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Review Article

IntroductIon
There are about 20,000 protein‑coding genes that constitute 
about 2% of the human genome. At least 70% of the sequences 
are transcribed into RNAs, and most of the transcripts have 
been identified as noncoding RNAs (ncRNAs).[1‑5] The long 
ncRNAs with >200 nucleotides and short ncRNAs with 
20 nucleotides are recognized as the fundamental regulators of 
the human genome based on remarkable advances in sequencing 
techniques and large‑scale genome sequencing.[6‑8] The human 
genome encodes about 1000 kinds of microRNAs (miRNAs), 
which are endogenous, noncoding, single‑stranded molecules 
and have a regulatory role across the mammalian genome. 
They are present in eukaryotes, and their length ranges 
from 22 to 24 nucleotides.[9] MiRNAs are responsible for 
post‑transcription regulations by interacting with messenger 
RNA (mRNA) and silencing the related gene. They are 

mostly produced by the transcription of other genes’ intron 
regions via RNA polymerase II.[10] More studies are needed to 
discover new biological phenomena related to carcinogenesis, 
like miRNAs. MiRNA expression varies depending on 
different cancerous tissues and can be raised, lowered, or 
stay the same.[11] MicroRNA 216 (MiR‑216) containing two 
homologous miRNAs on chromosome 2p16.1 of the human is 
more proper as a possible biomarker for cancer prognosis and 
diagnosis than a therapeutic target. Using the RNAfold (Rfold) 
webserver (http://rna.tbi.univie.ac.at/cgi‑bin/RNAWebSuite/
RNAfold.cgi), the anticipated secondary structure of miR‑216 
with a minimum free energy (MFE) of −40.30 kcal/mol and 
dot‑bracket notation has been shown [Figure 1].

MiR‑216 of flies, mice, humans, and other species with similar 
sequences and structures exhibited conservative evolution. 
MiR‑216 regulation is important for physiological homeostasis 
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in the human body. According to some studies, MiR‑216 
enhances cell proliferation and invasion while inducing 
apoptosis in certain malignancies.[12,13]

This review aims to amass the evidence to reach the molecular 
mechanism as well as clinical prominence of the miR‑216 in 
different types of cancers.

Changes miR‑216 in Different Tumors
Some studies have shown that miR‑216 is downregulated 
in a variety of human tumors such as glioma,[14,15] breast 
cancer (BC),[12] bone metastasis,[16] cervical cancer (CC),[17,18] 
esophageal cancer,[19] gastric cancer,[20] pancreatic cancer 
(PC),[21‑27] and miR‑216 is upregulated in acute myeloid 
leukemia (AML),[13] and colorectal cancer (CRC)[28,29] [Table 1].

Brain Cancer (Glioma)
Gliomas are one of the most common and aggressive central 
nervous system (CNS) tumors.[30,31] In spite of advances in 
cancer treatment in recent years, glioma patients have a poor 
prognosis and survival rate.[32,33] Nowadays, glioma represents 
51.4% of all primary CNS malignancies.[34] Glioblastoma 
(GBM) is also the most common and lethal type of glioma 
in adults, with a median survival period of 14 months.[35] 

Li et al.[14] (2018) observed that miR‑216b expression was 
dramatically decreased in glioma cell lines and tissues. 
miR‑216b Overexpression impeded the growth and migration 
of glioma cells, whereas inhibition of miR‑216b had the 
reverse effect. Their findings demonstrated that miR‑216b 
plays a tumor‑suppressive role in the development of glioma 
and recognized astrocyte elevated gene‑1 (AEG‑1) as a 
miR‑216b target gene. This miR could be a promising target for 
developing novel glioma treatments. Using online databases, 
quantitative reverse transcription polymerase chain reaction 
(qRT‑PCR), and the luciferase reporter assay, Li et al.[15] (2022) 
identified the F11 receptor (F11R) as the target of miR‑216, 
and HOXC‑AS3 targeted miR‑216 as a sponge.

