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Abstract

As single-cell RNA-sequencing (scRNA-seq) datasets have become more widespread

the number of tools designed to analyse these data has dramatically increased. Navigat-

ing the vast sea of tools now available is becoming increasingly challenging for research-

ers. In order to better facilitate selection of appropriate analysis tools we have created

the scRNA-tools database (www.scRNA-tools.org) to catalogue and curate analysis

tools as they become available. Our database collects a range of information on each

scRNA-seq analysis tool and categorises them according to the analysis tasks they per-

form. Exploration of this database gives insights into the areas of rapid development of

analysis methods for scRNA-seq data. We see that many tools perform tasks specific to

scRNA-seq analysis, particularly clustering and ordering of cells. We also find that the

scRNA-seq community embraces an open-source and open-science approach, with

most tools available under open-source licenses and preprints being extensively used as

a means to describe methods. The scRNA-tools database provides a valuable resource

for researchers embarking on scRNA-seq analysis and records the growth of the field

over time.

Author summary

In recent years single-cell RNA-sequencing technologies have emerged that allow scien-

tists to measure the activity of genes in thousands of individual cells simultaneously. This

means we can start to look at what each cell in a sample is doing instead of considering an

average across all cells in a sample, as was the case with older technologies. However,

while access to this kind of data presents a wealth of opportunities it comes with a new set

of challenges. Researchers across the world have developed new methods and software

tools to make the most of these datasets but the field is moving at such a rapid pace it is

difficult to keep up with what is currently available. To make this easier we have developed

the scRNA-tools database and website (www.scRNA-tools.org). Our database catalogues

analysis tools, recording the tasks they can be used for, where they can be downloaded

from and the publications that describe how they work. By looking at this database we can

see that developers have focused on methods specific to single-cell data and that they
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embrace an open-source approach with permissive licensing, sharing of code and release

of preprint publications.

This is a PLOS Computational Biology Software paper.

Introduction

Single-cell RNA-sequencing (scRNA-seq) has rapidly gained traction as an effective tool for

interrogating the transcriptome at the resolution of individual cells. Since the first protocols

were published in 2009 [1] the number of cells profiled in individual scRNA-seq experiments

has increased exponentially, outstripping Moore’s Law [2]. This new kind of transcriptomic

data brings a demand for new analysis methods. Not only is the scale of scRNA-seq datasets

much greater than that of bulk experiments but there are also a variety of challenges unique to

the single-cell context [3]. Specifically, scRNA-seq data is extremely sparse (there is no expres-

sion measured for many genes in most cells), it can have technical artefacts such as low-quality

cells or differences between sequencing batches and the scientific questions of interest are

often different to those asked of bulk RNA-seq datasets. For example many bulk RNA-seq

datasets are generated to discover differentially expressed genes through a designed experi-

ment while many scRNA-seq experiments aim to identify or classify cell types in complex

tissues.

The bioinformatics community has embraced this new type of data at an astonishing rate,

designing a plethora of methods for the analysis of scRNA-seq data. Keeping up with the cur-

rent state of scRNA-seq analysis is now a significant challenge as the field is presented with a

huge number of choices for analysing a dataset. Since September 2016 we have collated and

categorised scRNA-seq analysis tools as they have become available. This database is being

continually updated and is publicly available at www.scRNA-tools.org. In order to help

researchers navigate the vast ocean of analysis tools we categorise tools in the database in the

context of the typical phases of an scRNA-seq analysis. Through the analysis of this database

we show trends in not only the analysis applications these methods address but how they are

published and licensed, and the platforms they use. Based on this database we gain insight into

the current state of current tools in this rapidly developing field.

Design and implementation

Database

The scRNA-tools database contains information on software tools specifically designed for the

analysis of scRNA-seq data. For a tool to be eligible for inclusion in the database it must be

available for download and public use. This can be from a software package repository (such as

Bioconductor [4], CRAN or PyPI), a code sharing website such as GitHub or directly from a

private website. When new tools come to our attention they are added to the scRNA-tools data-

base. DOIs and publication dates are recorded for any associated publications. As preprints

may be frequently updated they are marked as a preprint instead of recording a date. The plat-

form used to build the tool, links to code repositories, associated licenses and a short description

are also recorded. Each tool is categorised according to the analysis tasks it can perform, receiv-

ing a true or false for each category based on what is described in the accompanying paper or
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documentation. We also record the date that each entry was added to the database and the date

that it was last updated. Most tools are added after a preprint or publication becomes available

but some have been added after being mentioned on social media or in similar collections such

as Sean Davis’ awesome-single-cell page (https://github.com/seandavi/awesome-single-cell).

