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Abstract: Being a globally emerging mite-borne zoonotic disease, scrub typhus is a serious public
health concern in Nepal. Mapping environmental suitability and quantifying the human population
under risk of the disease is important for prevention and control efforts. In this study, we model and
map the environmental suitability of scrub typhus using the ecological niche approach, machine
learning modeling techniques, and report locations of scrub typhus along with several climatic,
topographic, Normalized Difference Vegetation Index (NDVI), and proximity explanatory variables
and estimated population under the risk of disease at a national level. Both MaxEnt and RF technique
results reveal robust predictive power with test The area under curve (AUC) and true skill statistics
(TSS) of above 0.8 and 0.6, respectively. Spatial prediction reveals that environmentally suitable
areas of scrub typhus are widely distributed across the country particularly in the low-land Tarai
and less elevated river valleys. We found that areas close to agricultural land with gentle slopes
have higher suitability of scrub typhus occurrence. Despite several speculations on the association
between scrub typhus and proximity to earthquake epicenters, we did not find a significant role of
proximity to earthquake epicenters in the distribution of scrub typhus in Nepal. About 43% of the
population living in highly suitable areas for scrub typhus are at higher risk of infection, followed
by 29% living in suitable areas of moderate-risk, and about 22% living in moderately suitable areas
of lower risk. These findings could be useful in selecting priority areas for surveillance and control
strategies effectively.

Keywords: scrub typhus; suitability mapping; machine learning; Nepal

1. Introduction

Scrub typhus, an acute febrile zoonotic disease originating from Japan, is caused by bacteria called
orientia tsutsugamushi 1899 [1]. It is transmitted through the bite of infected mites (the larval stage;
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known as chiggers) [2] and is prevalent in many countries in Asia-Pacific regions, extending from
northern Japan and far-eastern Russia in the north, to northern Australia in the south, and Pakistan in
the west [3,4]. Almost a million scrub typhus cases are reported annually, and a billion people living in
this region are under the risk of the disease [4]. One recent report [5] claims that scrub typhus has been
reported from well beyond the limits of the Tsutsugamushi Triangle and that has triggered concerns
about the worldwide presence of scrub typhus [5,6]. In Nepal, scrub typhus has been a major public
health problem with a series of outbreak across the country following the devastating earthquake of
April 2015, with rising cases and spatial spread in the subsequent years [7].

Previous studies have reported the association of scrub typhus with climate, topography, vegetation
dynamics, and socioeconomic factors. Suitable environmental conditions can provide ideal habitats for
vectors to breed, become bacterium, survive long enough to become infectious, and finally transmit
the disease to a susceptible human host [8]. For example, the spatial distribution of scrub typhus was
associated with land use, NDVI, and relative humidity in southern India [6]. Positive association with
temperature, relative humidity, and rainfall was also observed in southern China [9,10]. In Taiwan,
the spatial pattern of the scrub typhus was positively associated with cropland, vegetation mosaic,
and elevation [11]. Rainfall provides the moisture necessary for the survival and growth of host rodents
and shows a positive association with rodent density [10]. The occurrence of scrub typhus is also
linked to anthropogenic activities and socioeconomic factors. Farmworker population density and
timber management are also positively associated with scrub typhus [12]. Changes in land use, animal
populations, and climate, primarily due to increasing human populations, drive the emergence of
zoonosis [13]. Elevated risk was also observed proximate to cultivated land [14]. A recent study in
South Korea revealed a positive association between deforestation and scrub typhus [15].

Mapping the environmental suitability for disease transmission and identifying the associated
environmental variables can provide crucial information for evidence-based decision making [16–18].
A better understanding of the spatial distribution of the incidence along with the possible associated
factors of the distribution allows for more targeted disease control efforts and assist in the prediction of
disease dynamics [16].