Breast Cancer
BC is a heterogeneous disorder with different subtypes, and 
each type has a diverse overall survival.[36,37] Age, height, 
reproductive variables (such as older age at first birth, 
nulliparity), usage of exogenous hormones, and family history 
are risk factors for BC. Lifestyle factors like inactivity, alcohol 
use, and postmenopausal obesity have also been linked with 
a higher risk of BC.[38] Moreover, the most prevalent cause of 
cancer‑related mortality among women is BC.[39] Based on 
numerous studies, around one‑eighth of women worldwide 
will develop this cancer over their lifetime.[40] Using RT‑qPCR 
and fluorescence in situ hybridization (FISH) analysis, Liu 
et al.[12] (2021) showed that in BC tissues and cells, hexokinase 
2 (HK2) was highly expressed while miR‑216b was poorly 
represented. Functionally, miR‑216b was strongly linked 
with BC progression by targeting HK2 and inactivating the 
mammalian target of rapamycin (mTOR) signaling pathway. 
Moreover, miR‑216b overexpression or HK2 silencing reduced 
cell viability, migration, and invasion while inducing apoptosis, 
autophagy, and cell cycle arrest. Overall, their results suggested 
that miR‑216b inactivates the mTOR signaling pathway via 
down‑regulating HK2, thereby preventing the progression of 
BC therapy.

Table 1: MiR‑216 in various cancers: functional properties

Cancer type Expression Role Clinical characteristics Related gene Ref.
Brain Cancer (Glioma) ↓ TSG Cell Proliferation, migration, invasion AEG‑1, F11R, HOXC‑AS3 [14,15]

Breast Cancer ↓ TSG Cell Proliferation, colony formation, metastasis, 
tumor progression, apoptosis inhibition

HK2 [12]

Bone Metastasis 
(Osteoblasts)

↓ TSG Cell Proliferation, differentiation, migration, 
metastasis, apoptosis inhibition

WISP‑1, VCAM‑1 [16]

Cervical Cancer ↓ TSG Cell Proliferation, invasion, metastasis, 
angiogenesis, apoptosis inhibition

SNHG16 [17,18]

Esophageal Cancer ↓ TSG Cell Proliferation IGF2BP2, LIPH‑4 [19]

Gastric Cancer ↓ TSG Cell Proliferation, colony formation, migration, 
metastasis, invasion, apoptosis inhibition

Cyclin T2 [20]

Pancreatic Cancer ↓ TSG Cell Proliferation, metastasis Kras, Janus kinase [21‑27]

Acute Myeloid Leukemia ↑ OG Cell Proliferation, colony formation U2AF1, IDH1/2, FLT3 [13]

Colorectal Cancer (CRC) ↑ OG Cell Proliferation, colony formation, migration, 
metastasis, invasion, apoptosis inhibition

‑ [29]

↓=downregulate, ↑=pregulate, AEG‑1=astrocyte elevated gene‑1, F11R=F11 receptor, FLT3=FMS‑like tyrosine kinase 3 HOXC‑AS3=HOXC Cluster 
Antisense RNA 3, HK2=hexokinase 2, IDH1/2=isocitrate dehydrogenase 1 and 2 (IDH1/2), TSG=tumor suppressor gene, OG=oncogene, SNHG16=small 
nucleolar RNA host gene 16, VCAM‑1=vascular cell adhesion molecule 1, WISP‑1=Wnt1 inducible signaling pathway protein 1

Figure 1: Prediction of Optimal Secondary structure of the has‑miR‑216 
(EPS format) with −40.30 kcal/mol with its dot‑bracket notation 
using the Rfold webserver. The sequence of this microRNA: 
TAATCTCAGCTGGCAACTGTG



