcanic eruption by volume of material ejected of the last several

thousand years [1], and regularly mentioned as a pivotal event in the prehistory of the Aegean
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and wider East Mediterranean [2–9], the Minoan eruption of the Thera (or Santorini) volcano

is in fact best known for a long-running debate over its absolute (calendar) date [4–14]. In rela-

tive terms the eruption is placed late in, or at the end of, the Late Minoan (LM) IA cultural

period in the southern Aegean (or regional equivalents: Late Cycladic (LC) I and Late Helladic

(LH) I). The LMIA period marks the high-point of the Minoan New Palace civilization of

Crete [15–19], a time when its major center at Knossos perhaps had a population of 20,000–

25,000 people [20], and the Minoan culture including its language (written primarily as

untranslated Linear A in this period) was a dominant force in the Aegean [15–18, 21–24]. Lit-

tle of this is disputed. The controversy surrounds the calendar date of the eruption, and hence

the wider cultural-historical placements and synchronizations of the eruption and the associ-

ated Aegean archaeological phases versus the cultural phases and history of the eastern Medi-

terranean (e.g. Egypt, the Levant, Mesopotamia, Cyprus, Anatolia) [4–13, 25, 26].

Before the advent of science-based dating, the chronology of the Aegean Bronze Age was

derived from the interpretation of material culture and stylistic linkages between the archaeo-

logical record in the Aegean versus contexts dated by the approximate Egyptian historical

chronology [9, 25, 27–29]. No clear or undisputed material culture or stylistic linkages for the

LMIA period exist. However, the subsequent LMIB and LHIIA periods offered several associa-

tions with the reign of the Egyptian king Tuthmosis III. The accession of this king was conven-

tionally placed either ~1504 BCE or ~1479 BCE. As a result, the Thera eruption and the close

of the LMIA period was placed ~1500 BCE or ~1480 BCE contemporary with the earlier 18th

Dynasty of the Egyptian New Kingdom (NK) [6, 9, 25, 27–30]. A date range of ~1530–1500

BCE remains the ‘conventional’ date for the Thera eruption [6, 8, 25, 27–30]. At a minimum,

several authors categorically state that the eruption must be placed after the start of the Egyp-

tian New Kingdom (stated as after ~1550 BCE by [13] citing [30]), e.g. “. . .that the eruption

occurred after the start of the New Kingdom seems in little doubt” ([13] at p. 168). Thus, in an

effort to conform to this conventional chronology (and the associated conventional history),

dates no earlier than ca. 1560 BCE are sought (e.g. [13] at p.176), and since indeed even this

date appears too early for the strict conventional chronology, there is hence also a careful list-

ing of other possible later 16th century BCE suggested possibilities such as 1554, 1548, 1546,

1544 and 1524 BCE ([13] at p.177).

However, then radiocarbon (14C) suggested an earlier date range by�50–100+ years [7, 9,

31], and so the possibility of a date during the very different Second Intermediate Period (SIP),

when a Canaanite dynasty, known as the Hyksos, controlled Lower Egypt and dominated

regional interactions [32–35]. This raised (or lent support to) the possibility of a very different

cultural history and set of associations in the East Mediterranean and Aegean region [9, 36]

(potentially undermining what, until now, have been the very successful efforts of the later

New Kingdom state to minimize or remove the Hyksos from history [32–34, 37]). The Hyksos

capital city and major port site of Avaris, occupying around 250 ha, was the mega-site of the

East Mediterranean at this time [35, 38–40]. The difference in dates and associations thus

leaves the Thera eruption on one side or other of a key historical bifurcation ([35] at pp.383-

386). The conventional position leaves the majority of the LMIA period and all of the subse-

quent LMIB period contemporary with and influenced by the New Kingdom Egyptian Empire

that expands into southwest Asia from the mid-16th century BCE. In contrast, the earlier date

as suggested by 14C places all of LMIA and potentially some of LMIB into the time period and

cultural influence of the Canaanite Middle Bronze Age world system driven from Avaris.

These are two very different contexts and histories (see further below).

Resolution of the Thera eruption date is therefore central to the synchronization of civiliza-

tions in the eastern Mediterranean in the later Middle Bronze Age (MBA) and early Late

Bronze Age (LBA). The current discrepancy has led to rival and largely incompatible ‘high’
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and ‘low’ chronologies and different histories [4–13, 25, 26, 28–31]. Recent work has much

better defined the 14C calibration curve 1700–1500 BCE [12, 41] (Fig 1) reducing the discrep-

ancy and leading to compromise suggestions of a mid to later 16th century BCE date [12, 42]—

but even the new data still leave wide ambiguity between potential later 17th century through

16th century BCE ranges [13, 14, 42–45]. The problem is a reversal-plateau in the 14C calibra-

tion curve that spreads calendar dating probability (Fig 2). The disjuncture and lack of dating

clarity undermines wider understanding of the role and impacts of the Thera eruption. To

quote one study describing the time of the Thera eruption: “It was summer time, around 1525

B.C. (or was it 1646?). . .” ([46] at p.175). While archaeology and geology record the stages of

the eruption, its destruction and burial of prehistoric settlements across Thera, its precipitation

of devastating tsunamis in the Aegean region, and the covering of a large area of the eastern

Fig 1. IntCal20 modelled 14C calibration curve (1σ) and the raw 14C data (1σ) used to compile this curve showing the period 1800–1350 BCE [41]. The

notable density of data available for the interval 1700–1500 BCE is evident (most new as part of IntCal20), as also the much better definition that is therefore

available for the modelled IntCal20 curve over this period. The constituent IntCal20 dataset is available from: http://intcal.org/.

https://doi.org/10.1371/journal.pone.0274835.g001
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Fig 2. Relationship between 14C dating of the Thera eruption and IntCal20 14C calibration curve taphonomy [41].

(A) Calibrated calendar age probabilities (no modelling) using OxCal 4.4.4 [57] for 14C ages drawn from IntCal20 itself

for calendar dates 1630, 1610, 1585, 1560, and 1530 BCE illustrate how ages around especially 1610–1530 BCE spread

across the reversal-plateau in the calibration curve ~1620–1540 BCE [41] (see Materials and methods below). The only

clarity is that ages�1630 BCE or�1530 BCE may be distinguished from those in between. A stated average 14C age for
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Mediterranean in tephra [1–4, 9, 13, 17, 45–56], the date is the critical factor for assessing

impacts and relevance versus wider archaeology, history and environmental records.

The correct historical narratives, in particular, have been much debated. There are two

main topics. First, the subsequent cultural period on Crete after the Thera eruption and the

close of the LMIA period is the LMIB period (and its mainland contemporary: LHIIA). The

LMIB period on Crete famously ends in a set of well-known destructions at a number of sites

[3, 17, 18, 49, 58, 59]. Both archaeology and 14C place these close of LMIB destructions in the

mid-15th century BCE [3, 5, 8, 9, 18, 25]. The question of whether or not there was an associa-

tion between the LMIB destructions and the Thera eruption, direct or indirect, has occupied

scholarship for over 80 years [3, 17, 18, 49, 58–60]. Second, as already noted, there is the need

to elucidate the relationship and synchronization of the enormous Thera volcanic episode

with the wider East Mediterranean—for example the approximately historical world of ancient

Egypt [4–12, 25–30, 42, 61]. In both cases everything depends on the date. The original ‘low’

date range suggests any eruption impacts are during the earlier 18th Dynasty of Egypt (begins

~1565–1540 BCE) [61–63] and that the eruption was perhaps within 50 years or less of the

LMIB destructions and thus potentially linked, even if indirectly [17, 49, 60]. In contrast, the

‘higher’ 14C date range places the eruption into the SIP [7, 9, 11, 36, 44, 61–63], when lower

Egypt and the Levant were part of a different, culturally mixed, not well-understood, Levan-

tine-Canaanite associated and oriented world-system (in terms of aspects of culture, trade, art,

ideas, language) centered at the Hyksos capital of Avaris in the Nile Delta [32–35, 37–40, 64,

65] that dominated the region until the kings of Upper Egypt reconquered all Egypt—sacking

Avaris in what is described as “a major rupture and redirecting moment in the history of the

Mediterranean” ([35] at p.386)—and going on to create an Egyptian Empire in the Levant.

This would be some�100 years before the LMIB destructions and it is very difficult, in this

case, to see any association between the Thera eruption and the LMIB destructions. There has

long seemed no way to overcome the contradictions and impasse between the respective ‘low’

v. ‘high’ chronology positions.

However, recent work and observations prompt and enable a substantial rethink of the topic

of the Thera eruption date based on directly relevant 14C evidence from the Aegean region. An

initial issue is that there has long been one fundamental question mark rendering any 14C-based

date uncertain or carrying some degree of caveat: are the 14C dates from the Minoan eruption

volcanic destruction level (VDL) on Thera affected by volcanic carbon dioxide (CO2) emissions

[4–6, 8, 9, 66–69]? It is argued here that findings reported lately permit resolution of the volca-

nic CO2 question through a comparison of sets of 14C dates for the eruption episode from well

away from Thera versus the 14C dates from Thera itself. It is thus possible to make progress. At

the same time, previous assumptions of possible associations of the Thera eruption with volca-

nic signals observed in ice-cores or with tree-ring growth anomalies have been critiqued and

revised [70], and new information is also available [14], all of which highlight the need for criti-

cal re-examination of the topic by returning to the available data directly relevant to the Thera

eruption. In this paper I argue that the relevance of an important stratigraphically defined tem-

poral sequence in the period immediately before the eruption has not been appreciated and

appropriately incorporated into previous dating analyses. By bringing the available data and

this observed sequence together via Bayesian chronological modeling, it is possible to determine

a better, revised, and refined dating for the Thera eruption.

the Thera eruption [43] is shown at 1σ and 2σ by the yellow bars, intersecting with the calibration curve at multiple

places from the early 17th century BCE to mid-16th century BCE. (B) The calibrated calendar age probabilities of each

of the 14C dates in S1A Table (numbers 1–110) employed as relevant to the Thera date showing how the dating

probabilities for the vast majority spread across the 17th to 16th centuries BCE given the calibration curve shape.

https://doi.org/10.1371/journal.pone.0274835.g002
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For the information of readers, I note that the next section, Material and methods, is quite

long and detailed. This is because it is (i) important to highlight the sizeable scale and constitu-

tion of the datasets used, (ii) essential to recognize and address the possible issues raised in pre-

vious scholarship, and (iii) key to explain the novel methods employed in this paper, that,

together with the data, enable a distinct (new), much refined, and robust finding to be reported

in this study (see Results section). Hence the data and methods are presented here in the main

text, providing the necessary details to justify/explain this study and its findings and to allow

other investigators to fully replicate this study. Those less interested in materials and methods

may wish to skip to the subsequent section: Results.

Materials and methods

Materials

The radiocarbon data employed in this study are all listed, with source reference, in S1A–S1D

Table. No permits were required for the described study, since all data employed have been

previously published and are publicly available, and no other approvals or regulations apply.

Fig 3 shows the locations of the Aegean sites that are the sources of the 14C dates used in this

study. The datasets used in this study are:

Dataset (a) Samples 1–33 all from non-Thera loci directly associated either with airfall

Theran tephra (samples from just before this tephra fall) at Trianda, Rhodes (for archaeological

sequence at Trianda, see [71, 72]) or from Thera tsunami contexts at Palaikastro on Crete,

Çeşme-Bağlararası, western Turkey and the Letoon Sanctuary, Eşençay Delta, southwestern

Turkey [45, 52, 54, 73]. This dataset includes the eruption terminus post quem (TPQ) from a

tree-ring defined series of 14C dates on an oak sample from Miletos in western Turkey [74]

that allows a wiggle-match dating for the waney edge (last ring under bark) and so the felling

date for this timber which was found buried under Thera tephra (see Bayesian chronological

modelling below).

Dataset (b) Samples 34–64 comprising those from secure last VDL (stages (ii)/(iii) or 2/3)

or LCI Advanced or Advanced? contexts at Akrotiri from normal processing approaches [7,

67, 74–78] but not including the data from earlier technology and methods produced by the

Pennsylvania (P) laboratory (see dataset (d)). This (b) dataset includes a date on insect chitin

from a West House VDL (stages (ii)/(iii)) context [79].

Dataset (c) Samples 65–82 on olive branch or root samples from stated, or reasonably

assumed to be, Thera eruption pumice contexts [80–82]. The 14C dates on a section of an olive

branch found likely killed by and buried in the Thera/Santorini Minoan pumice [80, 81] pro-

vide a temporal sequence since they were measured on an ordered sequence of inner to outer

growth segments. To benefit from this instance of a temporal sequence, the end Boundary of

the ordered sequence (the best estimate for the date the sample was likely killed and buried by

the eruption: see below in Bayesian chronological modelling) is cross-referenced with the end

Boundary of the Phase with the other olive branch/root samples.

Dataset (d) Samples 34–64 and 83–110 comprising published 14C data linked specifically

to the VDL (stages (ii)/(iii) or (i)/(ii)–also expressed as stages 2/3 or 1/2) or Thera eruption

(Bo pumice-covered) contexts from Akrotiri or elsewhere on Thera (but not the olive wood

samples in dataset (c)). This dataset includes the ‘residue’ samples from [67] (both stages

(i)/(ii) and (ii)/(iii)), the legacy data from Lamont and from the Pennsylvania Laboratory

series I-III work [83–87] that are not either stated as under-sized (small counter: P-1599, P-

1619, P-2562, P-2563, P-2564, P-2566) or are clearly very much older than the stated context

(unexplained outliers: P-2561, P-2560), as well as the dates on short-lived samples listed

from the ETH laboratory [88]. VDL data on long-lived samples (wood charcoal) were not
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included when apparently rather to very much older than the plausible VDL age and espe-

cially when a specific find context was not stated and thus samples might easily relate to ear-

lier MBA first use (e.g. the ETH dates on charcoal reported in [88]). Nonetheless, even with

this prior pruning of data, there is still ‘noise’ in dataset (d) based on even a cursory inspec-

tion; in particular, four dates yielded 14C ages indicating much too recent calendar ages on

any mainstream Thera eruption chronology (P-2794, Hd-6059-7967, P-1888, P-1697), and,

in reverse, ETH-3315 appears much too old to be compatible with (i.e. relevant to) the VDL

(thus 5 of 59 data in dataset (d), or ca. 8% of the data, are likely outliers to some larger

extent): see Fig 4. All these major outlier dates except ETH-3315 are pre-AMS technology

products, and all were run over 30 years ago. We can therefore anticipate that the outlier

Fig 3. Map showing the locations of the sites in the southern Aegean region providing the 14C dates employed in this study. The

schematic base map was produced in OxCal 4.4.4 [57] using the open access, publicly available, USGS topo map.

https://doi.org/10.1371/journal.pone.0274835.g003
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model will identify and down-weight these samples in particular (see Bayesian chronologi-

cal modelling below).