The ecological niche modeling (ENM) approach, machine learning algorithms, and GIS and
remote sensing technology are playing an important role in disease mapping, identifying the associated
environmental factors and advancing geography of infectious diseases [16,19]. There are several
advantages of ENM predictive modeling in estimating disease distribution patterns over the traditional
data-driven descriptive choropleth mapping and analytical spatial interpolation techniques [16]. ENM
can produce a more accurate and robust map even with an incomplete and noisy dataset [16,20].
This is the most important advantage of the ENM in disease mapping as a collection of disease data is
difficult due to underreporting, misdiagnosis, and ethical issues of personal identity and is costly and
labor-intensive. Further, being non-parametric ENM are capable on describing nonlinear relationships
between variables [9,21] to assess the interaction of spatial process of disease.

In the context of disease mapping, the aim is to determine habitat suitability for the persistence
of a given disease agent and its transmission vectors at sufficient levels to result in human cases [16].
Generating disease maps from occurrence point data is thus similar to estimating species distributions,
which characterize habitats suitable for a given species. Several algorithms are available to implement
ENM, among which machine learning algorithms such as MaxEnt [22], and random forest (RF) [23] are
superior due to their higher predictive accuracy.

Despite emerging evidence, the details of spatial distributions environmental suitability of scrub
typhus transmission and associated environmental factors remain unclear in Nepal. Only a few
studies have attempted to assess the environmental factors associated with occurrence and spread of
scrub typhus [24–26]. However, no mapping efforts have been made yet to assess spatial variation of
environmental suitable areas of scrub typhus transmission and associated factors in Nepal. In this
study, we mapped the environmental suitability of scrub typhus and estimated human population
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under the risk of disease transmission in Nepal using the ecological niche approach and machine
learning modeling techniques.

2. Materials and Methods

The overall framework of this study included data collection, processing, the fitting machine
learning model, model evaluation, and prediction and generation of the scrub typhus suitability map
(Figure 1). We introduce the details of each step in the following sections.
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Figure 1. Flowchart summarizing the methodology used in this study.

2.1. Study Area

Nepal lies on southern slope of Himalaya between India and China in latitudes of 26◦22′ N to
30◦27′ N and longitudes 80◦04′ E to 88◦12′ E. It is a mountainous country with an area of 147181
square kilometers. Administratively, Nepal is composed of 7 provinces, 77 districts and 753 local
bodies [27]. There is vivid land topography in Nepal with elevations ranging from 60 m in the southern
plains to 8848 m at Mount Everest in the north. Based on the land topography, there are five distinct
physiographic zones—high mountain, middle mountain, hill, Siwalik, and Tarai [28]. Climate of Nepal
is broadly subtropical monsoon with distinct seasonality. Depending on the pattern of precipitation,
Nepal has four distinct seasons: winter (December, January, and February), pre-monsoon (March–May),
monsoon (June–September), and post-monsoon (October and November) [29]. Due to variations of
altitude and topography, there are distinct microclimate zones from subtropical in the southern Tarai
plain, temperate in the midland to the freezing nival climate in the north. Owing to different terrain
and harsh climates, the northern area of Nepal is sparsely populated while the lowland southern Tarai
and less elevated river valleys are highly populated.

2.2. Input Data

2.2.1. Scrub Typhus Occurrence Location

We extracted the occurrence locations of scrub typhus from the line listing file received from
the Epidemiology and Disease Control Division (EDCD), Government of Nepal. The line listing
file contains the addresses of patients which include names of the VDCs/municipalities and their
respective wards, including the district name. Then, the address data were geocoded using the
“opencage” geocoder package (https://opencagedata.com/) in R. The “opencage” is an open access
platform, which provides a geocoding facility up to 2500 addresses free of cost per day. In this process,
we were able to geocode 123 villages/towns from where at least one case of scrub typhus had been
reported in the government health system during 2015 to 2018. These scrub typhus occurrence locations
(Figure 2) were spatially representative, covering almost entire country.

https://opencagedata.com/
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Figure 2. Location of the study area showing the elevation gradient and distribution of presence and
background point of scrub typhus occurrence in Nepal.

