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Abstract

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for millions of deaths around the world.
To help contribute to the understanding of crucial knowledge and to further generate new hypotheses relevant to
SARS-CoV-2 and human protein interactions, we make use of the information abundant Biomine probabilistic database and
extend the experimentally identified SARS-CoV-2-human protein–protein interaction (PPI) network in silico. We generate an
extended network by integrating information from the Biomine database, the PPI network and other experimentally
validated results. To generate novel hypotheses, we focus on the high-connectivity sub-communities that overlap most with
the integrated experimentally validated results in the extended network. Therefore, we propose a new data analysis
pipeline that can efficiently compute core decomposition on the extended network and identify dense subgraphs. We then
evaluate the identified dense subgraph and the generated hypotheses in three contexts: literature validation for uncovered
virus targeting genes and proteins, gene function enrichment analysis on subgraphs and literature support on drug
repurposing for identified tissues and diseases related to COVID-19. The major types of the generated hypotheses are
proteins with their encoding genes and we rank them by sorting their connections to the integrated experimentally
validated nodes. In addition, we compile a comprehensive list of novel genes, and proteins potentially related to COVID-19,
as well as novel diseases which might be comorbidities. Together with the generated hypotheses, our results provide novel
knowledge relevant to COVID-19 for further validation.
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Introduction
The COVID-19 pandemic, caused by severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2), is a grave threat to public
health and the global economy. It has led to more than 224
million confirmed cases and 4.62 million deaths worldwide as of
12 September 2021. SARS-CoV-2 is a newly discovered positive-
sense single-stranded RNA virus and belongs to the member
of the Coronaviridae (CoV) family [1]. It shares 89.1% and 50%
nucleotide similarity to other previously detected human coron-
aviruses SARS-CoV and Middle East respiratory syndrome coro-
navirus (MERS-CoV) [2–4], respectively. Previous studies have
also shown that they share stronger similarities with respect
to their structures and pathogenicity [4]. These provide valuable
knowledge to facilitate our understanding of the pathophysiol-
ogy of SARS-CoV-2. Particularly, we now know that SARS-CoV-
2 mainly enters human cells via binding of its spike protein to
the angiotensin-converting enzyme 2 (ACE2) receptor [5] and is
associated with an extensive immune reaction referred to as
‘cytokine storm’ triggered by the excessive production of inter-
leukin 1 beta (IL-1b), interleukin 6 (IL-6) and others. However,
much remains to be explored about how these critical human
proteins are involved in the infection and the associated COVID-
19 pathology [2], critical toward devising therapeutic strategies
to counteract SARS-CoV-2 infection.

In order to investigate the complications and comorbidities of
SARS-CoV-2 and to facilitate the search for effective treatment,
many studies have been conducted to investigate the host
dependencies of the SARS-CoV-2 virus from a systems level.
For example, Blanco-Melo et al. performed a comparative
transcriptional analysis of COVID-19 patients responding to
SARS-CoV-2 and other respiratory viruses, which revealed
reduced innate antiviral defenses coupled with exuberant
inflammatory cytokine production as the defining and driving
features of COVID-19 [6]. Bojkova et al. conducted proteomic
analysis to identify the host cell pathways that are modulated
by SARS-CoV-2 and showed that inhibition of these pathways
prevents viral replication in human cells [7]. Gordon et al. sys-
tematically mapped the interaction landscape between SARS-
CoV-2 proteins and human proteins using affinity-purification
mass spectrometry [8]. They identified 332 high-confidence
protein interactions between SARS-CoV-2 viral proteins and
human proteins related to various complexes and biological
processes (about 40% of human proteins identified to interact
with SARS-CoV-2 were associated with endomembrane system
or membrane vesicle trafficking). From the presented SARS-CoV-
2-human protein–protein interaction (PPI) network the authors
identified 62 druggable SARS-CoV-2-interacting human proteins
with 69 targeting ligands (drugs). Wei et al. [9] recently conducted
genome-wide CRISPR screening and experimentally identified
lists of pro/anti-SARS-CoV-2 genes. Stukalov et al. [10] profiled
the interactomes of SARS-CoV and SARS-CoV-2 using A549
lung carcinoma cells. Li et al. [11] used genome-wide proteomic
screening to identify cellular proteins that interact with SARS-
CoV-2 proteins. The works by Gordon et al., Stukalov et al. and
Li et al. have been reviewed in [12]. All these studies contributed
to a better understanding of the SARS-CoV-2 and host protein
interactome, providing insights for the development of therapies
for the treatment of COVID-19. However, these studies only
revealed different aspects of the potential mechanisms behind
SARS-CoV-2 infection at specific conditions and do not bring
out into open the comorbidities-, cell- and organ-type-specific
human-viral interaction architecture.