Mondeali, et al.: Crucial roles of miR‑216 in human cancers

Advanced Biomedical Research | 2025 3

Prostate Cancer: Bone Metastasis (Osteoblasts)
Prostate cancer (PCa) is the most prevalent type of cancer 
diagnosed in the US and other Western countries.[41] Surgery 
is the most common treatment option in the first stages. 
However, in later stages, systemic intervention is needed to 
suppress tumor progress and avoid secondary metastases. 
One of the prevalent complications related to progressed 
Pca is bone metastasis, which results in bone breakage 
and severe pain. In PCa, bone metastasis has predictive 
importance because the severity of the disease in the bone 
has a significant impact on survival.[42‑44] Bone lesions caused 
by metastasis involve the osteoclasts and osteoblasts.[45] 
The major cellular components of bones, osteoblasts, are 
important in osteogenesis.[46,47] Cancer cells release soluble 
factors in the tumor microenvironment that enhance osteoblast 
activation, proliferation, and maturation. They also stimulate 
osteoblastic bone metastasis by secreting bone matrix and 
growth factors.[48,49] As a result, osteoblast‑derived factors play 
an important role in bone metastasis. Tai et al.[16] (2014) found 
that osteoblast‑derived Wnt1 inducible signaling pathway 
protein 1 (WISP‑1) hindered miR‑126 expression. In addition, 
the miR‑216 mimic inhibited the expression and migration 
of vascular cell adhesion molecule 1 (VCAM‑1) induced 
by WISP‑1. According to this research, osteoblast‑derived 
WISP‑1 down‑regulates the expression of miR‑126 by the 
focal adhesion kinase (FAK), mitogen‑activated protein 
kinase (p38), and alpha v beta 1 (αvβ1) integrin pathways 
and stimulates migration and the production of VCAM‑1 in 
human PCa cells.

Cervical Cancer
CC is the fourth most widespread malignancy in women and the 
fourth main reason for cancer‑related death in them, accounting 
for around 275,000 deaths annually.[50] Furthermore, cervical 
intraepithelial neoplasia (CIN) is regarded as a precursor 
to CC. However, CC develops via various precancerous 
stages, from low‑grade CIN (CIN I) and high‑grade CIN 
(CINII/III) to CC.[51] This complicated cancer involves a 
series of epigenetic or genetic modifications.[52,53] Thus, 
investigating the molecular and pathogenic pathways of CC 
is crucial and could be helpful for the diagnosis and therapy 
of human CC. Yang et al.[17] (2016) demonstrated that one of 
the top hub nodes was miR‑216. In a study conducted by Zhu 
et al.[18] (2018), a negative correlation between miR‑216‑5p 
and small nucleolar RNA host gene 16 (SNHG16) expression 
levels in CC specimens was observed.

Esophageal Cancer
In 2020, esophageal cancer (EC) was known as the seventh 
most frequently diagnosed cancer (604,100 new cases) and 
the sixth most deadly cancer (544,076 fatalities) around the 
world.[54] There are two forms of EC: esophageal squamous 
cell carcinoma (ESCC) and esophageal adenocarcinoma, 
which have different etiology and epidemiology.[55] The 
most common form of EC is ESCC, happening mainly in 
the upper and mid‑esophagus and originating from the lining 

of the esophageal squamous epithelium. ESCCs account 
for more than 90% of EC cases, and EC is the fourth most 
common cause of death from cancer in China.[56] ESCC 
has a 5‑year survival rate below 20% due to late detection, 
frequent metastasis, and rapid tumor growth.[57,58] Furthermore, 
the exact genetic and molecular processes of ESCC are 
unknown.[59] Xiao et al.[19] (2022) showed that to stimulate 
the expression of insulin‑like growth factor 2 mRNA‑binding 
protein 2 (IGF2BP2), miR‑216’s target gene, LIPH‑4 could 
bind to miR‑216b and function as a competitive endogenous 
RNA (ceRNA). LIPH‑4 operated as an oncogene via the 
miR‑216b/IGF2BP2 axis in ESCC.