Dataset (e) Dataset (a) re-run with a worst-case Growing Season Related Offset (GSRO) of

4±2 14C years (see section below: Growing season related offsets (GSRO) for 14C dates from

the southern Aegean?).

Dataset (f) Dataset (b) re-run with a worst-case GSRO of 4±2 14C years

Dataset (g) Dataset (c) re-run with a worst-case GSRO of 4±2 14C years

Dataset (h) Dataset (d) re-run with a worst-case GSRO of 4±2 14C years

Dataset (i) Samples 111–156, and the analytical model used, comprise the Early Helladic to

LH 14C dataset from the stratigraphically defined temporal sequence at Kolonna on Aegina

[89]. These data and Sequence are used in this paper to define the Middle Helladic to LHI tran-

sition (start LHI) from the transition between Kolonna Phases J to K. The LHIIIA dates are

Fig 4. Calibrated calendar probability distributions for each of the dates in dataset (d) from [57] using [41]. As indicated, four of the dates seem visibly too

recent; and one date appears substantially too old.

https://doi.org/10.1371/journal.pone.0274835.g004
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also employed as a terminus ante quem (TAQ) in Model 2 (see Bayesian chronological model-

ling below). Date VERA-4630, placed as Phase L and dated to the “LHII” period, and so subse-

quent to the time of the Thera eruption, is used as a TAQ for the Thera eruption (see below).

Dataset (j) Samples 157–165 from early LMIA Kommos, Crete; these offer a temporal

sequence to define the date of a short-lived oak twig from an early LMIA context that thus pro-

vides a date for a point in early LMIA [74, 90].

Dataset (k-1, k-2) Samples 166–177 from animal bones, parts of either sheep/goat, cow,

donkey, deer, pig, from the (single) funerary feast events at mid-LHI Shaft Grave 1 (k-1) and

late-LHI Shaft Grave 2 (K-2) at Lerna in southern Greece [91]. The in-built age range incorpo-

rated into these animal parts, then consumed as part of each of these two single feasting events,

reasonably occupy a maximum total period of�15–20 years, since this more than covers the

likely maximum age of any of the animals slaughtered, and, in all probability, the time period

was rather less (e.g. single digits and likely low single digits) since younger animals will have

been preferred for such feasting purposes. Thus we may apply a conservative time constant, a

uniform probability of 0–20 years, to the analysis of the period of the Tau_Boundary paired

with a Boundary in the OxCal analysis (see Bayesian chronological modelling below) of each

feasting Phase. The comparison of the ceramic assemblages suggests that Shaft Grave 1 is mid-

LHI and thus likely a little to sometime before the Thera eruption, whereas Shaft Grave 2 is

late LHI and thus likely sometime around, or even a little after, the Thera eruption. Datasets k-

1 and k-2 are thus not employed in runs of Model 2 (see Bayesian chronological modelling

below) as the exact relationships vis à vis the Thera eruption are not stratigraphically-defined,

nor definite.

Dataset (l) Samples 178–203 come from three LMIB destruction contexts on Crete, Chania,

Myrtos-Pyrgos, Mochlos (close of LMIB destruction at each of the sites), and a subsequent

LMII destruction at Knossos [74, 92]. Only 14C dates on short-lived samples were used and only

dates from AMS 14C technology. The Myrtos-Pyrgos destruction in LMIB Late is regarded as

before the LMIB Final destruction at Mochlos, following the ceramics-based assessment of Rut-

ter [93]. The LMII destruction at Knossos is a TAQ for all the LMIB destructions.

Dataset (m) Samples 204–257, comprising an additional 54 14C dates from Akrotiri, Thera, Tri-

anda, Rhodes, and Miletos, Turkey which may be specifically related to time periods before or

after the Thera eruption (either adding to the evidence for the end MBA/start LMIA period

through to the LCI/LMIA period before the Akrotiri VDL, or providing another LMIB dataset

[72, 74, 78]. These samples are included in the runs of Model 2 (see Bayesian chronological model-

ling below). Note: dates derived from older technology radiocarbon dating, and where often lack-

ing proper modern pretreatment requirements and corrections (for isotopic fractionation), or

with large measurement errors, or no specific context, are not included in dataset (m)—e.g. dates

from the Pennsylvania laboratory (such as those in [84]) are not included in dataset (m).

The data employed are all available in a cited publication (thus the Simon Fraser data [94]

are not employed as the measurement data are not publicly available). Data processed and

thought to observe a potential older contaminant (Oxford ‘contaminant’ results in [67]) are

only employed where stated. Wood-charcoal samples from Akrotiri from recent work were

only included in dataset (b) where they were stated as coming from very final pre-eruption

LCI Advanced (or Advanced?) contexts [74, 78]. A range of other end MBA/start LMIA

through LMIB wood-charcoal samples are included in dataset (m).

Post-eruption samples setting a TAQ for the Thera eruption date range?

There is a conspicuous absence in work to date of organic samples and 14C dates for contexts

that are earlier LMIB or mainland equivalent (earlier LHIIA). On Crete, the available 14C
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evidence mainly comes from the close (end) of the LMIB period (see dataset l above), and this

appears to be much later (around a century or so) than the Thera eruption (see Results below).

Hence these data do not offer a useful (that is an effective) TAQ for the Thera eruption date

range. This lack of any 14C dates from, and for, earlier LMIB contexts is ever more notable

since, contrary initial estimates (e.g. [95]), there is increasing evidence from several sites that

the overall span of LMIB was reasonably long, and not very short [92, 93, 96]. However, as evi-

dent in a summation of a 2007 workshop on LMIB pottery, recognition of earlier LMIB has

proved difficult at many sites, complicated by evidence that earlier LMIB is likely often marked

by a continuation of LMIA style (sub-LMIA or so-called Standard Tradition) ([96] at p.51).

While some argue, although it is not well or clearly represented, that an LMIB Early phase can

be identified at a few sites and represents a time before the appearance of the late LMIB Special

Palatial Tradition (e.g. Marine Style), no such early phase has yet been recognized at several

other sites ([93, 96] at pp.51-52)). This is a problem, and trying to 14C date initial (post-Thera-

eruption) early LMIB contexts should be a priority for future work.

The stratigraphically defined series of 14C dates from Kolonna on Aegina (dataset i)

includes one sample and date, VERA-4630, placed as Phase L and dated to the “LHII” period

[89]. This date, whether LHIIA or LHIIB, on a sample of Ovis/Capra tibia—thus short/

shorter-lived and approximately contemporary with context—should set a TAQ for the Thera

eruption. The only small question-mark is that the laboratory notes the collagen yield for this

sample was between 1% and 0.5%, and thus a little below the common 1% good/acceptable

threshold used to identify reliable 14C ages. The date is coherent within the Kolonna Sequence

and thus nonetheless appears a reasonable age estimate, but, as the single piece of evidence

from this Phase, there is no other direct test/control on the accuracy of this date. Overall, this

date appears to offer a reasonable/plausible if imperfect TAQ for the Thera eruption.

A small piece of charcoal found in situ in the Pelekita cave on Crete, just above a layer of

Thera (Minoan eruption) tephra [97], is another potential piece of evidence. It is stated that:

“It is obvious that the charcoal is anthropogenic in origin, in terms of deposition. Consider-

ing its stratigraphic position, the charcoal piece probably reflects renewed usage of the cave

by humans after the Minoan Santorini eruption”.

The question of relevance is whether the wood involved (the dated tree-growth incre-

ments–the species is not identified) also dates after the eruption or whether these growth

increments could be from wood growth before the eruption. In their publication of 2019, Bru-

ins et al. [97] observed that the two 14C dates obtained indicated a weighted average 14C age,

3365±28 years BP, a little older than the weighted average value from Thera eruption datasets

(e.g. the value of 3350±10 14C years BP stated in [43]—see Fig 2). Thus these authors suggested

the charcoal possibly “consists of wood that already grew before the eruption, but was used by

people to make a fire in the cave after the eruption (old-wood effect)”. However, with the pub-

lication of IntCal20, this concern might be reconsidered. The raw dataset behind IntCal20 sug-

gests a number of measurements from the 16th century BCE with similar 14C ages to those

determined from the Pelekita charcoal (see Fig 1). Thus the sample could indicate wood that

grew after the eruption. However, the lack of species identification or any other information

limits any further analytical potential. We are left with multiple possible scenarios and no clar-

ity. The wood used in the cave could have been residual (a dead branch, etc., collected on the

ground and then used by humans), or inner (older) tree-rings of a piece of wood now used;

just as it could also have been part of a shorter-lived branch collected and now used and so

provide a good TAQ for the eruption. The problem is that we simply cannot determine which
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scenario is correct. Therefore, it appears inappropriate to regard this Pelekita sample as pro-

viding any useful TAQ information; hence it is not used.

Some dates from Tsoungiza from “LHI-II” contexts were published in [74]. Whether the

LHI-II context involved necessarily post-dates the Thera eruption is not certain. Moreover,

this set of six dates from Tsoungiza is clearly problematic [74]. The three dates from LHI-II

contexts all offer rather older 14C ages than the three from earlier LHI late contexts, contrary

expectations, and two of the three LHI late dates on charcoal (OxA-11312, OxA-11314) are

conspicuously too recent for LHI on any plausible (high or low) chronology. It therefore

appears impossible to regard any of these dates as necessarily offering an appropriate, let alone

reliable, TAQ for the Thera eruption.

Finally, there are a few LMIB or LHII 14C dates from older pre-AMS 14C work [84, 98],

mainly from the Pennsylvania (P) laboratory. Many of these samples lack the requirements of

modern pretreatment standards, and correction for isotopic fractionation. Two dates from

Myrtos-Pyrgos on Crete are on the same short-lived material from the close of site LMIB

destruction dated by subsequent AMS 14C in dataset (l) [74, 92, 99]. It seems preferable to use

the more recent AMS values (although the P values are not inconsistent). The other samples

from LMIB contexts at Myrtos-Pyrgos (P-2115, P-2116, P-2343, P-2344A [86]) are all on

unidentified wood charcoal and, while one or more might relate to LMIB use of wood with

only modest in-built age (e.g. P-2115?), the others with older 14C ages may well either include

more substantial in-built age or in fact relate to building activities at the site in early LMIA

after a Middle Minoan III destruction, and thus have no relevance to the date of LMIB. We

simply cannot offer any secure association and no clear TAQ for the Thera eruption. Hence it

seems inappropriate to use these data. Two dates from Palaikastro published in 1965 (St-1263,

St-1264 [100]) on wood charcoal are much older than plausible for LMIB (notwithstanding

large measurement errors) and are either cases of dating samples of old-wood (in-built age) or

residual material. Again, it is inappropriate to use these data. There are also some dates from

Ayia Irini on Keos (P-1282, P-1283, P-1284, published 1969 [101], and P-2576, P-2579 pub-

lished 1978 [86]). All are on charcoal with no further information on species or samples. Two

of the ages obtained are much too recent on any chronology (P-1282, P-1283). The others

come from Period VII contexts at the site, these are placed as LHIIA contemporary with LMIB

[102]. These site contexts should offer a TAQ for the Thera eruption. So might these samples,

but this is subject to an unknown caveat concerning possible in-built age since they are

unidentified wood charcoal samples. A critical assessment would again have to rule them out

as secure TAQ evidence. There are a few other dates from LMIB or LMIB? or equivalent LHII

contexts, but all are on wood charcoal, and the potential in-built age caveat applies, even if the

find context is secure, and in several cases these dates, from now historic measurement pro-

cesses, appear aberrant (e.g. far too recent like P-1356 at 2964±74 14C years BP [101]), or are

later than other close of LMIB AMS 14C dates in dataset (l) and hence not useful as closer TAQ

evidence than the data already available (e.g. P-2717 “probably of LMIB date” from Plagiada,

Crete [87]), and hence the only decision is to regard all these old-technology dates as inappro-

priate or irrelevant for use.

At present, this leaves VERA-4630 from Kolonna as the only recent AMS 14C age of rele-

vance as a close TAQ for the Thera eruption. The modelled posterior probability for this 14C

measurement from the separate run of the dataset (i) model is thus employed as a TAQ in the

initial Model 1 run (see Results). An obvious question is whether VERA-4630 has a major

effect on the date determined for the Thera eruption? The answer is no. It acts only to slightly

restrict the spread of probability on the late side (see Results). It is not decisive in identifying a

most likely date range for the Thera eruption around the end of the 17th century or early 16th

century BCE. In Model 1 VERA-4630 acts as a TAQ for the whole Sequence to that point. In
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Model 2 the probability for VERA-4630 is cross-referenced in as a TAQ for the Thera Eruption

Boundary. Model runs without VERA-4630 are also considered for comparison (see Results)

and to show that the inclusion of VERA-4630 only slightly restricts the late part of the dating

range for the Thera eruption and is not decisive.

Temporal sequence on Thera immediately leading to the eruption

The Thera volcanic eruption occurred in the later spring-summer [79, 103] towards the end of

the LMIA or LCI or LHI cultural periods in the southern Aegean destroying a large and, until

then, thriving cosmopolitan port city at Akrotiri on Thera [17, 46, 50, 51]. Excavation and

study at Akrotiri has identified a temporal sequence of stages in the period immediately lead-

ing to the eruption: (i) major earthquake, (ii) systematic clearance/repair works, (iii) abandon-

ment of the town—presumably because of first signs of volcanic activity or renewed seismicity

—removing most portable valuables but leaving stored foodstuffs and other materials, carefully

secured, behind, (iv) subsequent precursory eruption(s) leaving four thin pumice layers, Bo0

layers 1–4 [48], with evidence of some gap (period of time, days to months?) between Bo0 lay-

ers 3 and 4 given evidence that people returned to the site starting clearance and some repairs,

and (v) the massive Bo1-4 Minoan eruption [2, 46–48, 51, 104]. Some evidence of humus and

colonization of soil above the seismic debris of stage (i) by plants likely indicates “a period of

several years” [104] before stage (iv), but the overall timespan, stages (i) to (v), is variously con-

sidered relatively brief (between months, a season, to a few/several years) [3, 17, 46, 48, 49, 51,

104, 105].