2.2.2. Environmental Covariates

We used a range of predictor variables in this study. These factors are environmental information
relevant to disease amplification and transmission-related with scrub typhus including topographical,
climatic, and vegetation dynamics [8,9,11,30]. Complete list of potential environmental variables used
in the study is presented in Table 1.

Table 1. Data source of environmental variables for the ecological niche model of scrub typhus.

Variable Category Variables Description Sources

Topographical

Elevation Elevation (m) SRTM 90 m digital elevation data

Slope Slope(degree)

SRTM 90 m digital elevation data,
http://www.csi.cgiar.org/,
computed using the Slope
Analysis tool in ESRI ArcGIS 10.2;
a 1-km resolution dataset was
generated

Aspect Aspect

SRTM 90 m digital elevation data,
http://www.csi.cgiar.org/,
computed using the Aspect
Analysis tool in ESRI ArcGIS 10.2;
a 1-km resolution dataset was
generated

Climate

Bio2 Mean diurnal range of temperature Worldclim Geoportal,
http://worldclim.org/

Bio3 Isothermality Worldclim Geoportal,
http://worldclim.org/

Bio9 Mean temperature of driest quarter Worldclim Geoportal,
http://worldclim.org/

Bio14 Precipitation of driest months Worldclim Geoportal,
http://worldclim.org/

Bio16 Precipitation of wettest quarter Worldclim Geoportal,
http://worldclim.org/

Bio19 Precipitation of coldest quarter Worldclim Geoportal,
http://worldclim.org/

http://www.csi.cgiar.org/
http://www.csi.cgiar.org/
http://worldclim.org/
http://worldclim.org/
http://worldclim.org/
http://worldclim.org/
http://worldclim.org/
http://worldclim.org/


Int. J. Environ. Res. Public Health 2019, 16, 4845 5 of 14

Table 1. Cont.

Variable Category Variables Description Sources

Proximity

Dist2Urban Distance to urban area (km)

Landcover map 2010, http://rds.
icimod.org/Home/,computed
using the Euclidean Distance
Analysis and Zonal Statistics tool
in ESRI ArcGIS 10.2 at 1-km
resolution

Dist2Cropland Distance to cropland (km)

Landcover map 2010, http://rds.
icimod.org/Home/,computed
using the Euclidean Distance
Analysis and Zonal Statistics tool
in ESRI ArcGIS 10.2 at 1-km
resolution

Dist2Shrub Distance to shrubland (km)

Land cover map 2010, http://rds.
icimod.org/Home/,computed
using the Euclidean Distance
Analysis and Zonal Statistics tool
in ESRI ArcGIS 10.2 at 1-km
resolution

Dist2Earthquake Distance to earthquake epicenter
(km)

Earthquake epicenter location
between 2015–2017 with >5.5,
https:
//earthquake.usgs.gov,computed
using the Euclidean Distance
Analysis and Zonal Statistics tool
in ESRI ArcGIS 10.2 at 1-km
resolution

NDVI

NDVI_min
Minimum NDVI during the study
period 2015–2018

MOD13A3,
https://lpdaac.usgs.gov/dataset_
discovery/modis/modis_
products_table/mod13a3_v006,
calculated minimum, mean, and
maximum function in R

NDVI_mean
Mean NDVI during the study
period 2015–2018

MOD13A3,
https://lpdaac.usgs.gov/dataset_
discovery/modis/modis_
products_table/mod13a3_v006,
calculated minimum, mean, and
maximum function in R

NDVI_max
Maximum NDVI during the study
period 2015–2018

MOD13A3,
https://lpdaac.usgs.gov/dataset_
discovery/modis/modis_
products_table/mod13a3_v006,
calculated minimum, mean, and
maximum function in R