Gastric Cancer
Gastric cancer is a malignant digestive tract cancer that 
emanates from gastric mucosal epithelial cells. According to 
a study in the field, it has the third‑highest fatality rate and 
the fifth‑highest incidence rate in the world. It has been at 
the frontline of malignancies in the world.[60,61] According to 
several statistical studies, <25% of patients with early gastric 
cancer diagnosis and therapy had a poor 5‑year survival 
rate.[62,63] Occult occultation, recurrence, and easy metastasis 
are the leading causes of poor prognosis and death in gastric 
cancer. Determining the molecular mechanism underlying 
the development of gastric cancer is crucial for gastric cancer 
treatment and prognosis improvement. Chen et al.[20] (2020) 
stated that miR‑216 was significantly downregulated in cancer 
tissues relative to normal tissues. MiR‑216b was also reduced 
in different gastric cancer cell lines. In this study, miR‑216b 
overexpression prevents gastric cancer cell proliferation, 
migration, and apoptosis. They confirmed that the inhibition 
of the invasion and proliferation of gastric cancer cells by 
miR‑216b is mediated by cyclin T2. Cyclin T2 overexpression 
can counteract the anticancer effect of miR‑216b mimics.

Pancreatic Cancer
PC is the fourth most frequent reason for cancer‑related 
mortality in the US and sixth in China; 90–95% of pancreatic 
malignancies are exocrine tumors classified as pancreatic 
ductal adenocarcinomas (PDAC).[64,65] PC is the fourth 
leading reason of cancer death globally.[66,67] Exocrine ductal 
adenocarcinomas (PDAC) account for 96% of pancreatic 
malignancies.[66] Periampullary carcinomas are another type 
of pancreatic tumor; 12% of them are adenocarcinomas of the 
Vater ampulla (AMP). In comparison to PDAC, patients with 
AMP have improved prognosis (5‑year survival of >45%) 
primarily because of early disease identification.[68,69] By 2030, 
pancreatic ductal adenocarcinoma (PDAC) is projected to 
be the second most deadly cancer in the US.[70,71] PDAC is a 
deadly cancer with a 5‑year survival rate of about 5% after 
diagnosis.[72,73] After curative resection, more than half of 
patients experience distant metastasis or local recurrence due 
to the severe aggressivity of PDAC cells.[74,75] Patients with 
PDAC can now benefit from molecularly targeted effects.[76,77] 
Szafranska et al.[21] (2007) showed that pancreas tissue is 
distinguished by the expression of miR‑217 and ‑216 and the 
absence of miR‑133a. Greither et al.[22] (2010) demonstrated 
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that patients with PDACs expressing elevated levels of 
miR‑222, miR‑210, miR‑203, or miR‑155, but not miR‑217 
or miR 216, will have shorter overall survival. Also, the 
overexpression of all four miRNAs raises the relative risk 
of mortality from 2.20–2.50 fold to 5.24 fold. Yang et al.
[23] (2014) displayed that stool miR‑216, miR‑155, and 
miR‑21 significantly differentiate PDAC patients from chronic 
pancreatitis (CP) and normal persons. This proof‑of‑concept 
study assessed the potential of stool‑based miRNAs as 
prospective biomarkers for screening PDAC. Furthermore, it 
was discovered that miR‑155 and miR‑21 were overexpressed 
in PDAC tissues, pancreatic juice, and stool specimens, while 
miR‑216 was down‑expressed. According to Rachagani et al.
[24] (2015) study, as pancreatic intraepithelial neoplasia (PanIN) 
lesions developed into PDAC, the expression of the tumor 
suppressors miR‑217 and miR‑216 in the pancreas were 
unchanged at 10 weeks of age but gradually declined from 
25–50 weeks of age. In addition to KC mice, human PC tissue 
showed substantial down‑regulation of miR‑217 and miR‑216. 
By targeting downstream genes, mainly the Kras oncogene 
and Janus kinase, miR‑217 and miR‑216 may act as tumor 
suppressors in PC. It was also discovered that miR‑216 and 
miR‑217 could target many essential genes involved in the 
pathogenesis of PC. Azevedo‑Pouly et al.[25] (2017) showed 
that in these mice, the expression of three miRNAs, miR‑217, 
miR‑216a, and miR‑216b, placed in a 30‑kbp area on 11qA3.3, 
reduced with age and phenotypic intensity. Also, miR‑217 and 
216 expression was examined in other acinar‑ special elastase 
promoter (Ela)‑KrasG12D mouse strain and shown to be 
downregulated. They hypothesized that miR‑216/‑217 might 
preserve acinar differentiation or serve as tumor‑suppressive 
miRNAs because they are enriched in acinars, decreased 
in human PDAC, and target Kirsten rat sarcoma (Kras). To 
assess this idea, a 27.9‑kbp area of 11qA3.3, including the 
miR‑216/217 host gene, was deleted in the germ line of mice. 
Yonemori et al.[26] (2017) reported that the miR‑216 cluster was 
remarkably diminished in PDAC samples. The aggressiveness 
of cancer cells was inhibited by ectopic expression of these 
miRNAs, indicating that the miR‑216 cluster is an anti‑tumor 
miRNA in PDAC cells. It is still unclear how miR‑216b‑3p (the 
passenger strand of pre‑miR‑216b) affects cancer cells. Felix 
et al.[27] (2019) expressed that in PDAC the miR‑216 family, 
including miR‑216a‑3p, miR‑216b‑3p, miR‑216a‑5p, and 
miR‑216b‑5p was consistently downregulated.