Volcanic CO2 and resolving this issue for the Thera case

A potential volcanic CO2 effect (release and incorporation of old, depleted, CO2) could inflate
14C ages [66–69, 106–109]. While usually more associated with ground-level plants and shrubs

near an emission source (few hundred meters), effects of large, strong volcanic CO2 releases

have been observed in proximate tree leaves and tree-rings [106, 108–110]. Instances of sub-

stantive effects, that is�100s to 1000s of 14C years, are usually observed in low and ground-

level plants or plants/trees growing within a short distance of an emission source, such as the

instances from the Eifel area, Germany, and Thera [106], or those from the Furnas caldera,

Azores, within just a few hundred meters of the vent [107], or in leaves and tree-rings in or

close to the heavy emission loaded areas at Mammoth Mountain and Yellowstone in the USA

[108, 109]—e.g. in the Yellowstone case “a mature, 16-m-tall lodgepole pine located 60m from

nearest hydrothermal feature (Mud Geyser) but surrounded by 8 major hydrothermal features

within a 300m radius” [109]). In contrast, no instances of apparent substantive (larger) offsets

or differences (to older 14C ages) seem apparent when reviewing the set of Theran VDL 14C

samples. The Thera VDL dataset instead comprises 14C ages broadly similar with the 14C dates

achieved on similar material from other approximately contemporary Aegean contexts [4, 5, 7,

9, 67, 70, 74]. No volcanic CO2 effect is evident. This is not a surprise. It may be noted that evi-

dence for volcanic CO2-caused 14C-aging in tree-rings, even when the trees grew close to a

degassing locus, can be indistinct or ambiguous [111], and, examining the Azores case in

detail, there was a zero-age effect for the control site, PG, located outside the caldera and only

some 1km from the indicated fumaroles [107]. Each such case clearly varies with very different

histories and circumstances and scales of emissions evident (and claims to identify such effects

can be controversial [112, 113]). The indications of relatively rapid magma chamber assembly

for the Thera volcano (as also Taupo) [114], contrast longer drawn-out processes, may be rele-

vant in minimizing any longer-term (beyond the period of the eruption itself) evidence for vol-

canic CO2 effects on vegetation as relevant to the available samples and contexts investigated
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for the dating of the Minoan eruption. Nonetheless, at high-precision, and because of the loca-

tion of the Thera eruption timeframe around a reversal/plateau in the 14C calibration curve,

even quite small 14C effects could nevertheless substantially affect calendar dates [12, 13, 44]

(see Fig 2). Thus: can we resolve whether or not any relevant volcanic CO2 effect applies in the

specific Thera case?

Resolution of this long-running problem is only possible through comparison of (i) 14C

data from the VDL on Thera versus (ii) 14C dates from closely contemporary contexts well

away from Thera and distinct from any possible volcanic CO2 influence. This comparison

enables us to achieve both an eruption date free from any possible volcanic CO2 influence, and

quantification of any possible offset relevant to samples from Thera itself. Organic samples

associated with Thera eruption tsunami and airfall tephra deposits at loci well away (>200km)

from Thera (northeast at Çeşme-Bağlararası, western Turkey, east in the Letoon Sanctuary,

Eşençay Delta, southwestern Turkey, southeast at Palaikastro, Crete, and east at Trianda on

Rhodes) (Fig 3) [3, 45, 52, 54, 74], with no plausible volcanic CO2 input, enable substantial

progress. We can compare 14C dates on organic samples from these contexts, stage (v) in

terms of the Akrotiri stratigraphic sequence (see above), versus those on olive tree elements

likely killed and buried by the main eruption on Thera (also dating stage (v) in terms of Akro-

tiri), and versus those from the preceding final use and abandonment stages (ii)/(iii) at Akro-

tiri, in order to address and resolve the question of volcanic CO2, while in addition clarifying

the timing between stages (ii)/(iii) and (v) (see below: Bayesian chronological modelling).

Growing season related offsets (GSRO) for 14C dates from the southern

Aegean?

This issue may apply if there is a sufficient difference (or offset) in growing season between (i)

a dated sample and (ii) the growing season of the trees used to derive the relevant portion of

the northern hemisphere IntCal 14C curve such that the dated sample (i) records a differing

portion of the intra-annual (seasonal) atmospheric 14C cycle [44, 115–117]. Thus the question

is whether the relevant plant material from the southern Aegean has a sufficiently different

growing season as to be different in measurement terms versus the tree-rings and their grow-

ing seasons used to provide the 14C values for the IntCal calibration curve (trees from central-

northern Europe and high elevation SW USA for the relevant period 1700–1500 BCE) [41, 44,

115–117]. In the eastern Mediterranean/Near East the issue is an earlier, primarily autumn-

spring, versus spring-summer, growing season for many field crops (note grapes and olive

fruit have later growing seasons). In extreme cases in the literature related to Egypt and the

southern Levant (with harvest of most field crops by April-May), and when comparing compa-

rable modern accelerator mass spectrometry (AMS) 14C dates for both sample and calibration

curve, the difference seems to be of the order of ~12±5 14C years [44, 117]. Comparison of

bomb-period data also suggests similar underlying atmospheric 14CO2 differences of around

1‰ or 8 14C years (Rehovot, Israel versus Vermunt, Austria in 1967–1968 [118, 119]) and

these small differences merge also into observations of small (e.g. ~1‰ or 8 14C years) latitudi-

nal differences [120–122]. Given an intra-annual seasonal cycle of atmospheric 14CO2 levels

from a late winter low to a later summer high [122–125], the effect is to increase 14C ages

slightly versus the calibration curve. However, in the central to southern Aegean case, with

field crops typically planted late Autumn and with harvest May-June to start of July [126], the

offset will be rather less. The exact possible variation will vary by species (and area, specific

weather conditions, and farmer [126]). For example, in a study on the island of Amorgos, rela-

tively proximate to Thera, harvest (so a time beyond any further growth) of the typical and pre-

ferred autumn-winter sown field crops “started in late May with pulses and continued through
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June with cereals–barley before wheat and finally oats” ([126] at p.71). Standard modern (vari-

ously 1996–2008) timings for flowering and then maturity of early or late Autumn planted

wheat and barley (10 November or 30 November) for Crete are modelled presently to give

dates (day of year) of days 56–142 and 79–155 for wheat and days 83–147 and 103–160 for bar-

ley [127]—hence respectively dates in March to June and late March to mid-April to June. In

contrast, these crops are harvested in traditional/ancient circumstances from April-May in Jor-

dan, Israel and Egypt [126, 128, 129]. The growing season for central and northern European

oak, which comprises the majority of the evidence for the relevant section of IntCal20 [41], is

late April/early May to late August/mid-September [117, 130]. The other tree species providing

data for the period 1700–1500 BCE in IntCal20 is bristlecone pine, with a mid to late June

until late July or early August growing season [12]. Thus the overlap of the grain/seed develop-

ment period in the southern Levant-Egypt case is around 0 to 0.5 to at most 1 month. In con-

trast, it is around 2 months for Crete versus the oak. Hence an estimate of a typical difference

of around (0 to)25-33% of the Egypt-southern Levant offset appears appropriate, with the

worst case, rounded up, as ~4±2 14C years. The real expectation would be less to effectively 0—

as indicated also by a neutral 0±10 14C years Delta_R test comparing the Miletos oak tree-ring-

defined 14C series versus IntCal20 (Fig 5) that yielded a negligible offset (quoting the mean ±
σ) of ~1.01 ± 8.14 14C years. Hence, overall, the relevance of a GSRO should be small to negli-

gible for the southern Aegean case. And, indeed, some other researchers do not consider such

small growing related seasonal offsets to be either real or substantive or relevant [131]. The

potential maximum, or ‘worst-case’, relevance of the southern Aegean GSRO is therefore

noted in a few instances in the main text, but, in general, it is likely that the calendar ages

derived from IntCal20 are probably reasonably representative for the southern Aegean. Inevi-

tably the addition of the GRSO factor, and especially its additional error component, creates

slightly greater variation in realizations from modelled results, and especially at the recent end

where the plateau in the 14C calibration curve lacks diagnostic discrimination (see the exam-

ples in Results below).

Bayesian chronological modelling

Bayesian chronological modelling is employed to analyze the 14C data, and, in particular, to

incorporate known prior information, such as stratigraphically-defined order [57, 133–136]

and to include, assess, or address the additional issues discussed above. Analysis of the 14C

data employs the northern hemisphere IntCal20 14C calibration curve [41] with Bayesian chro-

nological modelling using the OxCal software [57] version 4.4.4 with curve resolution set at 1

year. For the OxCal manual, see: https://c14.arch.ox.ac.uk/oxcalhelp/hlp_contents.html.

OxCal Chronological Query Language (CQL2) command terms, like Boundary, Date,

D_Sequence, Delta_R, Difference, Phase, R_Combine, Sequence, Tau_Boundary, etc., are cap-

italized in the text. Data with some association (i.e., not entirely independent), modelled

within Phases or Sequences in OxCal [57, 136], are modelled within Boundaries to avoid a

non-realistic wider spread of probability [137]. Since it is known that several of the datasets

involved likely lie on a period of a reversal-plateau in the 14C calibration curve (Fig 2), some

issues of ambiguity are anticipated. Hence a much increased (x100 from the OxCal default)

kIterations value of kIterations = 3000 was routinely employed to be conservative and to try to

ensure stable results with good convergence for each model run. In the case of the Model 2

runs, a kIterations value of 300 was also employed since this large, complex, model (especially

the GSRO version) will not always complete (or within any reasonable time) using the online

version of OxCal with kIterations set at 3000. Thus, in order to allow full, accessible, testing/

replication of the findings reported, a model version that does run satisfactorily with the online
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Fig 5. Results of a neutral (0 ± 10 14C years) Delta_R test for a growing season related offset (GSRO) for the tree-

ring defined time-series from an oak sample from LMIA Miletos, western Anatolia. (A) The seven weighted

average 14C values [132] for 11 tree-rings (years) samples, Relative Years (RY)1000-1010 . . . to RY1060-1070, each

spaced (mid-points of each block) 10 rings = calendar years apart (from pairs of 14C data in each case: see S1A Table

nos. 20–33) show a good, ordered, fit against the IntCal20 14C calibration curve [41]. The IntCal20 curve is shown as a
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version of OxCal within a reasonable timeframe (versus running on an independent machine)

was also employed (kIterations = 300). Only model runs with all elements with Convergence

values�95 were used (at end of run or >20M iterations, most cases, or once >12M iterations

completed for some Model 2 cases). The IntCal20 calibration curve includes several hundred

recent 14C measurements on known-age tree-rings for the calendar interval 1700–1500 BCE,

due to the widespread recent interest in trying to define this period and the Thera eruption

date (since [12]), making this two-century interval by far the best-defined portion of the

IntCal20 14C calibration curve in the BCE era [41, 43] (Fig 1). This important revision of the

IntCal dataset (IntCal20) refines the calibration context for the Thera period—versus past

work that employed earlier iterations of the IntCal calibration curve (e.g. IntCal13 and previ-

ous versions) [12, 43, 44]—and makes findings much more robust. The OxCal General Outlier

model is applied to dates on short or shorter-lived samples (including some instances of

wood-charcoal dates where it is evident any in-built age factor must be consistently very

minor to negligible: see below) and for combinations of such dates (unless in a tree-ring

sequenced wiggle-match) to detect and then down-weight outliers proportionally [138]. Dates

on wood-charcoal where some in-built age cases are likely are employed with the OxCal Char-

coal Outlier model applied to approximately reduce the likely in-built age element [138]. In

cases where dates were run on the identical sample material, these were combined using the

OxCal R_Combine function as long as they passed a Chi-square test indicating the measure-

ments were consistent with this assumption [132]. Dates within an R_Combine (or Combine)

function, or dates forming part of a tree-ring defined wiggle-match [139, 140], were assessed

and down-weighted as outliers using the OxCal SSimple Outlier model [138].

Most of the data employed belong to a set of dates from a context (a Phase in OxCal) that

ends with a specific event, e.g. the stages (ii)/(iii) abandonment at Akrotiri, the stage (v) Thera

eruption/tsunamis, a feasting event, a site LMIB destruction, etc. The aim of the analysis is to

estimate the date of this end event. In these cases the data should all provide ages before the

final/closing event. Most data, and especially those on short/shorter-lived samples, are likely

immediately or very shortly before the event, but some may be a little older (e.g. storage, or

because of a little in-built age, or because they are residual). Plant materials were likely only

stored for short periods of a couple, to at most a few, years given evidence of available ancient-

traditional practice in contexts like those relevant to the southern Aegean LMI-II sites [126,

141, 142]. Animal bones, whether sheep, goat, cow, pig (etc.), may incorporate one to a few

years of age before slaughter and use as food (when found disarticulated), to a few to several

years if kept until older age/death [143], and any directly killed by the tsunami could be in

either category. A few samples may be even rather older (e.g. in-built age in the case of wood-

charcoal if not outermost tree-rings, or residual material from earlier activities in the area).

Altogether, in the case of a set of such data from a defined event (destruction, or a specific use

event like a funerary feast), the data thus likely form an exponential distribution ramped to

immediately before the destruction/final activity event of interest. To represent this situation

the data in such a Phase are modelled within a Sequence using a Tau_Boundary paired with a

Boundary in OxCal, so that that an assumed exponential distribution of data best describes the

event of interest as the end Boundary for the Phase [57]. Such a modelling approach has the

advantage of ensuring that older dates on individual samples, whether residual or because of

68.3% highest probability band and the Miletos samples are shown with the boxes illustrating, y axis, the weighted

average 14C ages plus or minus 1σ, and, x-axis, the 68.3% highest posterior density (hpd) calendar placement of each

element of the time-series. (B) The Delta_R test indicates a ~0 to very negligible offset (mean difference: 1.01 ± 8.14
14C years) versus the 0 ± 10 14C years prior (see below: Bayesian chronological modelling).

https://doi.org/10.1371/journal.pone.0274835.g005
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some in-built age, do not lead to overestimation of the age of the eruption event (contrast use

of an average value for the set). Where data or Phases of data have a known stratigraphic or

agreed material culture-based temporal order, they are modelled within an OxCal Sequence

that incorporates this prior knowledge.

Comparison of the posterior probability distributions describing the end Boundaries for

different datasets, e.g. the 14C data on samples from Thera eruption/tsunami contexts away

from Thera/Santorini (dataset a) versus those from stages (ii)/(iii) contexts on Thera/Santorini

(dataset b) or those on olive material from the eruption pumice on Thera (dataset c), use the

OxCal Difference query to quantify the temporal difference between them expressed in calen-

dar years. The Difference probabilities between the two compared probability distributions are

illustrated and described in terms of 68.3% and 95.4% probability ranges, and as the differ-

ences between the mean (μ) or median (M) of the respective Difference probability distribu-

tions (see Results). Quantification of the existence of, or effect of, an offset in 14C ages between

a dataset and the IntCal20 calibration curve, for example because of a growing season related

offset (GSRO), see above, uses the OxCal Delta_R command [138]. In the former case a neutral

prior of 0±10 14C years is used to test for the existence of a potential offset; in the latter case the

effect of the likely maximum GSRO for southern Aegean samples is tested by use of a likely

worst-case 4±2 14C years offset (see above).