We used SRTM DEM with 90-m spatial resolution (http://srtm.csi.cgiar.org) to derive topographical
variables including elevation, slope, and aspect. The DEM was directly used as a continuous elevation
layer. For slope and aspect geo-processing, tools available in arc GIS were used to calculate topographic
slope and aspect of the study area. We used the most widely used 19 bioclim layers from the WorldClim
geoportal (http://worldclim.org) [31] to characterize climatic variations in the study area. We removed
highly correlated variables with a threshold of Pearson correlation r >|0.7| and retaining five least
correlated variables [32]. To characterize vegetation dynamics, we used monthly MODIS time series
NDVI (MOD13A3) [33] from 2015–2018 synchronizing the time periods of scrub typhus geolocation
data using the MODIStsp package [34]. We extracted three NDVI metrics NDVImin, NDVImean, and
NDVImax. In addition, we also extracted four proximity variables including distance from cropland,
distanced from shrubland, distance from urban land and distance from earthquake epicenter with a
magnitude higher than 5.4 for this study. The landcover map of 2010, which is publicly available in the

http://rds.icimod.org/Home/,computed
http://rds.icimod.org/Home/,computed
http://rds.icimod.org/Home/,computed
http://rds.icimod.org/Home/,computed
http://rds.icimod.org/Home/,computed
http://rds.icimod.org/Home/,computed
https://earthquake.usgs.gov,computed
https://earthquake.usgs.gov,computed
https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mod13a3_v006
https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mod13a3_v006
https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mod13a3_v006
https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mod13a3_v006
https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mod13a3_v006
https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mod13a3_v006
https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mod13a3_v006
https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mod13a3_v006
https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mod13a3_v006
http://srtm.csi.cgiar.org
http://worldclim.org
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geoportal of ICIMOD [35], was used to compute proximity of selected land covers while earthquake
epicenters with magnitudes of 5.4 or higher that occurred in Nepal following the devastating Barpak
earthquake till 2017 were retrieved from the NASA website (https://earthquake.usgs.gov). Euclidean
distance function in Arc GIS 10.3 was used to compute the proximity for selected land cover and
earthquake epicenter data. The spatial distributions of the selected environmental variables are
presented in Figure 3.Int. J. Environ. Res. Public Health 2019, 16, x FOR PEER REVIEW 7 of 15 
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2.3. Mapping and Modeling

We applied MaxEnt and RF machine learning modeling techniques to identify different
environmental factors and predict the spatial distribution of scrub typhus transmission risk in Nepal.
These machine learning modeling techniques are robust due to their high predictive capacity [16].
Previous studies have widely used these methods in spatial modeling and prediction of different fields
including spatial prediction and disease mapping [9,32,36,37].

MaxEnt estimates disease distributions by finding the distribution of maximum entropy: the
simplest possible distribution that is consistent with the mean and variance of the observed distribution.
RF is a tree-based classification and regression tree (CART) [38] algorithm. CART recursively partitions
the environmental space into a large number of subsets within which separate regression models
are fitted and then recombined to give a complex final response. The RF is the improved version of
CART to address the overfitting problem through the bagging concept. RF builts trees using randomly
selected bootstrap samples of the training data (used to build the model), with the number of bootstrap
samples equal to the number of trees (ntrees) selected. Each tree is split by randomly sampling a
number of predictor variables to use (mtry) at each node and then choosing the best split [23].

We used 89 geo-occurrence locations of scrub typhus and a set of environmental variables to fit
the model. As running the modeling requires a background or absence location, we generated 153
background points using the randomPoint function of the “dismo” package covering the entire study
area, keeping a proximity threshold of background points from the presence points (3 × 3 km) [39].
As an absence location which represents a location of the least likely occurrence of disease is normally
difficult to collect [40], background points are usually used as alternatives in the modeling mapping of
disease distribution.