Website

To build the website we start with the table described above as a CSV file which is processed

using an R script. The lists of packages available in the CRAN, Bioconductor, PyPI and Ana-

conda software repositories are downloaded and matched with tools in the database. For tools

with associated publications the number of citations they have received is retrieved from the

Crossref database (www.crossref.org) using the rcrossref package (v0.8.0) [5]. We also make

use of the aRxiv package (v0.5.16) [6] to retrieve information about arXiv preprints. JSON files

describing the complete table, tools and categories are produced and used to populate the

website.

The website consists of three main pages. The home page shows an interactive table with

the ability to sort, filter and download the database. The second page shows an entry for each

tool, giving the description, details of publications, details of the software code and license and

the associated software categories. Badges are added to tools to provide clearly visible details of

any associated software or GitHub repositories. The final page describes the categories, provid-

ing easy access to the tools associated with them. Both the tools and categories pages can be

sorted in a variety of ways, including by the number of associated publications or citations. An

additional page shows a live and up-to-date version of some of the analysis presented here

with visualisations produced using ggplot2 (v2.2.1.9000) [7] and plotly (v4.7.1) [8]. We wel-

come contributions to the database from the wider community via submitting an issue to the

project GitHub page (https://github.com/Oshlack/scRNA-tools) or by filling in the submission

form on the scRNA-tools website.

Analysis

The most recent version of the scRNA-tools database as of 6 June 2018 was used for the analy-

sis presented in this paper. Data was manipulated in R (v3.5.0) using the dplyr package (v0.7.5)

[9] and plots produced using the ggplot2 (v2.2.1.9000) and cowplot (v0.9.2) [10] packages.

Results

Overview of the scRNA-tools database

When the database was first constructed it contained 70 scRNA-seq analysis tools representing

the majority of work in the field during the three years from the publication of SAMstrt [11] in

November 2013 up to September 2016. In the time since then over 160 new tools have been

added (Fig 1A). The almost tripling of the number of available tools in such a short time dem-

onstrates the booming interest in scRNA-seq and its maturation from a technique requiring

custom-built equipment with specialised protocols to a commercially available product.

Publication status. Most tools have been added to the scRNA-tools database after coming

to our attention in a publication or preprint describing their method and use. Of all the tools

in the database about half have at least one publication in a peer-reviewed journal and another

third are described in preprint articles, typically on the bioRxiv preprint server (Fig 1B). Tools

can be split into those that were available when the database was created and those that have

been added since. We can see that the majority of older tools have been published while more

recent tools are more likely to only be available as preprints (Fig 1C). This is a good
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Fig 1. (A) Number of tools in the scRNA-tools database over time. Since the scRNA-seq tools database was started in September 2016 more than 160 new tools

have been released. (B) Publication status of tools in the scRNA-tools database. Over half of the tools in the full database have at least one published peer-revirew

paper while another third are described in preprints. (C) When stratified by the date tools were added to the database we see that the majority of tools added before
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demonstration of the delay imposed by the traditional publication process. By publishing pre-

prints and releasing software via repositories such as GitHub, scRNA-seq tool developers

make their tools available to the community much earlier, allowing them to be used for analy-

sis and their methods improved prior to formal publication [12].

Platforms and licensing. Developers of scRNA-seq analysis tools have choices to make

about what platforms they use to create their tools, how they make them available to the com-

munity and whether they share the source code. We find that the most commonly used plat-

form for creating scRNA-seq analysis tools is the R statistical programming language, with

many tools made available through the Bioconductor or CRAN repositories (Fig 1D). Python

is the second most popular language, followed by MATLAB, a proprietary programming lan-

guage, and the lower-level C++. The use of R and Python is consistent with their popularity

across a range of data science fields. In particular the popularity of R reflects its history as the

language of choice for the analysis of bulk RNA-seq datasets and a range of other biological

data types.