Acute myeloid leukemia (AML)
AML is a disease with unsatisfactory clinical outcomes that is 
cytogenetically and molecularly heterogeneous.[78] Cytogenetic 
changes (i.e., t[16;16]/inv[16], +8, −7/7q‑, −5/5q‑, t[9;11], 
t[15;17], t[8;21], and complex) and molecular changes, like 
mutations nucleophosmin 1 (NPM1), v‑Kit Hardy‑Zuckerman 
4 feline sarcoma viral oncogene homolog (C‑KIT), FMS‑like 
tyrosine kinase 3 ‑ internal tandem duplication (FLT3‑ITD), 
and CCAAT/enhancer‑binding protein alpha (CEBPA), also 
abnormal expression in Wilms’ tumor 1 (WT1), brain and acute 
leukemia cytoplasmic (BAALC), meningioma 1 (MN1), and 

ETS‑related gene (ERG), are critical in leukemogenesis and 
give the best prognostic data for AML.[79,80] The expression 
and clinical importance of MiR‑216b in acute myeloid 
leukemia patients were reported by Zhang et al.[13] (2018).They 
examined bone marrow miR‑216b expression in 115 patients 
with de novo AML by real‑time quantitative polymerase chain 
reaction (PCR). Remarkably, bone marrow (BM) miR‑216b 
expression was increased in these patients, suggesting that 
it could be a biomarker to differentiate AML from controls. 
There were no significant associations between the expression 
of miR‑216 with gender, age, hemoglobin, white blood cells, 
platelets, BM blasts, karyotypes, and French‑American‑British 
categories. Patients with elevated miR‑216b expression 
had a reduced incidence of FLT3‑ITD mutations and a 
greater occurrence of U2 small nuclear ribonucleoprotein 
auxiliary factor 1 (U2AF1) and isocitrate dehydrogenase 1 
and 2 (IDH1/2) mutations. Furthermore, overexpression of 
miR‑216b in cytogenetically normal AML patients negatively 
affected the overall survival and complete remission (CR) 
rate. The level of BM miR‑216b in the follow‑up patients was 
notably diminished in the CR phase compared to the detection 
time and returned in the relapse phase. Overall, their results 
showed that miR‑216b overexpression was common in de novo 
AML and predicted a poor outcome in CN‑AML. Furthermore, 
miR‑216b expression in AML was a useful indicator of disease 
recurrence.