For an accuracy assessment, we divided the geo-occurrence points randomly into training and
testing subsets in the proportion of 70 and 30 percent, respectively. The area under curve (AUC) of the

https://earthquake.usgs.gov
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receiving operating characteristics (ROC) and true skill statistics (TSS) metrics were used to evaluate
the model accuracy [41]. The AUC measures the predictive performance of the model by comparing the
model’s predictive ability to the random prediction, and values range from 0 to 1 where 0.5 indicates
random prediction and higher values correspond to a better model [22]. The TSS compares the number
of correct predictions, minus predictions attributable to random guessing. In other words, it is the sum
of sensitivity and specificity minus 1. Its value ranges from −1 to +1, where +1 indicates perfect score,
0 indicates random performance, and values of 0.5 or higher are generally considered acceptable model
performance [42]. To account for variation in the model results that can arise from an arbitrary data
split, we fitted each model 10 times, using a different subset of geo_occurrence points and a different
random assignment of training based on the cross-validation (CV) approach.

The relative influence of different environmental variables during the model fitting process was
assessed based on the AUC test score. Further, we created response curve plots for the most important
variables to examine the nonlinear relationship between environmental variables and predicted scrub
typhus transmission risk. Finally, mean spatial predictions of both modeling techniques based on
the fitted model and selected 16 environmental variables were produced and exported in raster
format. The spatial risk patterns of scrub typhus were visualized using ARC GIS based on the mean
spatial prediction of these techniques. To assess the coherence of the selected modeling techniques in
spatial prediction, Pearson’s correlation coefficient was calculated [37] using the 10,000 random points
generated from the entire study area.

To estimate the human population exposed at different levels of risk, we overlaid the reclassified
final suitability map derived from the ensemble technique using the natural breaks [43] in ARC GIS
with human population raster data retrieved from WorldPop (http://www.worldpop.org.uk/) geoportal.

3. Results

We fitted 100 models, 50 models in each technique based on 10-fold cross-validation. Both
modeling techniques performed well with mean AUC value above 0.8 and mean TSS value above 0.6
in both training and test dataset simulations, indicating the robustness of the fitted models (Table 2).
We observed insignificant variations in AUC and TSS between the training and test split.

Table 2. Model performance comparison by area under the curve (AUC) of receiver operating
characteristic curve (ROC) and true skill statistic (TSS) values.

Methods
AUC TSS

Training Test Training Test

MaxEnt 0.84 0.84 0.62 0.60

RF 0.86 0.86 0.65 0.58

Among the finally selected 16 geographic and environmental variables proximity to cropland,
elevation, and slope and distance to urban land were the major contributors in both models, although
rank of importance was little different depending on the modeling techniques (Figure 4).

The negative association of proximity to cropland and proximity to urban land to the probability
of occurrence of scrub typhus is observed for Nepal. The marginal response curve for proximity to
cropland decreases sharply until the value reaches 800 m and no response is observed from then
(Figure 5). However, the response curve of proximity to urban land is gentler and goes up to 1500 m.

The marginal response of elevation is positive until the height reaches around 200 m and then it
becomes negative. The negative association part of the curve is more smooth and has a response up
to 6000 m asl. The risk of scrub typhus initially increases with an increase in rainfall but decreases
gradually once rainfall reaches 43 mm.

http://www.worldpop.org.uk/
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Figure 6 depicts the spatial distribution of environmentally suitable areas of scrub typhus in Nepal
based on MaxEnt, RF, and ensemble techniques where suitability values range from 0 (low) to 1 (high).
In general, there is a broad consistency in both methods. Despite little variation in the prediction, both
models are strongly correlated with Pearson correlation values higher (r = 0.8, p < 0.05) than when
model predictions were validated based on 10,000 randomly generated sample points. The predicted
high suitable areas are mainly distributed in lowland tarai and less elevated hill regions across the
country in both models. The highly suitable areas are continuously distributed in the western tarai
and the lower hills of central Nepal while it is irregular in the east, mainly in the southern region of
east tarai.Int. J. Environ. Res. Public Health 2019, 16, x FOR PEER REVIEW 10 of 15 
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Figure 6. Probability of occurrence of scrub typhus in Nepal using the (a) MaxEnt, (b) random forest,
and (c) ensemble methods.