To generate new knowledge, various computational appro-
aches were applied to integrate the above experimental results

with other information. Perrin-Cocon et al. [13] selected 112
publications including [8] that explicitly reported physical inter-
actions between coronavirus viral and host proteins, and assem-
bled a coronavirus-host interactome. Krämer et al. [14] started
from the PPI network identified by Gordon et al. and constructed
70 hypothesis networks using a machine learning algorithm.
Gysi et al. [15] conducted research on identifying possible repur-
posing drugs for COVID-19 through predictive methods and
they also retrieved PPIs from [8] and assembled a large human
interactome during the process. Sadegh et al. [16] integrated
SARS-CoV and SARS-CoV-2 virus–host interaction data from
several sources including [8] and developed an online platform
that implemented systems medicine algorithms for network-
based prediction of drug candidates. As a common integration
approach, integrative network analysis provides an efficient way
to enable discovery and evaluation of (unknown) connections
spanning multiple types of relationships inferred from different
omics studies. Khorsand et al. [17] started from the most similar
Alpha-influenzavirus proteins to SARS-CoV-2 proteins and con-
structed a weighted SARS-CoV-2-human PPI network. Messina
et al. [18] constructed interactomes for SARS-CoV, MERS-CoV
and HCoV-229E and employed random walk with restart (RWR)
algorithm to identify the top 200 closest proteins for the selected
three human coronaviruses. Zhou et al. [19] and Kumar et al. [20]
have applied similar ideas to perform the integrative network
analysis for elucidating the molecular mechanisms of SARS-
CoV-2 pathogenesis.

To generate new hypotheses, we present a data analysis
pipeline of integrative network analysis. Our work is different
from most of the other methods, because we integrate experi-
mentally validated results with a ‘large’ ‘probabilistic’ network.
Analyzing ‘probabilistic’ networks increased the difficulty of
the algorithm, but it can better incorporate the uncertainty
in real world. To make sense of a ‘large’ network, we need
to focus on a small subset of important nodes and discard
the rest of the nodes. In this work, we aim to identify high-
connectivity sub-communities (connected to the experimentally
validated results) from the integrated dataset since our funda-
mental assumption is that members in such sub-communities
play more important roles in the network [20]. Specifically, in
this work, we integrate the SARS-CoV-2 viral-human protein
interaction (PPI) network [8], experimentally identified lists of
pro/anti-SARS-CoV-2 genes [9], and a large probabilistic biolog-
ical network called Biomine [21, 22]. Biomine integrates sev-
eral databases including PubMed [23], UniProt [24], STRING [25],
Entrez Gene [23, 26] and InterPro [27]. Many biological networks
can be represented using probabilistic graph structures due to
the intrinsic uncertainty present in their measurements. For
instance, the edges in PPI networks obtained through laboratory
experiments are often prone to measurement errors. The edges
are often labeled with uncertainty levels that can be interpreted
as probabilities. We aim to mine these probabilistic graphs to
enhance our understanding of the SARS-CoV-2 and human pro-
tein interactions and to further aid the discovery of the essen-
tial/unknown knowledge relevant to the interactions between
hosts and SARS-CoV-2 virus. The crux of our approach is to use
a core decomposition strategy that detects highly connected sub-
communities. Unlike other notions of cohesive subgraphs, e.g.
cliques, n-cliques, k-plexes, which are all NP-hard to compute, k-
core can be computed in polynomial time [28–30]. The goal of k-
core computation is to identify the largest induced subgraph of
a graph G in which each vertex is connected to at least k other
vertices. The set of all k-cores of G forms the core decomposition
of G [31]. The coreness (core number) of a vertex v in G is defined
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Figure 1. Core decomposition for an example graph.