Archaeological and geological observations propose that the total timespan between stages

(ii)/(iii) to (v) at Akrotiri on Thera represents a relatively short period of time (see above). Esti-

mates vary from a timespan of weeks/months/season(s) [3, 17, 46, 48, 49, 51, 104] up to “a

period of several years” [105]. A plausible extreme maximum allowance comes from the com-

parison of the abandonment/eruption date ranges from datasets (a) versus (b) (see Results

below). Here, with no additional constraints applied, and with probability allowed to spread

across the reversal-plateau in the 14C calibration curve from the late 17th through mid-16th

centuries BCE, the comparison of differences between dataset (a) versus (b) suggests (from the

mean/medians, μ/M) a likely total maximum difference of the order of<15 years. To imple-

ment the expected timespan limit, a constraint was placed on an OxCal Difference query

applied to the period of time between the Boundaries determined for the end of stages (ii)/(iii)

and stage (v) in the OxCal model. An appropriate strategy for this constraint appears to be a

log-normal distribution with most probability for a very short interval (months to several

years) but with some decreasing probability for a longer interval with no hard boundary (since

this actual period is not known, only estimated), such that the data can overwhelm the prior

assumption if this assumption proves to be inappropriate. A log-normal distribution with a

mode around 2 years and a standard deviation giving a 68.3% range from <1 year to�5 years

and a 95.4% range from around <0.5 year to around 10 years appears appropriate given the

stated expert expectations. This was implemented using OxCal code of the form:

Difference("D","TE5","E2/3",LnN(ln(3),ln(2)));

Where in this example (as used in Model 1 see below) the Difference “D” is the time

between the “TE5” Boundary (stage v) for the pooled datasets (a) + (c) (Thera Eruption) and

E2/3 which is the End (E) Boundary for the Phase with the Akrotiri stages (ii)/(iii) dataset (a),

and this Difference has the LnN(ln(3),ln(2)) constraint applied to it. The form of this LnN(ln

(3),ln(2)) prior probability distribution is illustrated in Fig 6. In the Model 1 runs, shown

below in Results, the available data and modelled assumptions correspond well (see below). As

an alternative, use of a uniform probability (U) constraint of 0–15 years was also tried (see

Results below). Thus:

Difference("D","TE5","E2/3",U(0,15));
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Both approaches yield very similar results.

Two time-ordered series are included in both Model 1 and Model 2 (see Results). The first

series comprises 14C dates on a defined tree-ring (oak, Quercus sp.) sequence of 72 tree-rings

ending in waney edge (ring immediately below bark) from Miletos from a sample that was

found buried beneath Theran tephra fall [74, 140, 144]. The OxCal D_Sequence function [139]

is employed to undertake a ‘wiggle-match’ and to quantify the dating probability for the waney

edge (and so the TPQ for the Thera eruption provided by this sample). The OxCal SSimple

outlier model is used to test for and to down-weight outliers within the wiggle-match [138].

This waney edge TPQ date estimate is then included in the non-Thera/non-Santorini dating

set as an element in the Phase of data. The second series is from an olive (Olea europaea)

branch section where 14C dates are available from an ordered sequence from inner to outer

growth segments [80, 81]. However, since it is difficult (to impossible) to determine annual

growth increments (tree-rings) in olive via visual identification [145], this series is analyzed as

a Sequence in OxCal, inside start and end Boundaries, with the assumption of the order but

with no information about supposed ring-spacing included [146]. The end Boundary for the

Sequence is regarded as the estimate for the date of the outermost growth increment of the

Fig 6. The prior probability distribution from the LnN(ln(3),ln(2)) constraint applied to the difference query in the OxCal [57] models discussed below (see

Results).

https://doi.org/10.1371/journal.pone.0274835.g006
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original branch/tree and so the date for, or very close TPQ for, the Thera eruption (that likely

killed and buried the tree [80, 81, 146]), and, in order to incorporate the known temporal

sequence information, this age is incorporated via a cross-reference with the end of dataset

Boundary for dataset (c).

The models used for the Figs 7 and 8 results treat each of the named datasets separately

(independently) (see below: Results).

Consistent with (and informed by) the stratigraphic information, Model 1 used for Fig 9

(see below: Results) employs a Sequence in OxCal whereby the data from stages (ii)/(iii) at

Akrotiri, Thera, are placed as before (i.e. older than) the Thera eruption (stage (v)) data with

the period of time between these elements constrained, as noted above, by the log-normal con-

straint on a Difference query between the end Boundary for each Phase. In turn, the eruption

is placed before the LHII date on animal bone from Kolonna from dataset (i)—see above.

Fig 7. Comparison of the calendar dating probabilities for the Boundary after the datasets (a), (b), (c) and (d), and for dataset (a)+(c), and investigation of

likely temporal difference between these datasets. (A) The posterior probability distributions from the models for each dataset and for datasets (a)+(c)

combined with the 68.3% and 95.4% hpd ranges indicated by the upper and lower lines under each distribution. (B) The time interval (OxCal Difference query)

between the posterior probability distributions–from (A)–for dataset (a) versus (c) and (a) versus (b), for dataset (c) versus (b), for datasets (a)+(c) versus (b),

for dataset (a) versus (d) and for datasets (a)+(c) versus (d). The mean (μ) and median (M) of each difference is stated (in calendar years) as well as the 68.3%

and 95.4% probability ranges.

https://doi.org/10.1371/journal.pone.0274835.g007
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Details of results from the model and different versions (including runs without the Kolonna

animal bone TAQ) are provided below in Results.

The models used for the Fig 10 results (see below: Results) comprise: (a) the modelled pos-

terior probabilities from Model 1 (Fig 9) for the Thera stages (ii)/(iii) end Boundary and the

Thera eruption Boundary; and (b) the separate (i.e. independent) runs of the dataset models

for the other elements (thus dataset (i), (j), (k-1, k-2) and (l)). The modelled 68.3% and 95.4%

hpd ranges are listed below in Results.

The models used for the Fig 11 results (see below: Results) come from those in Figs 9 and 10.

Model 2 is different. Here one overall model is used to integrate/relate the information in

Model 1 with the 14C information in datasets (i), (j) and (l) as well as an additional set of dates

(dataset m) which may be securely related to the timeframe before, contemporary with, or

after the Thera eruption to create a temporal sequence from end MBA/start LCI/LHI/LMIA

through to the end of LMII. Additional short tree-ring sequenced wiggle-matches are added in

this model (65/N001/I2 Tamarix sp. from Akrotiri, Thera; AE1024 Quercus sp. from Trianda,

Rhodes). A set of dates on samples from an olive branch (M4N003 from Akrotiri, Thera) are

also included. As noted above, visual identification of the annual growth increments of such

olive samples is problematic to impossible [145]—and in this case the variations in 14C ages

Fig 8. A re-run of the Fig 7 data and models, as datasets (e) to (h), but allowing in each case for the southern Aegean likely worst-case GSRO factor.

https://doi.org/10.1371/journal.pone.0274835.g008
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suggest the supposed ‘ring’ associations are likely entirely insecure and even an assumption of

known order is dubious. Thus, since this sample ends in bark (giving the cutting/use date for

the sample from a LCI period, but pre-VDL, context at Akrotiri, Thera), the data are grouped

in a Phase inside a Sequence with a Tau_Boundary paired with a Boundary to best express the

likely date for the cutting/use of this sample. The modelled dates for the use or relevance of the

samples (like 65/N001/I2, AE1024, M4N003, or the Kommos early LMIA charred twig K85A/

66B/4:22+23), or the Boundaries modelled from the available datasets (the olive branch from

[80], Kolonna Transition J/K, VERA-4630, start Kolonna Phase M), are incorporated into

Model 2 via cross-references. The set of dates on wood charcoal from later LMIB Trianda on

Rhodes [72] offer 14C ages that are relatively similar with those on short-lived samples from

Fig 9. Dating of Akrotiri stages (ii)/(iii) and the Thera eruption (stage v) from Model 1. (A) Results for the end of Stages (ii)/(iii) Boundary and the Thera

Eruption Boundary from Model 1 run 3 with log-normal, LnN(ln(3),ln(2)), constraint applied (Table 1), detailing the 68.3% and 95.4% hpd calendar age

ranges. Comparison is also shown versus the approximate start date of the NK = 18th Dynasty in Egypt ~1565/1540 BCE [7–9, 25, 30, 44, 61–63]. (B) Modelled

posterior (solid, cyan) probability versus the log-normal prior (hollow distribution) for the Difference constraint. As indicated by the OxCal Agreement value

of 98.8%, there is a very good correspondence between modelled result and prior assumption (see also S1 Fig). (C) Fit of Miletos wiggle-match and modelled

dataset (b) (stages ii/iii) individual data against IntCal20 curve (1σ ages and μ±σ modelled calendar ranges) before end of Phase Boundary (see A) from Model

1. (Note: the Miletos wiggle-match oak data are shown placed against IntCal20 in Fig 9C, where they are more easily viewed, versus in Fig 9D, although they

used as relevant to the non-Thera dataset (a) samples included in Fig 9D). (D) Fit of modelled datasets (a)+(c) (Thera eruption, stage v) individual data against

IntCal20 curve (1σ ages and μ±σ modelled calendar ranges) before end of Phase Boundary (see A) from Model 1.

https://doi.org/10.1371/journal.pone.0274835.g009
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Fig 10. Modelled posterior probability distributions for datasets from Aegean LMIA or LCI or LHI-II contexts prior to, or

around, or shortly after, the Thera eruption, and LMIB destruction datasets from the close of the subsequent archaeological

period on Crete. For the 68.3% and 95.4% hpd ranges indicated, see Table 5. The datasets offer a coherent chronological

sequence.

https://doi.org/10.1371/journal.pone.0274835.g010
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Fig 11. Comparison of the calendar date ranges for the close of LMIB destructions at three sites on Crete versus the

Thera eruption (TE, or TE5 = stage v) and the time interval in-between. (A) The modelled posterior probability for the

Thera eruption (Fig 9) compared with the modelled posterior probabilities for the close of LMIB destructions at Chania,

Myrtos-Pyrgos and Mochlos on Crete (Fig 10). Possible archaeological period relationships are indicated along with the

suggestion of a potentially important absence of evidence in the earlier-mid 16th century BCE from very late LMIA
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the close of LMIB destructions from the three sites on Crete. It thus seems unlikely that there

is much of an in-built age factor involved in these particular wood-charcoal samples. At the

same time, none are identified to species nor characterized (e.g. short-lived twig/branch, or

noted as including bark). Thus these data are modelled as a Phase describing likely some por-

tion of mature/later LMIB, with the OxCal General Outlier model applied to each date. An

OxCal Date query is used as an estimate of the calendar age represented by this set—yielding

an estimate of the time between the start and end Boundaries of this Phase. The model is run

with all elements including a couple of larger outliers (rather than removing these). As a result,

the Model 2 Amodel/Aoverall values are lowered and<60; however, since the data are all

employed with outlier models applied, these outliers are down-weighted in the analysis, and

the results reported are robust.

The OxCal runfiles for each of the models used are listed in order of use/reference in S2

Table. Each model run is very slightly different. Typically there are very small variations of 0 to

a few years in quoted ranges. Comparisons of results from different runs of the same versions

of Model 1 can be seen in Tables 1 and 2. At the edges of less well-defined 95.4% probability

ranges the variations are sometimes a few to several years; this issue applies here especially in

the mid-16th century BCE at the end of the 95.4% ranges and especially for those with GRSO

applied which creates slight further ambiguity. Some brief comments on the runs of the initial

dataset models are given in S1 File.

Inclusivity in global research

Additional information regarding the ethical, cultural, and scientific considerations specific to

inclusivity in global research is included in the (S2 File, Checklist).

Results

Resolving the question of a volcanic CO2 effect on the Thera VDL samples

The initial requirement to make progress with a date for the Thera eruption is to identify

whether or not a volcanic CO2 effect applies to the dates from the Thera VDL, and so whether

this issue may (or may not) be discounted in this particular case. If it can be eliminated, then

substantial further progress is possible. This applies both to dating the eruption itself, but also

to establishing the time relationships between the eruption and other 14C-dated contexts,

including the close of LMIB destructions on Crete.

The Boundary after the dataset (a) Phase should estimate the date of the Thera eruption’s

date from its distant (>200km) effects via eruption-linked tsunami and direct airfall tephra

impacts. No volcanic CO2 effect is plausible. The Boundary after the dataset (c) Phase should

estimate the time olive trees on Thera were likely killed by the Thera eruption. In calendar

terms (a) should approximately equal (c). If there is no substantive difference between these

two date estimates, then there is no evidence for a substantive volcanic CO2 effect applying on

Thera affecting the olive samples; or, alternatively, the reverse applies if there is a substantive

difference. The Boundary after dataset (b) should yield the date of the Phase (ii)/(iii) abandon-

ment of Akrotiri. This should be very slightly older than the date of the Thera eruption, by a

period of weeks/months/season(s) up to a period of several years (see above, Materials and

methods). Thus, if dataset (b) is only a little older than dataset (a) then this is consistent with

through earlier LMIB, perhaps linked with the impacts and dislocation initiated by the Thera eruption. (B) The time

interval (Difference query) between the Thera eruption and each of the LMIB destructions is shown. The mean (μ, ellipse)

and median (M, cross) of each difference is stated.

https://doi.org/10.1371/journal.pone.0274835.g011
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known expectations as long as this difference is plausibly within a period of no more than sev-

eral years older. If so, then there is no evidence for a substantive volcanic CO2 effect affecting

the archaeological samples from the Akrotiri VDL. Alternatively, if there is a major temporal

difference, then the reverse applies. Similarly, the Boundary after dataset (c) should be a little

(but no more than several years) later than the boundary after dataset (b), and similar in scale

to the dataset (a) versus dataset (b) case. Such a small difference would indicate no substantive

volcanic CO2 effect applies, and, alternatively, a large difference would indicate the reverse. If

there is no substantive difference between datasets (a) and (c), then we might consider a com-

bination of dataset (a)+(c) as a best estimate for the approximate date of the Thera eruption

and for comparison with the other datasets (e.g. dataset (b)). Finally, we can compare the

Table 1. Model 1 (Fig 9) results. A. Results (bold = 68.3% hpd, and non-bold = 95.4% hpd) for the date of the Thera Eruption Boundary from 5 runs of Model 1 (Fig 9)

with the Difference query with LnN(ln(3),ln(2)) constraint†, and from 5 runs of an alternative version using a Difference query with U(0,15) constraint, each without, and

then with, the likely maximum southern Aegean GSRO of 4±2 14C years. B. The same but for the Akrotiri stages (ii)/(iii) Boundary. OxCal Amodel/Aoverall (Am/Ao) values

are also listed for each model. Note rounding errors sometimes see the total hpd reported vary by up to 0.1%. The results show how all runs of such models are unique and

results determined can vary very slightly—especially in this case in the less well-defined margins of the 95.4% probability region on the recent side, where the calibration

curve plateau lacks clear discrimination (exacerbated slightly further again when the GRSO with additional error term is applied). Run 3 (�) with equal highest Am value

(121.2) is illustrated in Fig 9.