The results show that about 43% of the population of Nepal are currently living in the highly
suitable areas of scrub typhus transmission in Nepal (Table 3) while 29% and 21% are living in suitable
and moderately suitable areas. Only 6% of the population are living in the areas of environmental
unsuitability for scrub typhus transmission.

Table 3. Estimated human population exposed at different levels of scrub typhus transmission suitability
in Nepal.

Class of Suitability Suitability Cut-of Values Area (Km2) Area (%) Population Population (%)

Unsuitable <0.18 63,817.68 43.35 1,116,808 6.06

Moderately suitable 0.18–0.35 34,528.66 23.46 4,031,218 21.87

Suitable 0.3–0.5 27,758.33 18.86 5,395,633 29.27

Highly suitable >0.52 21,076.31 14.32 7,887,215 42.79

Total 147,181 100.00 18,434,230 1000.00

4. Discussion

Scrub typhus has been a major public health problem in Nepal since a 2015 outbreak across
the country. About 3000 cases with 26 deaths were recorded in the last four years since its first
outbreak [7,26]. The number of scrub typhus reported districts have also increased from 16 to 60 in the
same period, showing a rapid geographic expansion of scrub typhus in Nepal [25]. In the context of
rising incidences and expanding geographic distribution, scrub typhus is expected to replace typhoid
as a common cause of febrile illness in Nepal [44]. This study assessed the spatial distribution of
environmentally suitable areas of scrub typhus in Nepal using the ecological niche modeling approach,
machine learning techniques along with reported cases of scrub typhus and a set of environmental
and geographic explanatory variables. Further, this study also estimated the population living under
different levels of risk. Our results revealed that both modeling techniques, in general, could be useful
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in identifying environmental factors and quantifying the areas susceptible to scrub typhus outbreak.
However, ensemble prediction is more comprehensive and reduces prediction uncertainties compared
to the single algorithms [45]. The spatial distribution patterns of environmentally suitable areas of
scrub typhus disease were found to be largely influenced by the interaction of several environmental
factors, including proximity to cropland, proximity to urban land, slope, and elevation.

Our study shows that environmentally suitable areas of scrub typhus are widely distributed in
Nepal mainly in the lowland Tarai and less elevated areas in mid-hills and mountains. These areas are
major population concentration areas of Nepal (Figure 7). As a result, a significantly higher proportion
of the population is under the risk of scrub typhus transmission despite a lower proportion of highly
suitable areas compared to the total area of the country (Table 3). Previous studies also claimed these
regions are high-risk areas of scrub typhus [7,46]. However, this is the first attempt that quantifies and
maps its distribution in Nepal. Concurrent with these findings, about 81% of total reported cases were
from lowland Tarai [7]. Similar to Nepal, subtropical southern districts of Bhutan have a higher risk
of scrub typhus compared to the high mountain region in the north, although few cases have been
recorded from throughout the country [47]. This indicates that lowland has a higher risk of scrub
typhus; however, it might also occur in higher elevated mountains and hills.
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The spatial patterns of environmentally suitable areas are continuous in the west Tarai while it is
irregular and patchy in the east. Unlike the west, our model predicts southern east Tarai as less suitable
for scrub typhus. The possible reasons could be the lower elevation and gentler slope of this region.
As a result, such areas remain wet and waterlogged for most part of the year, not favoring the growth
and proliferation of the rodent population. The recent reports also showed a higher prevalence of
scrub typhus in the west Tarai including Kailali and Kanchanpur districts and central hills, including
Palpa, Syangja, and Tanahu districts [48].