as the maximum k such that there is a k-core of G contain-
ing v. For an example of core decomposition, see Figure 1. For
probabilistic graphs, the notion of core decomposition evolves
into the more challenging probabilistic core decomposition. In
this study, we connect the Biomine network to the small PPI
network identified by Gordon et al. [8] and we integrate our pre-
viously proposed graph peeling algorithm [30] for probabilistic
core decomposition and proposed an analysis pipeline to detect
the probabilistic coreness in data, finding the high-connectivity
sub-communities, and generate hypotheses on COVID-19 rele-
vant bio-networks. The proposed analysis pipeline also supports
integrating other experimentally validated results.

Specifically, from the results, we are particularly interested
in dense cores (cores with high core number) in the Biomine
database that overlap with the PPI network (and other integrated
experimentally validated results) as much as possible. The dense
cores in a different region of the Biomine network that do not
overlap with the experimentally validated results are not of
interest to us.

In short, our contributions are as follows.

1. Pipeline on k-core decomposition and bio-network analysis.
A two-stage data screening procedure was added to the
peeling algorithm (PA), making it focus more on cores with
higher density. Overall, the pipeline consists of three steps:
data preprocessing, PA and functional enrichment analysis
on the generated networks.

2. Evaluation through literature mining and gene set enrich-
ment analysis. We evaluated the extended COVID-19 biolog-
ical network in three contexts: literature support for iden-
tified tissues and diseases related to COVID-19, literature
validation for uncovered SARS-CoV-2 targeting genes and
proteins and gene ontology (GO) over-representation test on
the selected network for biological processes linked with
RNA processing and viral transcription.

3. COVID-19 hypotheses generation. We discovered novel dis-
eases that might be comorbidities, genes and proteins that
could potentially relate to COVID-19, and we presented
them as top candidates for future validation.

Methods and materials
Biomine database and SARS-CoV-2-host PPI network

The Biomine database is a large probabilistic biological net-
work constructed using selected publicly available databases,
for example, Entrez Gene, UniProt, STRING, InterPro, PubMed,
Gene Ontology (GO), etc. The full Biomine database has 1 508 587

nodes, 32 761 889 edges and contains biology information of
several species including humans. The SARS-CoV-2-host PPI net-
work, identified by Gordon et al. [8], contains 360 nodes (27 SARS-
CoV-2 viral proteins and 333 human proteins1) and 695 edges.
Since we are working with Homo sapiens data, as a preliminary
stage of data screening, we select a subset of the full Biomine
database, the human organism as the database to be used to
extend the PPI network. This will eliminate approximately 43% of
the full Biomine database. The human Biomine database contains
861 812 nodes, 8 666 287 edges, and each entry possesses the
form E = (from, to, relationship, link_goodness). Here, from and to
are two nodes forming an edge in the network, relationship is
the link type describing the relationship between the two nodes,
link_goodness is computed based on relevance, informativeness
and reliability [21], and is interpreted as the probability that the
edge exists. A small sample from the human Biomine database is
presented in Table S1 in Supplementary Methods.

We then extend the PPI network with the human Biomine
database and deal with duplicated entries and loops. For a
detailed overview of the extension of SARS-CoV-2 and host
PPI network as well as duplicates/loops removal illustration,
see relevant section and Figure S1 in Supplementary Methods.
As mentioned before, since Wei et al. [9], Stukalov et al. [10]
and Li et al. [11] also recently experimentally validated lists
of pro/anti-SARS-CoV-2 genes and viral-host PPI networks, we
integrate the findings of [9] in our research and retain [10, 11] for
validations. Details of this analysis can be found in later sections
including the data analysis pipeline section and validation from
independent evidence section.