Run Am/Ao LnN(ln(3),ln(2)) Dates

BCE

Am/Ao LnN(ln(3),ln(2)) with Delta_R (4,2)

Dates BCE

Am/Ao U(0,15) Dates

BCE

Am/Ao U(0,15) with Delta_R (4,2)

Dates BCE

A. Thera Eruption (Stage v) Boundary

1 121/105 1606–1589 106/89 1606–1583 121/105 1604–1588 105/89 1604–1583

1609–1560 1609–1551 1609–1559 1608–1553

2 121/106 1606–1589 106/88 1606–1580 121/105 1604–1587 104/89 1604–1582

1609–1560 1608–1548 1609–1560 1608–1550

3 121�/105 1606–1589 105/89 1606–1583 120/105 1604–1587 105/88 1604–1582

1609–1560 1609–1551 1609–1560 1608–1549

4 121/105 1606–1589 106/88 1606–1583 120/105 1605–1587 105/89 1604–1582

1609–1561 1609–1551 1609–1559 1608–1549

5 121/106 1606–1588 105/88 1606–1582 119/105 1605–1587 105/89 1604–1583

1609–1558 1609–1550 1609–1559 1608–1551

Av. 68.3% 1606–1589 1606–1582 1604–1587 1604–1582

Av. 95.4% 1609–1560 1609–1550 1609–1559 1608–1550

B. Stages (ii)/(iii) Boundary

1 121/105 1610–1592 106/89 1610–1587 121/105 1612–1594 105/89 1611–1591

1614–1562 1613–1555 1617–1565 1616–1560

2 121/106 1610–1592 106/88 1610–1588 121/105 1612–1594 104/89 1611–1589

1614–1563 1613–1557 1617–1567 1616–1557

3 121/105 1610–1592 105/89 1609–1584 120/105 1612–1594 105/88 1612–1589

1614–1562 1612–1550 1617–1566 1616–1557

4 121/105 1610–1592 106/88 1610–1586 120/105 1612–1594 105/89 1612–1589

1614–1563 1613–1555 1617–1656 1616–1557

5 121/106 1610–1591 105/88 1610–1586 119/105 1612–1594 105/89 1611–1590

1614–1562 1613–1552 1617–1565 1616–1558

†Note: readers might ask how determinative is the LnN(ln(3),ln(2)) constraint, and wonder whether a more compressed and shorter period constraint, favoring the

shorter assessments of the time interval between stages (ii)/(iii) and stage (v), variously assessed by experts as weeks/months/season(s) up to a period of several years (see

Materials and methods), might make a substantive difference. To test and clarify, we may consider, e.g., the same Model 1 version shown in Fig 9 and reported in

Table 1 re-run instead with a LnN(ln(0.75),ln(3)) constraint, which assumes a mode value around 2.5 months, a 68.3% hpd range from 0.04 to 1.29 years and a 95.4%

range from 0.01 to 4.81 years: see S2A Fig. There is very little difference, the Thera Eruption (stage v) Boundary is 1607–1589 BCE (68.3% hpd) and 1610–1559 BCE

(95.4% hpd) (to 1557 BCE in some runs), compared with the average value of 1606–1589 BCE (68.3% hpd) and 1609–1560 BCE (95.4% hpd) reported in Table 1.

https://doi.org/10.1371/journal.pone.0274835.t001
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Boundary after the dataset (a) Phase with the Boundary after the dataset (d) Phase. Dataset (d)

contains all the data from VDL or pumice-covered contexts on Thera, so stages (i)/(ii) and (ii)/

(iii) and (v)) including dates from older technology measurements—but excluding the dates

on olive wood samples in dataset (c). Most of dataset (d) should date a little older than dataset

(a); hence we might expect a result similar to those analyses comparing dataset (a) with dataset

(b). Such a finding and only small differences would again suggest no substantive volcanic

CO2 effect applies for these data; alternatively, a larger difference would indicate the reverse.

Fig 7 shows the comparisons of the Boundaries after the Phases with datasets (a), (b) (c)

and (d), and dataset (a)+(c), comparing the 68.3% and 95.4% hpd ranges and also the Differ-

ence between the dataset (a) probability distribution versus datasets (c), (b) and (d) probability

distributions and the same for the dataset (c) probability distribution versus the dataset (b)

Table 2. Model 1 re-runs without the VERA-4630 TAQ (compare with Table 1). A. Results (bold = 68.3% hpd, and non-bold = 95.4% hpd) for the date of the Thera

Eruption Boundary from re-runs of Model 1 (Fig 9 and Table 1) but without the VERA-4630 TAQ. Otherwise as Table 1. The absence of the VERA-4630 TAQ leads to

slightly more spread, and to minor variations at the late margins of the 95.4% ranges, in particular.

Run Am/Ao LnN(ln(3),ln(2)) Dates

BCE

Am/Ao LnN(ln(3),ln(2)) with Delta_R (4,2)

Dates BCE

Am/Ao U(0,15) Dates

BCE

Am/Ao U(0,15) with Delta_R (4,2) Dates

BCE

A. Thera Eruption (Stage v) Boundary

1 120/104 1607–1587 104/87 1606–1578 120/105 1605–1586 105/89 1605–1580

1609–1551 1608–1543 1609–1553 1608–1547 (94.4)

1545–1544 (0.3)

1541–1539 (0.7)

2 120/104 1607–1586 105/86 1606–1577 (64.8)

1564–1561 (3.5)

121/106 1605–1586 104/89 1605–1576

1609–1550 1608–1540 1609–1553 1608–1537

3 120/104 1607–1586 105/86 1606–1577 119/105 1605–1585 106/90 1605–1575 (65.3)

1568–1566 (1.7)

1564–1562 (1.2)

1609–1552 1608–1541 1608–1553 1607–1534

4 119/104 1607–1586 106/86 1606–1578 (61.3)

1567–1561 (6.5)

119/106 1605–1586 105/91 1605–1578

1610–1551 1608–1539 1609–1550 1608–1539

5 120/104 1607–1586 106/85 1606–1578 (67.1)

1561–1560 (1.2)

119/105 1605–1586 104/90 1605–1576

1609–1551 1608–1539 1609–1550 1607–1540

B. Stages (ii)/(iii) Boundary

1 120/104 1610–1590 104/87 1610–1581 120/105 1612–1594 105/89 1612–1587

1614–1554 1612–1546 1617–1559 1616–1552 (94.7)

1550–1548 (0.7)

2 120/104 1610–1590 105/86 1610–1581 (63.7)

1568–1564 (4.6)

121/106 1612–1593 104/89 1613–1585

1614–1553 1612–1543 1617–1562 1615–1545

3 120/104 1610–1590 105/86 1610–1581 119/105 1612–1593 106/90 1612–1583 (64.9)

1568–1565 (3.4)

1614–1555 1612–1544 1617–1560 1615–1542

4 119/104 1610–1590 106/86 1609–1582 (61.3)

1570–1564 (7.0)

119/106 1612–1593 105/91 1612–1586

1614–1555 1612–1543 1617–1559 1616–1547

5 120/104 1610–1590 106/85 1610–1582 (65.5)

1577–1561 (2.7)

119/105 1612–1593 104/90 1612–1583

1614–1554 1612–1543 1617–1557 1615–1546

https://doi.org/10.1371/journal.pone.0274835.t002
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probability distribution, and for dataset (a)+(c) versus dataset (d). Fig 8 shows a repeat consid-

ering the effect of a worst-case GSRO of 4±2 14C years for datasets (a), (b), (c), (d) and datasets

(a)+(c) (as datasets e–h and dataset (e)+(g)).

Comparison of dataset (a) versus dataset (c) shows only a very small/negligible difference

(mean, μ, median, M: 3/5 calendar years; -4/-4 years with GSRO in Fig 8). This contradicts both

any substantive volcanic CO2 effect applying to the available samples relevant to the Minoan

eruption of Thera, and suggestions of a substantial missing period of time between the last

dated olive-wood segments found on Thera and the time of the eruption [147]. In particular, if

recent work on 14C dating olive stem sections [147, 148] is examined, it is evident that approxi-

mately correct (known age) results are found for outermost wood along the visible growth

nodes (e.g. see [148] at Fig 2), with older ages reported for non-growth-node wood from else-

where around the circumference (where many years of growth may be compressed into, or

even missing from, this portion of the circumference). The wood segments 14C-dated across the

olive branch from Thera in [80] come from a growth node (see [80] at Fig 1), and thus not only

progress from older to more recent in a temporal sequence [80, 81, 146], but it is likely that the

outermost segment reflects the active and most recent growth period of the tree and hence

approximately the time when the tree was killed and buried by the Thera volcanic eruption. In

the case of the 14C dates from other olive wood samples from Thera (dataset c), this observation

confirms that it is appropriate to use an assumed exponential distribution of the dates with the

most recent ages likely from outermost segments from growth nodes and hence it is these dates

that reflect last growth and hence a close to immediate TPQ for the eruption.

Therefore, overall, we may regard the available dates from the Thera VDL as representative

and not affected by any substantive volcanic CO2 effect, and so go ahead to use these data as

part of efforts to achieve a likely representative date estimate for the timing of the Thera

eruption.

Modeling the temporal sequence immediately leading to the Thera

eruption and resolving the Thera eruption date range

In line with the archaeological-geological observations, the comparison of dataset (b) versus

dataset (a) shows that dataset (b) exhibits slightly older ages than dataset (a) by (μ, M) 14/14

calendar years (8/9 years with GSRO). This is consistent with the archaeological sequence

observed (see above), where stages (ii)/(iii) are earlier than stage (v) by as much as “a period of

several years” [105]—noting that the calibration curve taphonomy (reversal-plateau) (Fig 2)

tends to exaggerate any difference in calendar terms because there is spreading of the (lower)

probability tail widely across the 16th century BCE (Figs 7 and 8). The comparison of dataset

(c) versus dataset (b) provides a similar picture: dataset (b) is slightly older by (μ, M) 10/9 cal-

endar years (12/12 years with GSRO). The combination of 14C dates from different technolo-

gies (conventional and AMS) and run some time ago and more recently, for VDL samples

from Akrotiri and from elsewhere on Thera (dataset d), on a ‘wisdom of crowds’ approach

despite some noise in the set especially amongst the non-AMS results (Fig 4), again yields simi-

lar age relationships indicating no large discrepancy (and so no substantive volcanic CO2

bias). There is only an overall small offset versus datasets (a) or (a)+(c) (Figs 7 and 8), with μ/

M -3/-2 or -7/-5 calendar years (-7/-7 or -8/-8 years with GSRO). It is thus evident that differ-

ent samples from different sites run by different radiocarbon laboratories (and slightly varying

methods) have in general all produced sets of relatively similar results, suggesting we have rep-

resentative and robust datasets and information. We focus our dating efforts on, and draw

conclusions from, the samples run more recently, from good contexts, and with proper (mod-

ern) pretreatment—thus datasets (a), (c) and (b) for the Thera eruption.
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A Sequence model (Model 1) integrating the 14C dates from datasets (a), (b) and (c) with

the observed stratigraphic sequence and using the proposed modeling approach (see Materials

and methods above) is shown in Fig 9 (for results from this model see Tables 1 and 2, for an

alternative version, see S1 Fig). The eruption date range is given by the end Boundary immedi-

ately after the Phase with the combined datasets (a)+(c). Quoting the averages from 5 model

runs (Table 1), this is most likely 1606–1589 BCE (68.3% hpd) and 1609–1560 BCE (95.4%

hpd); or 1606–1582 BCE (68.3% hpd) and 1609–1550 BCE (95.4% hpd) allowing for the possi-

ble maximum GSRO. The posterior probability for the time interval between stages (ii)/(iii) to

(v) corresponds well with the prior assumption (Fig 9B), suggesting that it is appropriate. The

data (the 14C ranges and properties in each Phase set) moreover offer clear and specific visual

best fits against IntCal20 (Fig 9C and 9D) in the periods immediately before each end of Phase

Boundary (Fig 9A), with the constituent data in each case lying on the steep slope in the 14C

calibration curve between ~1640–1600 BCE. Given these observations, there is not surprisingly

very good agreement of data, model, and calibration curve. Only one date, DEM-1607, has an

outlier probability >7% (at 9% or 10% across runs), and just 3 other dates have outlier proba-

bilities of 6% (VERA-5610) (or sometimes 6%: OxA-12305) or 7% (OxA-12303). Potentially

as, or more, important is the modelled age probability for dataset (b), stages (ii)/(iii), in Fig 9:

1610–1592 BCE (68.3% hpd), 1614–1562 BCE (95.4% hpd) (for other runs and models, espe-

cially Model 1 without the VERA-4630 TAQ: see S1 Fig and Tables 1 and 2). This provides a

TAQ for the extraordinary LCI material culture and wall-paintings recovered at Akrotiri from

before the extinguishing VDL episode [46, 50, 51, 149].

In support of the results in Fig 9, the sets of 14C dates from other LMIA–IB or LHI Aegean

contexts yield very similar and compatible findings (Fig 10). The further question is the rela-

tionship of the Thera eruption date with regard to the timing of the close of LMIB destructions

on Crete [3, 17, 49, 58–60]. Fig 11 compares the dates of the close of period destruction epi-

sodes for three LMIB sites on Crete (dataset l) versus the Thera eruption (Fig 9), and shows the

length of time in calendar years between the eruption and each of these LMIB destructions.

The mean/median differences range from 116–148 calendar years (59–203 calendar years at

95.4% hpd).

Model 2 offers an integrated analysis combining Model 1 with the other datasets securely

placed before and after the Thera eruption. The results for the main elements of Model 2 are

shown in Fig 12 (note: some labels are edited to fit the available display space) and the 68.3%

and 95.4% hpd ranges are listed in Table 3. The results for the dating of the Akrotiri stages (ii)/

(iii) Boundary and the Thera eruption Boundary are very similar to those calculated in Fig 9

(Tables 1 and 2). Results from a version of Model 2 allowing for the likely maximum possible

GSRO are also shown. As explained above, the dataset (k) dates from the Lerna Shaft Graves

are not used in the Model 2. The results of re-runs of the Model 2 without the inclusion of the

VERA-4630 TAQ are listed in Table 4 for comparison with those in Table 3.