The majority of tools in the scRNA-tools database have been developed with an open-

source approach, making their code available under permissive software licenses (Fig 1E). We

feel this reflects the general underlying sentiment and willingness of the bioinformatics com-

munity to share and build upon the work of others. Variations of the GNU Public License

(GPL) are the most common, covering almost half of tools. This license allows free use, modifi-

cation and distribution of source code, but also has a “copyleft” nature which requires any

derivatives to disclose their source code and use the same license. The MIT license is the sec-

ond most popular which also allows use of code for any purpose but without any restrictions

on distribution or licensing. The appropriate license could not be identified for almost a quar-

ter of tools. This is problematic as fellow developers must assume that source code cannot be

reused, potentially limiting the usefulness of the methods in those tools. We strongly encour-

age tool developers to clearly display their license in source code and documentation to pro-

vide certainty to the community as to any restrictions on the use of their work.

Categories of scRNA-seq analysis

Single-cell RNA-sequencing is often used to explore complex mixtures of cell types in an unsu-

pervised manner. As has been described in previous reviews a standard scRNA-seq analysis in

this setting consists of several tasks which can be completed using various tools [13–17]. In the

scRNA-tools database we categorise tools based on the analysis tasks they perform. Here we

group these tasks into four broad phases of analysis: data acquisition, data cleaning, cell assign-

ment and gene identification (Fig 2). The data acquisition phase (Phase 1) takes the raw nucle-

otide sequences from the sequencing experiment and returns a matrix describing the

expression of each gene in each cell. This phase consists of tasks common to bulk RNA-seq

experiments, such as alignment to a reference genome or transcriptome and quantification of

expression, but is often extended to handle Unique Molecular Identifiers (UMIs) [18]. Once

an expression matrix has been obtained it is vital to make sure the resulting data is of high

enough quality. In the data cleaning phase (Phase 2) quality control of cells is performed as

well as filtering of uninformative genes. Additional tasks may be performed to normalise the

October 2016 are published, while around half of newer tools are available only as preprints. Newer tools are also more likely to be unpublished in any form. (D)

The majority of tools are available using either the R or Python programming languages. (E) Most tools are released under a standard open-source software license,

with variants of the GNU Public License (GPL) being the most common. However licenses could not be found for a large proportion of tools. Up-to-date versions

of these plots (with the exception of C) are available on the analysis page of the scRNA-tools website (https://www.scrna-tools.org/analysis).

https://doi.org/10.1371/journal.pcbi.1006245.g001
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Fig 2. Phases of a typical unsupervised scRNA-seq analysis process. In Phase 1 (data acquisition) raw sequencing reads are converted into a gene by cell

expression matrix. For many protocols this requires the alignment of genes to a reference genome and the assignment and de-duplication of Unique Molecular

Identifiers (UMIs). The data is then cleaned (Phase 2) to remove low-quality cells and uninformative genes, resulting in a high-quality dataset for further analysis.
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data or impute missing values. Exploratory data analysis tasks are often performed in this

phase, such as viewing the datasets in reduced dimensions to look for underlying structure.

The high-quality expression matrix is the focus of the next phases of analysis. In Phase 3

cells are assigned, either to discrete groups via clustering or along a continuous trajectory from

one cell type to another. As high-quality reference datasets become available it will also become

feasible to classify cells directly into different cell types. Once cells have been assigned the

focus of analysis turns to interpreting what those assignments mean. Identifying interesting

genes (Phase 4), such as those that are differentially expressed across groups, marker genes

expressed in a single group or genes that change expression along a trajectory, is the typical

way to do this. The biological significance of those genes can then be interpreted to give mean-

ing to the experiment, either by investigating the genes themselves or by getting a higher-level

view through techniques such as gene set testing.