Colorectal Cancer (CRC)
Colorectal cancer (CRC) has one of the world’s highest rates of 
mortality and morbidity. About half a million people died from 
CRC in 2012.[81] Furthermore, colorectal cancer (CRC) is the 
third most prevalent malignant tumor and the second cause of 
cancer‑related death.[82] According to the global 2018 estimates, 
there were 1,800,977 diagnosed cases and 861,663 deaths.[83] 
Until 2035, the death rate from colon and rectal cancer is 
anticipated to increase by 60 and 71.5%, respectively.[84] 
A profile of miR‑216 (one of the five serum miRNAs) was 
recognized by Zhang et al.[28] (2014) as a biomarker for 
forecasting chemosensitivity in CRC Cai et al.[29] (2021) 
reported up‑regulation of miR‑216 in colorectal cancer cells.

conclusIon
MiRNAs play an important role in gene regulation, and their 
dysregulation is considered a hallmark of cancer. Several 
studies have shown that miR‑216 belongs to a class of 
noncoding RNAs that are mainly involved in cancer cell 
invasion, migration, and proliferation. According to most 
studies, miR‑216 acts almost like a tumor suppressor, while it 
also plays an oncogenic role in some cancers. The mechanism 
by which up‑ or down‑regulation of miR‑216 contributes to 
tumor growth and carcinogenesis is complicated.

miR‑216 mostly correlated with carcinogenesis and related 
with cancer progression through known pathways, including 
cell cycle pathway, Ras/mitogen‑activated protein kinase 
(RAS/MAPK) pathway, isocitrate dehydrogenases pathway, 
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IGF signaling, metastasis adhesion protein, Junctional 
Adhesion Molecule and vascular cell adhesion molecule, 
glycerophospholipid biosynthesis pathway in cancer, which 
all these pathways have a correlation with each other also and 
has a main function in growth, proliferation or rapid growth, 
cell differentiation, as well as in invading and migrating the 
cancer cells in a variety of tumors. Furthermore, despite its 
unknown properties, it contains different levels that mostly 
affect cell proliferation and, thus, tumor growth. Variations 
in miR‑216 expression are strongly related to the severity of 
malignant tumor development, according to the findings of 
previous studies. Thus, they may be candidates for evaluating 
cancer severity, prognosis, response to treatment, and even as a 
potential therapeutic approach for solid tumors. Serum miR‑216 
levels are directly associated with disease progression and a 
decreased survival rate. MiR‑216 has promising potential for 
diagnosing disease progression, stage, prognosis, and measuring 
therapy effectiveness due to its functional mechanisms in 
cellular pathways. Increasing expression of miR‑216 has 
therapeutic potential as effective as anti‑tumor drugs. Based on 
the findings, miR‑216 is suggested as a predictive marker for the 
early detection of tumor growth, progression, and metastasis.

Future ProsPect
A detailed investigation of the upstream and downstream 
mechanisms of miR‑216 is stillrequired to ponder way 
better and confirm it. MiR‑216 could be used clinically as a 
multipurpose biomarker for diagnosis and prognosis, cancer 
progression, and even treatment efficacy evaluation. The 
miR‑216 could, therefore, be used as a novel therapeutic 
target in cancer treatment and eventually become a key clinical 
treatment approach.

Method
In this study, two approaches were employed by the authors. 
Using the keywords MIRN216, MiRNA216, Hsa‑Mir‑216, 
MicroRNA 216, and Hsa‑miR‑216, the databases PubMed, 
Scopus, Embase, Cochrane, and Google Scholar were searched 
for all articles published after the year 2000. the relationship 
between the expression of miR‑216 and the molecular 
mechanism(s) in growing tumors of any type of cancer was 
chosen as inclusion criteria.
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