Discussion

Thera eruption date range

The analysis and comparison of the 14C date sets associated with the Thera eruption, from con-

texts on Thera itself, and from well away from Thera (>200km distant), shown in Fig 7, collec-

tively demonstrate an absence of any general volcanic CO2 aging effect as relevant to the

available Thera VDL datasets. Therefore, we may regard the present set of 14C dates from

defined VDL contexts on Thera as accurately defining their sample ages. In view of what is

known of traditional and ancient agricultural practices and storage at Akrotiri [125, 141, 142],

the short-lived sample material likely offers dates within ~0–2 years of the find context and
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other short to shorter-lived sample material (animal bones from likely use as food, twigs,

branches and outermost tree-rings) will not include more than a few years of in-built age. The

OxCal modelling of the destruction and specific use event Phases as exponentially distributed

towards the end of the Phase, with the destruction/event as the Boundary immediately follow-

ing, thus likely accurately describes the data, including, but not over-estimating the age

because of a few samples that are older, residual, or include more substantial in-built age (e.g.

wood charcoal that is neither outer rings nor relatively short-lived material) [7, 11, 57, 133]. In

turn, analysis using these 14C datasets should provide accurate and robust dating. At the same

time, the comparison of datasets (a) and (c) versus (b) indicates a temporal sequence consis-

tent with archaeological observations where secure stages (ii)/(iii) organic material from Akro-

tiri reflect abandonment of the site a little earlier than the eruption (stage (v) at Akrotiri). This

further supports use of the stratigraphically-informed modelling approach allowing for a short

interval between stages (ii)/(iii) and (v). The findings reported in Fig 8 considering the possible

effect of a likely maximum possible GSRO, suggest that, if relevant in this case, it is very minor

(see also Tables 1–4).

Fig 12. Dating results for the main elements of Model 2 integrating datasets (i), (j), (l) and (m) with Model 1 (as used for Fig 9) (datasets (a)-(c)) to give a

temporal sequence running from end MBA/start LCI/LHI/LMIA through to the end of LMII. (A) Model 2 with no GSRO. (B) Model 2 with the southern

Aegean maximum GSRO test of 4±2 14C years. For the 68.3% and 95.4% hpd calendar age ranges indicated (upper and lower lines under each probability

distribution, respectively), see Table 3. For results from re-runs of Model 2 without VERA-4630, see Table 4.

https://doi.org/10.1371/journal.pone.0274835.g012
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Bayesian analysis integrating the stratigraphically defined sequence information and expert

assessment with the large set of available 14C dates relevant to the dating of the Akrotiri stages

(ii)/(iii) abandonment and the Thera eruption (Akrotiri stage (v)) in Model 1 provides clear

visual best fits for both sets of data against the northern hemisphere atmospheric 14C record

(IntCal20): Fig 9C and 9D. The modelled probability in Fig 9A is strongly skewed towards the

older age direction (to the period where the shape of the calibration curve offers a good fit for

the range/properties of the 14C date sets for the Phases comprising datasets (a)+(c) and (b)).

The modelled Thera eruption age range from Model 1 (Fig 9) and/or the other variations and

models in Figs 10–12 and S1 and S2 and Tables 1–4 suggest, even at the limits of 95.4% proba-

bility, that possible volcanic signals or paleoclimatic or environmental events in various

archives (ice-cores, tree-rings, speleothems) before ~1610 BCE or after ~1560/50 BCE are now

very unlikely to represent the Minoan Thera eruption. (And it remains possible, especially

since the Minoan eruption of Thera was not particularly sulfur-rich, that in fact Thera is not

clearly represented in some or more of the volcanic eruption proxies provided by ice-core and

Table 3. Results (bold = 68.3% hpd, and non-bold = 95.4% hpd) for selected elements from Model 2 (Fig 12), typi-

cal examples. As in Model 1 (Fig 9), a LnN(ln(3),ln(2)) constraint is applied to a Difference query for the period of

time between the Thera eruption (TE5 Boundary) and stages (ii)/(iii) at Akrotiri (E2/3 Boundary). Results are shown

for the model run without, and then with, the likely maximum possible GSRO for the southern Aegean (see above).

The clear majority range, if present, where there are two or more split ranges is underlined. Note rounding errors

sometimes see total hpd reported vary by up to 0.1%.

Model Element No GSRO Model Dates

BCE

GSRO model Dates

BCE

Kolonna Transition J/K = Middle Helladic to LHI transition, so

TPQ for start LHI

1745–1701 1743–1696

1767–1667 1762–1665

Kommos Early LMIA charred twig 1720–1712 (6.9)

1711–1709 (2.1)

1703–1671 (59.4)

1717–1713 (2.4)

1704–1663 (65.9)

1732–1645 1728–1639

E2/3 Boundary (End Stages ii/iii) 1609–1588 1608–1579 (66.4)

1569–1567 (1.9)

1612–1558 1611–1549

TE5 Boundary (Stage v, Thera Eruption) 1606–1584 1604–1575 (67.4)

1566–1565 (0.8)

1608–1556 1607–1546

Interval not represented, Post-Eruption Final LMIA to Earlier
LMIB

32–101 years 27–97 years

0–115 years 0–114 years
Date Estimate for Later/Late? LMIB, Trianda, Rhodes 1491–1445 1491–1471 (29.2)

1465–1440 (39.1)

1505–1427 1503–1425

Chania LMIB Destruction, later LMIB Boundary 1500–1453 1498–1450

1515–1426 1511–1424

Myrtos-Pyrgos Destruction, LMIB Late Boundary 1498–1487 (17.6)

1479–1453 (50.7)

1495–1488 (9.4)

1480–1450 (58.9)

1503–1441 1502–1439

Mochlos Destruction, LMIB Final Boundary 1466–1432 1464–1430

1487–1414 1483–1412

Knossos Destruction LMII Boundary 1428–1388 1426–1387

1442–1340 1440–1340 (95.3)

1328–1327 (0.1)

https://doi.org/10.1371/journal.pone.0274835.t003
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tree-ring archives: see next section below.) In combination with other recent data and reassess-

ments [14, 70, 150], this finding removes many past positions or suggestions for the date of the

Thera eruption (e.g. several past suggestions for a date in the mid to later 17th century BCE,

1640s-1620s BCE) as now unlikely or not possible, and revises and refines even recent observa-

tions and suggested possible proxy associations.

The most likely 68.3% hpd range in Fig 9, 1606–1589 BCE, does not in fact correspond with

most of the possible proxy volcanic eruption signals noted so far in ice-core, tree-ring and

other records—only the bristlecone pine minima 1597 BCE overlaps—with the other signals

noted in this vicinity just outside this range: 1611/1610 BCE, 1586 BCE and 1584 BCE [12–14,

44, 70]. However, clearly, all these signals are near enough (or within the 95.4% range) to

deserve further investigation in an attempt to identify a possible specific Thera eruption signa-

ture. The ice-core volcanic eruption signals noted for 1561, 1558, 1555 and 1550 BCE [14] are

either barely in, or just outside, the (poorly defined) late end tail of the most likely 95.4%

range. In terms of the Boundary TE5 (Stage v) = Thera Eruption shown in Fig 9A,<1% of the

probability within the most likely 95.4% range occurs after 1562 BCE. Thus, although these

possible volcanic signals should not be excluded for investigation, given there are small dating

flexibilities on both sides (but see further below if we consider adding the Sofular Cave spe-

leothem into the date modelling), nonetheless, these later volcanic signals appear now much

Table 4. Results (bold = 68.3% hpd, and non-bold = 95.4% hpd) for selected elements from re-runs of Model 2

without the VERA-4630 TAQ, typical examples. Compare with Table 3.

Model Element No GSRO Model Dates

BCE

GSRO model Dates

BCE

Kolonna Transition J/K = Middle Helladic to LHI transition, so

TPQ for start LHI

1745–1700 1742–1692

1766–1669 1760–1662

Kommos Early LMIA charred twig 1719–1711 (6.7)

1704–1672 (61.6)

1699–1661 (61.5)

1659–1658 (0.9)

1657–1650 (5.9)

1731–1645 1725–1637

E2/3 Boundary (End Stages ii/iii) 1610–1586 1607–1580 (57.0)

1571–1562 (11.3)

1613–1553 1610–1542

TE5 Boundary (Stage v, Thera Eruption) 1606–1583 1603–1575 (58.7)

1568–1561 (9.5)

1609–1549 1606–1539

Interval not represented, Post-Eruption Final LMIA to Earlier
LMIB

30–100 years 23–92 years

0–115 years 0–112 years
Date Estimate for Later/Late? LMIB, Trianda, Rhodes 1491–1445 1491–1471 (28.5)

1466–1440 (39.7)

1504–1428 1502–1425

Chania LMIB Destruction, Later LMIB Boundary 1500–1453 1498–1450

1515–1426 1511–1424

Myrtos-Pyrgos Destruction, LMIB Late Boundary 1498–1486 (18.0)

1478–1453 (50.3)

1494–1489 (7.7)

1480–1450 (60.5)

1503–1441 1502–1438

Mochlos Destruction, LMIB Final Boundary 1466–1432 1464–1430

1487–1414 1483–1411

Knossos Destruction LMII Boundary 1428–1390 1426–1387

1443–1345 1441–1338

https://doi.org/10.1371/journal.pone.0274835.t004
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less likely to have relevance to the Thera eruption case than the plausible candidates within or

close to the most likely 68.3% dating range(s) identified above for the Thera eruption period

(Figs 9–12 and Tables 1–4).

Thera eruption proxy identification and adding the Sofular Cave evidence?

When attempting to identify the Thera eruption in various proxies recording or potentially

recording larger volcanic eruptions, investigations have highlighted an important revision to

past assumptions. While the Minoan eruption of Thera was huge in terms of rock-equivalent

volume produced [1], and despite some uncertainties and potentially complicating factors (e.g.

[151, 152]), the composition and nature of the Thera magma suggest that the Minoan eruption

of Thera was not a particularly sulfur-rich eruption [153–155], and so, despite its enormous

scale, the Thera eruption may not have had a very large sulfur deposition onto Arctic and Ant-

arctic icesheets, nor had a particularly large aerosol-related climate impact globally [13, 14,

153, 154]. Thus, in a revision to previous logic (tending to link the Thera eruption with the big-

gest or only known signal in the period, e.g. [156–158]), the Thera eruption might well not be

represented by one of the largest, or even larger, sulfur signals in polar ice sheets, and might

instead be represented by one of the more modest volcanic, or potentially volcanic, signals in

the ice or tree-ring records like one of those ~1611/1610 BCE, 1597 BCE, 1586 BCE or 1584

BCE [13, 14], or, indeed, despite its cataclysmic relevance to the southern Aegean and sur-

rounding region, the Minoan Thera eruption might not even offer a clear signal in one or

more of these types of distant proxy records [159, 160].

At this point one local Anatolian proxy might be brought into the discussion. The date

range reported above for the Thera eruption is consistent with the reported likely volcanic

eruption signal(s) recorded in the Sofular Cave speleothem in northwest Turkey [161], with a

bromine (Br) peak 1621±25 BCE, then a molybdenum (Mo) peak 1617±25 BCE, and finally a

sulfur (S) peak centered 1589±25 BCE. The first two dates are very similar and there is a plausi-

ble set of mechanisms explaining the slight timing offsets in the speleothem record ([161]

at pp.62-63). The slightly later and less sharply-defined sulfur peak is as expected, given under-

standing of soil-vegetation processes and hence transfer times for sulfur between availability

from the eruption to speleothem inclusion, that will likely involve a period up to 15–30 years

([161] at p.63). Hence it is the first two dates from the bromine and molybdenum that are rele-

vant. While the dating available from the Sofular Cave speleothem record is not high-preci-

sion, these two dates both include the 14C range defined above, and have the merit of deriving

from an independent timescale, and they have a plausible geographic-geochemical association

with the Thera eruption [161]. Thus the question is whether these signals are likely to represent

the Thera eruption (e.g. [13] at pp.174-175 expresses some caution/caveats)?

There is clearly no definite positive case at present. However, several observations are possi-

ble which support a Thera eruption association. The published Sofular Cave Br record (starting

just after 1640 BCE and running to 1415 BCE—noting the Sofular chronology is ±25 years)

has just one conspicuous peak 1621 BCE. There is a much smaller peak in the mid-1630s BCE

and an even smaller one just before 1600 BCE and lesser little peaks in the mid-1590s and ear-

lier 1580s BCE. The spacings do not suggest any clear or systematic associations with the

major volcanic eruptions of the period as listed in [14] at Table 2 (even moving the dates sys-

tematically up or down within the ±25 years dating error). Instead, the single clear peak 1621

BCE suggests a specific, and thus likely proximate, cause for the large 1621 BCE signal. The

Mo record, also covering the period just after 1640 to 1415 BCE, has the one major peak

around 1617 BCE, with the only other notable peaks just after 1570 BCE and then a smaller

peak about 1565 BCE. The spacings do not suggest any likely pattern of associations with the
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major eruptions of the period as listed in [14] at Table 2, and there is just the one major peak

within the available record, suggesting again a specific, local, source. Finally, the S record

(starting 1665 BCE) shows just the one major peak (centered 1589 BCE) between 1665–1415

BCE. There are some other modest increases in the late 1620s, early 1560s and mid-1540s

BCE, but all are much smaller, and thus, if the S record is associated with volcanic eruptions,

the issue is why the large and sustained peak around 1589 BCE is so very much more conspicu-

ous? Again, the only plausible explanation appears to be a large, local, volcanic source. For

these reasons it would seem plausible that the signals in the Sofular Cave speleothem not only

reflect a volcanic eruption [161], but that it is likely to be a large, local, eruption and this forms

the distinctive feature that explains the available record. If so, then this is likely the approxi-

mately contemporary Minoan eruption of the Thera volcano.