Concurrent with previous studies, we found an elevated risk of scrub in the vicinity of
cropland [14,25]. In line with our findings, the mosaics of cropland and vegetation are positively
associated with the risk of scrub typhus in Taiwan [11]. The reason could be the availability of plenty
of food essential for the proliferation of rodent hosts. A number of previous research have shown a
positive association of scrub typhus with rodent density [10]. The reason could also be due to higher
occupational exposure of farmers working in the cropland [49]. Previous studies also found that
farmers work near the grassland scrubby vegetation and thus have higher chances of acquiring scrub
typhus [25].
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We found an inverse association between the probability of occurrence of scrub typhus and
elevation in general; however, the association was positive up to around 200 m. Similar to our findings,
the risk of scrub typhus incidence increases with an increase in elevation [11] in Taiwan. The possible
reason of the inverse association might be the low temperatures in higher elevations. A decreasing
trend of the proportion of cropland with an increasing altitudinal gradient in Nepal [50] might be
another reason for the inverse association of elevation and probability of occurrence of scrub typhus.

Slope is another important environmental factor of scrub typhus. Overall, there is a negative
association between slope and the probability of scrub typhus occurrence. This association can again
be explained by a decreasing trend of cropland with increasing slope gradients in Nepal. However,
the association is much smoother in MaxEnt compared to the RF and BRT model.

Although previous studies have suspected some association of scrub typhus with the proximity
to earthquake epicenters [2,51] as the first worst outbreak occurred in Nepal immediately after the
Gorkha earthquake of April 2015. The speculation was based on possible intimate contact between
humans and rats that might have come out of their usual underground habitat after the earthquake.
However, we did not find a significant role of proximity to earthquake epicenter with the occurrence of
scrub typhus.

Scrub typhus is generally a rural disease [2], and rural settings provide conducive environments
for growth and proliferation of host and pathogen. However, in recent years, many urban cases have
been reported from different countries including South Korea, Taiwan, and China [30,44,52]. In Nepal,
urban cases of scrub typhus are also increasingly being reported [2]. The U-shaped marginal response
curve of proximity to urban areas in the MaxEnt model indicates an elevated risk near the urban
areas and far from the urban areas. All these indicate that the disease is no longer a rural disease and
outbreak may occur in both rural and urban settings. Urban scrub typhus may have a significant
impact because of the large population in urban areas.

Based on previous research findings [14], we included three NDVI layers of -minium, mean,
and maximum- as potential predictors of scrub typhus distribution in Nepal. However, we did not
find a strong predictive role of these variables in the occurrence of scrub typhus. Similarly, unlike
previous studies, the role of climate factors was less important [14]. The possible reason could be due
to the absence of proximity of variables in previous research or different ecological settings.

This study has some strengths as well as limitations. This is the first spatially explicit scrub
typhus research from Nepal, which has identified environmental risk factors and mapped the spatial
distribution of disease transmission risk. The findings may help to close the knowledge gap on the
spatial epidemiology of scrub typhus. The concerned health authority, including the Department of
Epidemiology and Disease Control Division (EDCD), could use these findings to improve surveillance
and control efforts targeting more locations that are predicted as the potential scrub typhus areas.
However, due to the absence of complete disease data, we were unable to explore the data-driven
exploratory analysis. Future studies are encouraged to focus on an exploratory analysis in one and the
validation of filed data on the other.

5. Conclusions

We assessed various environmental risk factors responsible for the occurrence and spread of scrub
typhus, and mapped disease transmission risk for the first time in Nepal. Our results revealed that the
environmentally suitable areas of scrub typhus in Nepal are widely distributed throughout the country
with higher risks at lowland Tarai and the less elevated hills and mountains. Proximity to cropland
and urban areas were the most important risk factors, followed by slope and elevation. Despite several
speculations on scrub typhus and its association with proximity to the April 2015 earthquake epicenter,
we did not find the earthquake’s important role in the distribution of scrub typhus risk in Nepal.
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