While there are other approaches that could be taken to analyse scRNA-seq data these

phases represent the most common path from raw sequencing reads to biological insight appli-

cable to many studies. An exception to this may be experiments designed to test a specific

hypothesis where cell populations may have been sorted or the interest lies in differences

between experimental conditions rather than cell types. In this case Phase 3 may not be

required, and slightly different tools or approaches may be used, but many of the same chal-

lenges will apply. In addition, as the field expands and develops it is likely that data will be

used in new ways to answer other biological questions, requiring new analysis techniques.

Descriptions of the categories in the scRNA-tools database are given in Table 1, along with the

associated analysis phases.

Trends in scRNA-seq analysis tasks. Each of the tools in the database is assigned to one

or more analysis categories. We investigated these categories in further detail to give insight

into the trends in scRNA-seq analysis. Fig 3A shows the frequency of tools performing each of

the analysis tasks. Visualisation is the most commonly included task and is important across

all stages of analysis for exploring and displaying data and results. Tasks for assigning cells

(ordering and clustering) are the next most common. This has been the biggest area of devel-

opment in single-cell analysis with clustering tools such as Seurat [19,20], SC3 [21] and Back-

SPIN [22] being used to identify cell types in a sample and trajectory analysis tools (for

example Monocle [23–25], Wishbone [26] and DPT [27]) being used to investigate how genes

change across developmental processes. These areas reflect the new opportunities for analysis

provided by single-cell data that are not possible with bulk RNA-seq experiments.

Dimensionality reduction is also a common task and has applications in visualisation (via

techniques such as t-SNE [28]), quality control and as a starting point for analysis. Testing for

differential expression (DE) is perhaps the most common analysis performed on bulk RNA-

seq datasets and it is also commonly applied by many scRNA-seq analysis tools, typically to

identify genes that are different in one group of cells compared to the rest. However it should

be noted that the DE testing applied by scRNA-seq tools is often not as sophisticated as the rig-

orous statistical frameworks of tools developed for bulk RNA-seq such as edgeR [29,30],

DESeq2 [31] and limma [32], often using simple statistical tests such as the likelihood ratio

test. While methods designed to test DE specifically in single-cell datasets do exist (such as

SCDE [33], and scDD [34]) it is still unclear whether they improve on methods that have been

established for bulk data [35–37], with the most comprehensive comparison to date finding

The data can also be normalised and missing values imputed during this phase. Phase 3 assigns cells, either in a discrete manner to known (classification) or

unknown (clustering) groups or to a position on a continuous trajectory. Interesting genes (eg. differentially expressed, markers, specific patterns of expression) are

then identified to explain these groups or trajectories (Phase 4).

https://doi.org/10.1371/journal.pcbi.1006245.g002
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that bulk methods do not perform significantly worse than those designed for scRNA-seq data

[38].

To investigate how the focus of scRNA-seq tool development has changed over time we

again divided the scRNA-tools database into tools added before and after October 2016. This

allowed us to see which analysis tasks are more common in recently released tools. We looked

at the percentage of tools in each time period that performed tasks in the different analysis cat-

egories (Fig 3B). Some categories show little change in the proportion of tools that perform

them while other areas have changed significantly. Specifically, both visualisation and

dimensionality reduction are more commonly addressed by recent tools. The UMIs category

has also seen a big increase recently as UMI based protocols have become commonly used and

tools designed to handle the extra processing steps required have been developed (e.g. UMI-

Table 1. Descriptions of categories for tools in the scRNA-tools database.

Phase Category Description

Phase 1 Alignment Alignment of sequencing reads to a reference

Phase 1 Assembly Tools that perform assembly of scRNA-seq reads

Phase 1 UMIs Processing of Unique Molecular Identifiers

Phase 1 Quantification Quantification of expression from reads

Phase 2 Quality Control Removal of low-quality cells

Phase 2 Gene Filtering Removal of lowly expressed or otherwise uninformative genes

Phase 2 Imputation Estimation of expression where zeros have been observed

Phase 2 Normalisation Removal of unwanted variation that may affect results

Phase 2 Cell Cycle Assignment or correction of stages of the cell cycle, or other uses of cell cycle

genes, or genes associated with similar processes

Phase 3 Classification Assignment of cell types based on a reference dataset

Phase 3 Clustering Unsupervised grouping of cells based on expression profiles

Phase 3 Ordering Ordering of cells along a trajectory

Phase 3 Rare Cells Identification of rare cell populations

Phase 3 Stem Cells Identification of cells with stem-like characteristics

Phase 4 Differential

Expression

Testing of differential expression across groups of cells

Phase 4 Expression Patterns Detection of genes that change expression across a trajectory