Therefore, while only a plausible scenario versus definite, we might view the Sofular Cave

evidence and its approximate timescale as likely both adding to the information for, and being

constrained by, the 14C defined time range for the Thera eruption. The likely near-contempo-

rary evidence from the Br and Mo peaks are the relevant evidence, versus the expected much-

delayed sulfur rise. We may include the Sofular Cave approximate dates into the Thera erup-

tion dating models used above. Fig 13 shows the modelled Thera eruption Boundary from

Model 1 (in Fig 9) revised to include a Date query for a Phase comprising the bromine peak

1621±25 BCE and the molybdenum peak 1617±25 BCE added into the Boundary representing

the date estimate for the Thera eruption. The addition of the independent Sofular Cave date

estimates reduces the Thera dating probability in the mid-16th century BCE and instead acts to

concentrate likely dating probability around ~1600 BCE. Fig 13A shows the Thera eruption

Boundary including the bromine and molybdenum peak dates treated separately in a Phase

with a Date query, while Fig 13B uses a Date query for the Phase when it contains a combina-

tion (OxCal Combine command) of the (very similar) bromine and molybdenum peak dates

(as representing a common date estimate) (see S2 Table). In both cases the inclusion of the Sof-

ular Cave dates reduce the 95.4% hpd Thera eruption ranges, respectively to 1610–1578 BCE

and 1609–1587 BCE, with the most likely 68.3% ranges respectively 1606–1593 BCE and

1606–1595 BCE. These date ranges including the Sofular Cave evidence might further focus

attention, if relevant, towards the ice-core and/or tree-ring proxy volcanic-environmental sig-

nals ~1611/10, 1597, 1586 or 1584 BCE [13, 14]. Most importantly, if it is a valid assumption to

integrate the Sofular Cave evidence, then this would help more firmly to exclude as plausible

some dates for possible volcanic proxy evidence that have been suggested as potentially rele-

vant for the Thera eruption around 1561/1560, 1558, 1555/1554, 1546, 1544, 1539/1538 or

1524 BCE [13, 14].

Implications of a Thera eruption date ~1609–1560 BCE and likely ~1606–

1589 BCE (Fig 9)

The importance of accurate chronology in archaeology is that it provides the correct (that is

real) timetable and synchronization of past events, episodes, peoples, places and interactions,

and therefore the ability to address an historical analysis and narrative. This is why the topic of

the date of the Thera eruption has been controversial and why suggestions to revise the date

have been strongly resisted. There was a generally agreed approximate chronology and cultural

synchronization, and thus history, of the East Mediterranean in the mid-second millennium

BCE. This placed the beginning of the Aegean Late Bronze Age contemporary with the start of

the New Kingdom (18th Dynasty) in Egypt [27, 84]. But, if the date of the Thera eruption is

shifted by a substantial amount, then this implies sets of different relations/connections for the

Aegean and East Mediterranean with Egypt and the Near East: a new history, new questions.
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Fig 13. Dating of Akrotiri stage (v) = Thera eruption Boundary from Model 1 in Fig 9 re-run incorporating the Sofular

Cave dates for likely Thera-eruption associated spikes in bromine (Br) and molybdenum (Mo) [161]. (A) with the two

Sofular Cave dates treated independently, (B) with the two Sofular Cave dates combined.

https://doi.org/10.1371/journal.pone.0274835.g013
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Is it time for a new history for the Thera eruption period based on directly relevant 14C evi-

dence? Up until now the key counter-arguments have been to note (i) that the 14C evidence

may have been compromised/affected by volcanic CO2, and (ii) that the 14C data and the cali-

bration curve are not very accurate/precise and mid- even later-16th century BCE dates also

remain possible. This paper has shown that neither (i) nor (ii) apply. It is demonstrated that

there is no substantive volcanic CO2 effect on the available 14C dates from the Thera VDL,

and, with the availability of the IntCal20 14C calibration dataset with its considerable strength-

ening and refinement specifically of the relevant period 1700–1500 BCE, we now have an accu-

rate and precise 14C chronology for the Thera eruption from a large dataset derived from

directly relevant loci. Incorporation of the known stratigraphic-temporal sequence and timing

within the period immediately leading to the eruption further helps to tie the dating down.

The net result is a Thera eruption date before ~1560/1550 BCE, contradicting the conventional

assessment, and most likely somewhere in the last decade of the 17th century BCE through first

or second decades of the 16th century BCE (Figs 7–12 and Tables 1–4). The final counter-argu-

ment claimed is that the archaeological evidence contradicts such an earlier chronology (e.g.

[6, 8, 10, 26, 28, 29, 162–165]). However, this clearly is not the case. The scarcity and potential

flexibility of the archaeological evidence for absolute chronology for the Thera period, MMIII

through LMIA in the southern Aegean, is the conspicuous feature [7, 9, 11, 25, 31, 61, 98, 166–

170]. The available evidence can either be re-interpreted as consistent with an earlier date, or

in no way provides non-ambiguous, contradictory evidence.

It is important to observe both the substantial body of data employed in the analyses

reported in this paper, and the consistent and coherent results obtained, with the data offering

a good and specific fit—chronological placement—against the IntCal20 14C calibration curve

(Fig 9C and 9D). Entirely new and different evidence would be required to undermine the

above findings and conclusions as shown in Figs 9–12 and Tables 1–4. Assuming the current
14C measurements, which derive from several sites and from different 14C laboratories, are

approximately accurate and representative, then adding more similar measurements to the

available datasets from Thera itself, or to the Çeşme-Bağlararası, Eşençay Delta, Palaikastro, or

Trianda datasets, would likely shift the age ranges only a little at most, but might be anticipated

progressively to reduce the spread of the low late probability tail into the mid-16th century

BCE. For example, simply including repeats of all the current data from Thera, Çeşme-Bağlar-

arası, Eşençay Delta, Palaikastro and Trianda in a re-run ‘hypothetical’ revised Model 1 pro-

duces a 68.3% hpd range of 1605–1594 BCE and 95.4% hpd range of 1608–1586 BCE. This

indicates very little real change in the most likely age, but does noticeably reduce the mid-16th

century BCE range. This hypothetical x2 model achieves age ranges very similar to those

achieved if the Sofular Cave dates for the likely Thera-related bromine and molybdenum peaks

are included into Model 1 (Fig 13).

We thus reach the conclusion that the Minoan eruption of the Thera volcano should in all

likelihood be placed in the SIP. This finding is considerably more robust (and refined) than

previous work. Importantly, this conclusion is also consistent with substantial evidence from

other sets of 14C dates and dendrochronology demonstrating the need to re-think wider Meso-

potamian-Levantine-Egyptian chronology and linkages in the period from the MBA to the

early LBA [44, 171–173].

Overall, the weight of evidence has therefore shifted substantially across the period from

the initial interventions of 14C into second millennium BCE Aegean chronology (e.g. [84]) to

now. In the past 14C was not seen by many scholars to contribute usefully to second millen-

nium BCE Aegean chronology because the archaeologically-based assessments were deemed

more refined (e.g. “The radiocarbon dating evidence for Aegean chronology after about 2000

BC is for the most part less precise than dates obtainable from the Egyptian correlations”: [29]
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at p.127), and there was a presumption on the part of many archaeologists that Carl Sagan’s

statement applied (adapting Pierre-Simon Laplace [174]), whereby “extraordinary claims
require extraordinary evidence”, and hence 14C could not just arrive and change and under-

mine a long tradition of archaeological and art-historical interpretation. However, several

decades later, a large well-replicated 14C dataset, a well-defined 14C calibration curve 1700–

1500 BCE, and the application of Bayesian chronological modelling incorporating the archaeo-

logical-geological information, all combine to shift the onus now to those who would dispute

the solid and refined 14C-based timeframe.

Beyond the date of the Thera eruption itself, the modelled findings reported imply a date

range predominantly in the 17th century BCE, to no later than the early/earlier 16th century

BC, for the majority of the LCI, LMIA and LHI cultural phases–that is the major (or total) por-

tion of these cultural phases which occurred before the Thera eruption. This places these

Aegean cultural phases—the apogee of the New Palace period on Crete and the formative

period for the early Mycenaean world of southern Greece (the Shaft Grave era), along with

linked cultural phases like Late Cypriot IA [4, 5, 7, 9, 11, 25, 29]—contemporary with the SIP

in Egypt and later MBA of the Levant. Thus, even without definition of an exact Thera erup-

tion date, the results reported already resolve long-running controversy over the correct dating

and cultural synchronization of the Aegean, East Mediterranean, Egypt and the Levant in the

LMIA period, and necessitate reassessment of conventional historical syntheses and assump-

tions based on the conventional low archaeological chronology for the start of the LBA in the

Aegean and its supposed NK or earlier 18th Dynasty context and synchronization [7, 9, 11, 31,

61, 74, 98, 166, 170–173]. Instead, the New Palace period of Crete and contemporaries in the

southern Aegean are coeval with, associated with, influenced by, and a product of, the SIP/

Hyksos world system. The importance of this SIP/Hyksos world, and especially of the huge

regional mega-site of Avaris, cannot be over-exaggerated at this time for the whole East Medi-

terranean-Near East region ([35] at pp.383-386), and, especially with reference to the Aegean,

has been too long ignored or excluded from scholarship [36]. “Avaris and the associated Hyk-

sos world became the driving centre of trade and much else in the eastern Mediterranean over

a period of towards 150 years. Rather than–as often before–looking to downplay the wide dis-

tribution of Hyksos items (from Crete to Bagdad) . . . it becomes more apparent that the

world-system centred at Avaris was a driving force in the (long) 17th century BC (end 18th to

early 16th centuries) that formed the context for the creation of the subsequent Late Bronze

Age world of the East Mediterranean” [172].

This temporal and thus culture-historical realignment requires critical re-examination and

re-thinking of the myriad connections and influences across the region during the SIP, from the

material to the immaterial realms. The presence of an alabaster lid with the cartouche of the

Hyksos ruler Khyan at Knossos on Crete, the Nilotic imagery and a range of later Middle

Bronze Age (MBA) Levantine technical and aesthetic connections in metalwork and jewelry

both physically present in LCI/LHI finds from Akrotiri/Thera and Mycenae, and as represented

prominently in wall paintings at Akrotiri, along with finds of later MBA Canaanite jars and Tell

el-Yahudiyeh juglets at Akrotiri, and other SIP-Aegean connections (e.g. [9] at pp.55, 136–144,

Figs 18–20, [25] at pp.172-175, [29] at pp.135-137, [175–177]), all take on new and different

importance and meanings. Not only was there contact and trade (consumption) at these key

sites but likely influence and engagement broadly across the political, social, economic and idea-

tional realms. To give just one example of the importance of this era for history: among the key

inventions and technologies of profound wider culture-historical significance likely linked with

the Hyksos era is alphabetic writing, and its initial spread and development into the Levant in

the later Middle Bronze Age through early Late Bronze Age [178–180], and from thence more

widely across the East Mediterranean/Eurasia from the Late Bronze Age to Iron Age.
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Historiography of Thera eruption dating

The historiography of the field over the last half century reveals several stages in the process of

trying to date the Thera eruption. In the 1970s there was still active debate over whether the

Thera eruption and the Cretan LMIB destructions could somehow be brought together to

maintain Marinatos’ 1939 hypothesis [59] that the eruption caused the Minoan destructions

[58]. This was despite the increasingly clear evidence from the systematic modern excavations

at Akrotiri on Thera starting in 1967 that the eruption occurred in the LMIA period, whereas

the Cretan destructions were distinct and later at the close of the subsequent LMIB period (e.g.

[181]). If anything, the critical pressure through this period was to test and ask whether the

conventional ~1500 BCE date for the eruption (e.g. [28, 59, 84, 95]) might in fact be pushed a

little later into the 15th century BCE to allow as much temporal propinquity as possible [58,

182, 183]. Then 14C intervened, with suggestions of rather earlier dates for the Thera eruption

[84, 184]. Some environmental records, from ice-cores and tree-rings that likely indicated pos-

sible major past volcanism, were also noted with suggestions made that one of these might rep-

resent the Thera eruption—in particular, events were noted in the mid-later 17th century BCE

[156–158]. This challenge was largely resisted by the archaeological community committed to

the conventional ~1500 BCE date, with responses observing that the 14C evidence (at that

time) was less than clear-cut and highlighting (correctly) that the supposed associations with

events noted in ice-cores and tree-rings lacked any positive evidence for an association with

Thera, and instead could have been any other volcanic eruption or even other cause (e.g. [28,

159]). There was, however, one important and interesting new observation: archaeological

finds at Akrotiri started to indicate that at least some part of the LMIA period likely overlapped

with the SIP ([185] at pp.106-107 and n.2).

Whatever the criticisms, the early 14C dates reported in the 1970s for Thera eruption con-

texts nonetheless raised an important question. Was the conventional archaeological chronol-

ogy of the Aegean and east Mediterranean around the time of the Thera eruption correct? This

prompted work that identified and highlighted weaknesses in the conventional archaeological

orthodoxy—observing that several interpretations and assumptions were less than secure

given critical study—and this began to lead to suggestions of possible changes to the Aegean

chronology including an earlier date for the Thera eruption (e.g. [31, 98, 166]). The main-

stream archaeological field largely moved towards a damage-limitation mode. Such views had

to incorrect and were strongly opposed (e.g. [6, 8, 28, 30, 162–165]). However, at the same

time, the obvious strategy was adopted, whether consciously or unconsciously, when progres-

sively confronted especially with increasing numbers of 14C dates pointing to earlier ages for

the eruption before ~1500 BCE, to compromise a little and suggest dates for the Thera erup-

tion a fraction earlier while staying as close to the original ~1500 BCE date as possible. Thus

dates for the eruption in the range ~1530–1500 BCE were proposed (e.g. [6, 30, 165]).

As more data became available, along with improving analytical methods, as well as on-

going critical examination of both the archaeological and scientific information (which saw

several initial suggestions removed), the case for re-thinking the original ~1500 BCE date kept

becoming stronger despite firm opposition at each step (e.g. [4–6, 8, 10, 26, 28–30, 84, 162–

165]). The key science evidence came from 14C. After critical scrutiny and much further inves-

tigation, no clear Thera eruption association was yet available from any of the suggested envi-

ronmental proxies, and it subsequently became clear that Thera could be excluded for the

volcanic signals noted ~1653 BCE and ~1628/1627 BCE [71]. By 2007, unless firmly wedded to

the conventional low chronology position, it seemed only two options were possible on a criti-

cal review of data and interpretative frameworks, either (i) a new compromise chronology

with the Thera eruption “in the earlier to mid-16th century BC” or (ii) the ‘high’ chronology
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based on the then available 14C data and then available calibration curve with an eruption date

somewhere between “1663–1599 BC” ([167] at p.125).

The last (to now) stage in the debate came with a substantial revision of the northern hemi-

sphere 14C calibration curve 1700–1500 BCE, thanks to the additional input of a massive num-

ber of new modern 14C measurements on known-age wood across this interval (Fig 1) [12, 41,

43, 186], currently making this interval by far the best dated two century period in prehistory.