Definition of probabilistic core decomposition

Consider a probabilistic graph G = (V, E, p), where V is the set of
vertices, E is the set of edges and p is a mapping function that
aligns each edge e ∈ E to its existence probability pe. Given a
vertex v ∈ V, let dv be the number of edges incident on v. Each
possible world G (G � G) is a deterministic version of G in which a
subset EG ⊆ E of edges appear. Let degG (v) be a random variable
with values in [0, dv], and distribution:

Pr[degG (v) = t] =
∑
G�G

Pr[G] · 1(G, v, t), t ∈ [0, dv], (1)

where 1(G, v, t) is an indicator function which takes on 1 if v has
degree equal to t in the possible world G. η-degree of vertex v,
denoted by η-deg(v), where η ∈ [0, 1], is defined as the highest
t ∈ [0, dv] for which Pr[degG (v) ≥ t] ≥ η [28, 30].

For the (k, η)-core of probabilistic graph G, we use the defini-
tion given by [28]: the (k, η)-core of probabilistic graph G = (V, E, p)
is the maximal induced subgraph G′

(k,η) = (V′, E′, p), V′ ⊆ V, E′ =
{(u, v) ∈ E : u, v ∈ V′} where the η-deg(v) for each v ∈ V′ is at least
k. The largest k for which v is a part of a (k, η)-core is called η-core
number or probabilistic coreness of v. The set of all (k, η)-cores is
the unique core decomposition of G and follows the following
relation [30]:

G = G ′
(0,η) ⊇ G ′

(1,η) ⊇ ... ⊇ G ′
(kmax−1,η) ⊇ G ′

(kmax,η) (2)

where kmax is the maximum probabilistic coreness of any vertex
in G. For simplicity, we will use core number and coreness

1 332 viral interacting human proteins and an additional human protein
that interact with the viral-interacting human proteins

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab455#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab455#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab455#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab455#supplementary-data
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Figure 2. Workflow of data processing and analysis pipeline.

instead of η-core number/probabilistic coreness in the rest of the
paper. Additionally, we use dense to describe cores with high core
numbers.

Data analysis pipeline

The Biomine database contains abundant biological informa-
tion. Though we used the smaller human Biomine database,
after extending it with the SARS-CoV-2-host PPI network the
resulting network is still enormous and hard to reason. To make
sense of such a huge network, we propose a data analysis
pipeline with three steps described below. An illustration of the
workflow of data processing and analysis pipeline can also be
found in Figure 2. Pseudocode with more details of the data
analysis pipeline can be found in Algorithm S1 in Supplementary
Methods.

Step 1: Data preprocessing

The data preprocessing step contains three sub-steps: screening
based on degree expectation, screening based on lower-bounds
of η-degree and nodes retaining. The goal of this data preprocess-
ing step is to reduce the nodes in the network and speed up the
follow-up analyses. Specifically, we remove large proportions of
nodes with too low connectivity (i.e. vertices with small η-degree)
to be members of dense sub-communities in the network.

Here, we start with the first sub-step and we briefly explain
the methodology and the rationale behind it. For each vertex
v ∈ V, we have a set of edges incident to v and each edge is
accompanied with a probability of existence pi that is indepen-
dent of other edge probabilities in G. Given a probabilistic graph
G, and a vertex v, degG (v) can be interpreted as the sum of a set
of independent Bernoulli random variables Xi’s with different
success probabilities pi’s [30] where:

Xi =
⎧⎨
⎩

1, if edge ei incident to v exists in the graph

0, otherwise
(3)

and degG (v) follows Poisson binomial distribution with-
E[degG (v)] = ∑

E[Xi] = ∑
pi.