Phase 4 Gene Networks Identification or use of co-regulated gene networks

Phase 4 Gene Sets Testing for over representation or other uses of annotated gene sets

Phase 4 Marker Genes Identification or use of genes that mark cell populations

Multiple Dimensionality

Reduction

Projection of cells into a lower dimensional space

Multiple Interactive Tools with an interactive component or a graphical user interface

Multiple Variable Genes Identifcation or use of highly (or lowly) variable genes

Multiple Visualisation Functions for visualising some aspect of scRNA-seq data or analysis

Other Allele Specific Detection of allele-specific expression

Other Alternative Splicing Detection of alternative splicing

Other Haplotypes Use or assignment of haplotypes

Other Immune Assignment of receptor sequences and immune cell clonality

Other Integration Combining of scRNA-seq datasets or integration with other single-cell data types

Other Modality Identification or use of modality in gene expression

Other Simulation Generation of synthetic scRNA-seq datasets

Other Transformation Transformation between expression levels and some other measure

Other Variants Detection or use of nucleotide variants

https://doi.org/10.1371/journal.pcbi.1006245.t001
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Fig 3. (A) Categories of tools in the scRNA-tools database. Each tool can be assigned to multiple categories based on the tasks it can complete. Categories

associated with multiple analysis phases (visualisation, dimensionality reduction) are among the most common, as are categories associated with the cell

assignment phase (ordering, clustering). (B) Changes in analysis categories over time, comparing tools added before and after October 2016. There have been
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tools [39], umis [40], zUMIs [41]). Simulation is a valuable technique for developing, testing

and validating scRNA-seq tools. More packages are now including their simulation functions

and some tools have been developed for the specific purpose of generating realistic synthetic

scRNA-seq datasets (e.g. powsimR [42], Splatter [43]). Classification of cells into known

groups has also increased as reference datasets become available and more tools are identifying

or making use of co-regulated gene networks.

Some categories have seen a decrease in the proportion of tools they represent, most strik-

ingly testing for expression patterns along a trajectory. This is likely related to the change in

cell ordering analysis, which is the focus of a lower percentage of tools added after October

2016. The ordering of cells along a trajectory was one of the first developments in scRNA-seq

analysis and a decrease in the development of these tools could indicate that researchers have

moved on to other techniques or that use has converged on a set of mature tools.

By grouping categories based on their associated analysis phases we see similar trends over

time (Fig 3C). We see increases in the percentage of tools performing tasks in Phase 1 (quanti-

fication), across multiple phases (such as visualisation and dimensionality reduction) and

alternative analysis tasks. In contrast the percentage of tools that perform gene identification

tasks (Phase 4) has decreased and the percentage assigning cells (Phase 3) has remained steady.

Phase 2 (quality control and filtering) has fluctuated over time but currently sits at a level

slightly above when the database was first created. This also indicates a maturation of the anal-

ysis space as developers shift away from the tasks that were the focus of bulk RNA-seq analysis

and continue to focus on those specific to scRNA-seq while working on methods for handling

data from new protocols and performing alternative analysis tasks.

Pipelines and toolboxes. While there are a considerable number of scRNA-seq tools that

only perform a single analysis task, many perform at least two (Fig 3D). Some tools (dropEst

[44], DrSeq2 [45], scPipe [46]) are pre-processing pipelines, taking raw sequencing reads and

producing an expression matrix. Others, such as Scanpy [47], SCell [48], Seurat, Monocle and

scater [49] can be thought of as analysis toolboxes, able to complete a range of complex analy-

ses starting with a gene expression matrix. Most of the tools that complete many tasks are rela-

tively more recent (Fig 3E). Being able to complete multiple tasks using a single tool can

simplify analysis as problems with converting between different data formats can be avoided.