This revised calibration dataset removed the possibility of a mid-17th century BCE Thera date

range (thus revising the previous ‘high’ chronology date range derived from the prior IntCal13

(and predecessors) 14C calibration curve), and instead pointed to possible dates for the Thera

eruption somewhere from the late 17th century through mid-16th century BCE [12, 13, 42–45]

—for example [12] identified a 2σ (95.4%) date range of 1614–1538 BCE. This date range

potentially could include major volcanic eruption signals in various ice-core and tree-ring rec-

ords from ~1611/10 BCE to ~1539 BCE [12–14, 42–44], and in general required either a

revised (slightly lowered) ‘high’ chronology, or the compromise chronology of 2007—although

scholars committed to the conventional ‘low’ chronology nonetheless still suggested that a date

~1525 BCE is possible (e.g. [26] at p.312), justified primarily on the basis that “1525 BC . . . is

nearest to the archaeological range of dating” (this is despite the fact that 1525 BCE is comfort-

ably outside the 95.4% probability range from 14C and therefore highly unlikely), or simply

continued to adhere to a ~1500 BCE date [187].

The present paper enters the debate at this point, with its analysis reducing the 95.4% prob-

ability eruption date range to ~1609–1560 BCE (Fig 9), or ~1608–1556 BCE (Fig 12A) (or

~1610/1609–1587/78 BCE) if we incorporate the Sofular Cave bromine and molybdenum sig-

nals (Fig 13), with a most likely 68.3% range ~1606–1589 BCE (Fig 9), ~1606–1584 BCE (Fig

12A) or ~1606–1595/93 BCE (Fig 13), and, in particular, identifying that the sets of 14C dates

directly associated with the eruption (stages (ii)/(iii) and then (v) at Akrotiri) exhibit a range/

pattern in measured 14C ages that fits specifically against the now well-defined 14C calibration

curve between (using the means of the modelled data) ~1644–1600 BCE with the Thera erup-

tion date then immediately following the latter range (Fig 9C and 9D). This analysis therefore

firmly excludes a Thera eruption date after ~1530 BCE and the general ‘low’ or conventional

chronology interpretation and analysis, and instead points clearly to a later SIP date, most

likely a date around the last decade of the 17th century through the first or second decades of

the 16th century BCE. Further data in the future will of course lead to revision, but given that

(a) the 14C calibration curve is now robustly defined by numerous data in this period (Fig 1),

and (b) there are large sets of 14C data defining the stages (ii)/(iii) and stage (v) episodes and

numerous other compatible 14C data from the Aegean region from contexts dating before,

around, and after the time of the Thera eruption, it is unlikely there will be any substantial

change to the approximate current best-fit region. Indeed, more data will likely only better

define the date range close to or within the current 95.4% range ~1609–1560 BCE and likely

close to the region of the current most likely range ~1606–1589 BCE (using the Fig 9 ranges).

As noted above, if the data from the Sofular Cave are added, then such a position is reinforced

and narrowed (Fig 13).

Archaeological flexibilities

The reason there has been such a long debate over the date of the Thera eruption and the

beginning of the Aegean LBA is not because of 14C: 14C merely highlighted an existing prob-

lem. This problem is that there is not, and never has been, any good, clear, set of archaeological

linkages/synchronisms that tie the Aegean (Cretan) MMIII through LMIA periods to the

approximate Egyptian historical chronology. Whereas there are a set of linkages for Cretan
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MMIB-II Kamares ware with Egyptian Middle Kingdom contexts, and then a set of linkages

for material from the LMIB/LHIIA through LHIIIB periods with NK contexts [6–11, 25–30,

84, 162–168, 188], there is, as long-noted, a conspicuous gap in any secure connections during

MMIII to LMIA [7, 9, 11, 84, 98, 168]. In turn, there is thus scope for considerable flexibility.

This situation was recognized over 30 years ago by Hallager [169] who wrote: “it is important

to stress that the renewed investigations of the traditional synchronisms of the MMIII/LMIA

material have shown the contexts–both Egyptian/Near Eastern and Aegean–so dubious that a

revised high chronology for the beginning of the LMIA is possible”. This situation remains the

case today.

There has thus conventionally been conjecture, rather than any solid archaeological chro-

nology, for the LMIA date range. At this point one further observation must be highlighted.

Where there is a well-replicated archaeological or historical chronology directly linking con-

texts of interest with an historically dated timeframe (e.g. Aegean to Egypt), then modern, cali-

brated, 14C evidence has invariably supported a similar/compatible chronology and there is no

major disagreement. The close of the LMIB period (Figs 10 and 11) is an example [92], and the

end of the LBA offers another instance (e.g. [25, 31, 84, 189, 190]). The dating of East Mediter-

ranean/Near Eastern historical chronologies with good evidential basis likewise yields compat-

ible results (or, even, as resolution increases, results from 14C analysis that allow selection

between competing historical reconstructions). The dating of the Egyptian kings is a good

example [63], as is the dating of the Old Assyrian/Old Babylonian period [44, 191]. Nor are

these observations peculiar to the eastern Mediterranean. The period of initial European inva-

sion into North America offers a good example. Indigenous sites with strong, well-replicated,

connections with European trade goods and their date ranges, or association with historically

attested episodes (like Samuel de Champlain spending a winter at a site), yield compatible 14C
dated calendar age ranges, whereas some sites lacking well-replicated connections and conven-
tionally dated according only to various assumptions and interpretations may yield 14C dated
ranges that challenge these past assumptions and interpretations and so call for a revised chronol-
ogy (e.g. [192–195]).

The topic of the relationship of the last part of the LHI period versus the date of the Thera

eruption is a case where critical examination is necessary. Here it is important to note that sev-

eral of the pieces of archaeological evidence previously adduced to try to dispute a higher date

for the Thera eruption (that is a date during the SIP and before the NK) can no longer be

regarded as sound or unambiguous (e.g. [7, 9, 11]). In particular, two items should be noted.

First: the last stage of LHI is not represented at Akrotiri before the eruption [196], and a late-

LHI 14C dataset (k-2) from Lerna Shaft Grave 2 in fact suggests late-LHI may continue a little

later into the 16th century BCE (Fig 10). Thus it is possible that a few elements may occur

before the very end of LHI that post-date the Thera eruption and these specifically do not offer

a TPQ for the eruption date. Second: diagnosis of some late SIP versus early NK (18th Dynasty)

vessel types (especially stone vessels) is difficult and not securely based, undermining past use

of an NK TPQ for a point in later LHI or LCI based on such items ([7] at pp.440-441, [9] at

RE pp.37-38, [11] at pp.1165-1167] (and note the previous point, regardless).

Overall, the field has reached a turning point in the search for a date for the Thera eruption.

From the 14C side the evidence available is plural, plentiful and coherent, and, critically, the

calibration curve is now very much better defined and revises past positions. Previous criti-

cisms have been overcome, or no longer apply. Of course, those who, nevertheless, are com-

mitted to supporting the conventional, low, chronology for the Aegean and eastern

Mediterranean will point to some archaeologically based observations or interpretations as

supposedly disproving the possibility of the higher 14C-based chronology (e.g. [6, 8, 26, 30,

162–165]), and will dispute arguments demonstrating that such evidence is in fact either
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ambiguous or lacks chronological precision or is capable of different interpretations. Of

course, the simple fact that such debate has continued for several decades highlights the funda-

mental weakness of this opposition and the lack of any solid (positive) evidence in support of

its case. Indeed, the strongest opposition tactic of last resort was not drawn from archaeology,

but to make arguments that the 14C evidence was potentially ambiguous or not reliable, and

could not really be trusted because it might be biased by volcanic CO2 (e.g. [6, 8, 26, 165, 197]).

However, this paper has demonstrated that these concerns no longer apply. This leaves noth-

ing sound—only belief and tradition—that contradicts the findings reported in this paper

pointing to a SIP date for the Thera eruption.

Assessed objectively, the likely Thera eruption date range identified in this paper, between

past ‘high’ (1640s, 1620s BCE) and ‘low’ (1530–1500 BCE) positions, usefully facilitates a new

consensus that can overcome many previous archaeological objections. As an example, and

perhaps presciently, Merrillees in a paper of 2009 remarked that “a lowering of this event [the

Thera eruption] closer to the end of the 17th century BC would fit . . . more comfortably, as

well as satisfy me” ([198] at p.251). We now have a most likely 68.3% dating range ~1606–1589

BCE (Fig 9). In support, other Aegean 14C datasets, (i)–(l), provide compatible calendar place-

ments: early to mature LMIA and early to mid-LHI in the 17th century BCE, late-LHI (includ-

ing Mycenae Shaft Grave Circle A [199]) in the late 17th to earlier 16th century BCE, and (we

lack any earlier LMIB dataset) later/close LMIB in the earlier to mid-15th centuries BCE (Figs

10 and 12 and Tables 1–5). At the same time, the archaeologically-based site chronology of

Avaris/Tell el-Dab‘a, and the linked/derived Levantine MBA to early LBA timeframe, long

deployed as an obstacle to a higher/earlier chronology for the Thera eruption and the start of

the Aegean LBA by Bietak (e.g. [8, 26, 200]), have also been shown both to lack solid archaeo-

logical-historical foundation and to be contradicted by extensive 14C evidence that instead

offers a coherent chronological framework consistent with the 14C timeframe in the Aegean

(e.g. [7, 9, 11, 44, 170–172, 201]).

Thera and the LMIB destructions on Crete

The comparison in Fig 11 of the date ranges for the close of LMIB destructions on Crete versus

the Thera eruption indicates a lengthy time interval between these episodes, likely>100 years.

Table 5. Modelled results (bold = 68.3% hpd, and non-bold = 95.4% hpd) for the datasets shown in Fig 10. The

majority range where there are two or more split ranges is underlined.

Dataset 68.3% hpd Dates BCE 95.4% hpd Dates BCE

Dataset I, Kolonna J/K or MH/LHI transition 1701–1654 (45.0)

1649–1618 (23.3)

1744–1582

Dataset j Kommos Early LMIA Date (twig) 1731–1727 (3.9)

1694–1636 (64.3)

1741–1710 (19.4)

1700–1622 (76.0)

Dataset k-1 Lerna Shaft Grave 1 Mid-LHI 1666–1649 (20.0)

1638–1608 (48.3)

1726–1718 (1.2)

1686–1592 (94.3)

Akrotiri Stages (ii)/(iii) 1610–1592 1614–1562

Thera Eruption (TE5) 1606–1589 1609–1560

Dataset k-2 Lerna Shaft Grave 2 Late-LHI 1606–1557 (65.4)

1553–1552 (1.2)

1550–1548 (1.8)

1611–1531

Dataset l Chania LMIB Destruction 1504–1452 1526–1421

Dataset l Myrtos-Pyrgos LMIB Late Destruction 1499–1486 (21.3)1478–1452 (47.0) 1505–1437

Dataset l Mochlos LMIB Final Destruction 1467–1426 1491–1398

https://doi.org/10.1371/journal.pone.0274835.t005
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Such a long temporal separation makes it challenging to articulate any direct causal associa-

tion, although the long-term systemic impacts of the evisceration of Thera, and what had been

a major port and hub in the Aegean region until that time, will have significantly impacted the

whole area, and necessarily led to substantial reconfiguration of regional networks and histo-

ries [3, 17, 202]. More salient: this long interval and, at present, the lack of dated contexts on

Crete for the period ~1580/50–1500 BCE, along with, for instance, indications of disruption

and partial abandonment at Trianda on Rhodes in the period after the Theran tephra fall [71],

and changes and much reduced Minoan associations at Iasos, Caria, in western Turkey in the

period after Thera tephra fall [203], highlights the question of whether there was an, as yet,

largely undocumented period of major, sustained, disruption on Crete (and affected parts of

the Aegean) associated with the period of the Minoan Thera volcanic eruption, starting in late/

end LMIA perhaps associated with the major earthquake evident on Thera and felt in Crete

and then the enormous eruption itself [1–3, 17, 49, 56, 60]. Despite a lack of clear regional

environmental evidence for Thera eruption impacts in pollen records from northwest Crete

and southwest Turkey [204, 205], in light of the increasing evidence for disruptions in parts of

the southern Aegean, and increasing evidence for devastating Thera tsunami impacts in the

Aegean [3, 45, 52–54, 56, 73], and indications of complicated processes of late LMIA abandon-

ment, tephra fall, and flooding as observed in east Crete [206], attention focuses onto a poten-

tially culturally transformative episode—mainly marked at present by an absence of evidence

—in the earlier to mid-16th century BC. This needs more investigation with analysis and dating

of initial to earlier LMIB contexts. The subsequent appearance and wide but selective distribu-

tion of the notable Marine Style motifs of the Special Palatial Tradition in later LMIB, and the

associations of these with ritual contexts, is conspicuous [95, 207, 208], and may offer one

reflection of, and even ideological statement referencing, the long-reaching events (seismic,

volcanic, and tsunamogenic), trauma, and changes in the southern Aegean that resulted

directly and indirectly from the enormous Thera eruption [3, 17, 45, 49, 56, 60, 199, 208].
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110. D’Arcy F, Boucher É, De Moor JM, Hélie J-F, Piggott R, Stix J. Carbon and sulfur isotopes in tree rings

as a proxy for volcanic degassing. Geology 2019; 47:825–828.

111. Seiler R. et al. Tree-ring stable isotopes and radiocarbon reveal pre- and post-eruption effects of volca-

nic processes on trees on Mt. Etna (Sicily, Italy). Ecohydrology 2021; 14:e2340.

112. Hogg AG. et al. Wiggle-match radiocarbon dating of the Taupo eruption. Nature Communications

2019; 10:4669. https://doi.org/10.1038/s41467-019-12532-8 PMID: 31604909

113. Holdaway RN, Duffy B, Kennedy B. Reply to ‘Wiggle-match radiocarbon dating of the Taupo eruption’.

Nature Communications 2019; 10:4668.

114. Flaherty T, Druitt TH, Tuffen H, Higgins MD, Costa F, Cadoux A. Multiple timescale constraints for

high-flux magma chamber assembly prior to the Late Bronze Age eruption of Santorini (Greece). Con-

tributions to Mineralogy and Petrology 2018; 173:75. https://doi.org/10.1007/s00410-018-1490-1

115. Dee MW et al. Investigating the likelihood of a reservoir offset in the radiocarbon record for ancient

Egypt. Journal of Archaeological Science 2010; 37:687–693.

116. Manning SW et al. Fluctuating radiocarbon offsets observed in the southern Levant and implications

for archaeological chronology debates. Proceedings of the National Academy of Sciences of the

United States of America 2018; 115:6141–6146. https://doi.org/10.1073/pnas.1719420115 PMID:

29844183

117. Manning SW et al. Mediterranean radiocarbon offsets and calendar dates for prehistory. Science

Advances 2020; 6:eaaz1096. https://doi.org/10.1126/sciadv.aaz1096 PMID: 32206721
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