However it is important to remember that it is difficult for a tool with many functions to con-

tinue to represent the state of the art in all of them. Support for common data formats, such as

the recently released SingleCellExperiment [50], anndata [47] or loom (http://loompy.org)

objects provides another way for developers to allow easy use of their tools and for users to

build custom workflows from specialised tools.

Alternative analyses. Some tools perform analyses that lie outside the common tasks per-

formed on scRNA-seq data described above. Simulation is one alternative task that has already

been mentioned but there is also a group of tools designed to detect biological signals in

scRNA-seq data apart from changes in expression. For example identifying alternative splicing

(BRIE [51], Outrigger [52], SingleSplice [53]), single nucleotide variants (SSrGE [54]), copy

number variants (inferCNV [55]) and allele-specific expression (SCALE [56]). Reconstruction

of immune cell receptors is another area that has received considerable attention from tools

such as BASIC [57], TraCeR [58] and TRAPeS [59]. While tools that complete these tasks are

significant increases in the percentage of tools associated with visualisation, dimensionality reduction, gene networks and simulation. Categories including

expression patterns, ordering and interactivity have seen relative decreases. (C) Changes in the percentage of tools associated with analysis phases over time. The

percentage of tools involved in the data acquisition and data cleaning phases have increased, as have tools designed for alternative analysis tasks. The gene

identification phase has seen a relative decrease in the number of tools. (D) The number of categories associated with each tools in the scRNA-tools database. The

majority of tools perform few tasks. (E) Most tools that complete many tasks are relatively recent.

https://doi.org/10.1371/journal.pcbi.1006245.g003

Exploring the single-cell RNA-seq analysis landscape with the scRNA-tools database

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006245 June 25, 2018 10 / 14

http://loompy.org
https://doi.org/10.1371/journal.pcbi.1006245.g003
https://doi.org/10.1371/journal.pcbi.1006245


unlikely to ever dominate scRNA-seq analysis we expect to see an increase in methods for tack-

ling specialised analyses as researchers continue to push the boundaries of what can be

observed using scRNA-seq data.

Availability and future directions

Since October 2016 we have seen the number of software tools for analysing single-cell RNA-

seq data more than triple, with more than 230 analysis tools now available. As new tools have

become available we have curated and catalogued them in the scRNA-tools database where we

record the analysis tasks that they can complete, along with additional information such as any

associated publications. By analysing this database we have found that tool developers have

focused much of their efforts on methods for handling new problems specific to scRNA-seq

data, in particular clustering cells into groups or ordering them along a trajectory. We have

also seen that the scRNA-seq community is generally open and willing to share their methods

which are often described in preprints prior to peer-reviewed publication and released under

permissive open-source licenses for other researchers to re-use.

The next few years promise to produce significant new developments in scRNA-seq analy-

sis. New tools will continue to be produced, becoming increasingly sophisticated and aiming

to address more of the questions made possible by scRNA-seq data. We anticipate that some

existing tools will continue to improve and expand their functionality while others will cease

to be updated and maintained. Detailed benchmarking and comparisons will show how tools

perform in different situations and those that perform well, continue to be developed and pro-

vide a good user experience will become preferred for standard analyses. As single-cell capture

and sequencing technology continues to improve analysis tools will have to adapt to signifi-

cantly larger datasets (in the millions of cells) which may require specialised data structures

and algorithms. Methods for combining multiple scRNA-seq datasets as well as integration of

scRNA-seq data with other single-cell data types, such as DNA-seq, ATAC-seq or methylation,

will be another area of growth. In addition, projects such as the Human Cell Atlas [60] will

provide comprehensive cell type references which will open up new avenues for analysis.

As the field expands the scRNA-tools database will continue to be updated with support

from the community. We hope that it provides a resource for researchers to explore when

approaching scRNA-seq analyses as well as providing a record of the analysis landscape and

how it changes over time.

Availability

The scRNA-tools databases is publicly accessible via the website at www.scRNA-tools.org. Sug-

gestions for additions, updates and improvements are warmly welcomed at the associated

GitHub repository (https://github.com/Oshlack/scRNA-tools) or via the submission form on

the website. The code and datasets used for the analysis in this paper are available from https://

github.com/Oshlack/scRNAtools-paper.
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