∑
pi therefore can be seen as an

approximation to degG (v) so we use
∑

pi as the first screening
criteria. As thresholds are user-defined, any positive integer
greater or equal to 0 is accepted but it is recommended that the
first threshold is larger than 5 (if the first threshold is set to 5
it means any nodes with an expectation of degree less than 5 is
removed, e.g. only nodes with

∑
pi ≥ 5 are kept). The goal of this

step is to remove nodes that are rarely connected with others
and hence are not eligible to be part of any highly connected sub-
network. For example, if a vertex u has

∑
pi less than 5, it means

that degG (u) will also likely be around 5 with slight variations,
and hence u will not appear in cores with high activities (e.g.
vertices with high coreness). If the first threshold is set lower,
more nodes are retained. To speed up subsequent analyses,
the threshold value should be high enough, yet it cannot be so
high that possible highly connected nodes are removed. In our
experiment, we empirically choose a conservative number, 5, as
the first threshold, but other threshold values could be used.

For our merged dataset, 33 918 nodes passed the screening.
Now, we introduce the second step of data prepossessing.

For the nodes that passed the first stage of data screening, we
calculate lower-bounds of their η-degree using Lyapunov Central
Limit Theorem (CLT) implemented in PA. We select 10 as the
passing threshold (e.g. if a node has η-degree lower-bound greater
than or equal to 10, we keep it, otherwise it will be removed). The
rationale is if a vertex has at least 10 edges incident to it before
peeling, we can consider it a hotspot suited for the afterward
high activity subgraph mining. If in the full network a node
is not connected to at least 10 other nodes, there is no point
in performing core decomposition as we only focus on dense
sub-communities. Note that as we start the peeling process, the
node’s η-degree will also start decreasing, so in this last data
filtering stage, we only select nodes based on their initial η-degree
lower-bound.

There are many nodes in Biomine that can be directly con-
nected to the PPI network, which are potentially more useful
than other nodes. In the nodes retaining step, we force them
to not be screened out and let downstream analyses decide
whether they are useful.

Besides the PPI network, we also treat the list of experimen-
tally validated genes [9] as ground truth and retain their mapped
nodes for downstream analysis without the data screening steps.
Wei et al. [9] selected the top and bottom 250 genes from their
sorted gene list for analysis so we also select these 500 genes
in our research. We map the selected list of genes to its corre-
sponding UniProt indexes in Biomine. When UniPort index is
not available, STRING index is used and those that still failed
to map are discarded. Eventually, 439 of the genes are mapped
and integrated into our research. There is an overlap of eight
nodes between the PPI network by Gordon et al. and the CRISPR
screened gene list by Wei et al. after mapping. In total, we
obtained 791 experimentally validated ground truth nodes.

In the merged dataset, 30 839 unique Biomine nodes are
directly connected to the nodes in the PPI network and nodes in
the selected CRISPR screened gene list (a total of 31 630 nodes).
To preserve valuable information, we retain them from data
screening. All other nodes in the human Biomine database that
are not directly connected to the ground truth nodes will be
subject to the two data screening steps.

After this step, a total of 46 033 nodes remained in our dataset
and the filtered dataset was passed to PA for probabilistic core
decomposition with η set to 0.5. For a discussion on different
settings of η, see Discussion section.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab455#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab455#supplementary-data
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Step 2: Peeling algorithm to find coreness of nodes

In this section, we briefly describe the graph peeling algorithm
(PA) introduced by [30].

As mentioned before, η-deg(v) is defined as the highest t for
which Pr[degG (v) ≥ t] ≥ η. In [30], Lyapunov CLT is applied to
approximate Pr[degG (v) ≥ t] and find the largest t such that
Pr[degG (v) ≥ t] ≥ η. They showed that Lyapunov CLT can produce
a very accurate lower-bound on vertex’s true η-degree. Since the
lower-bound is easy to compute, it helps reduce PA’s running
time significantly.

To summarize PA, it first computes the lower-bound on the η-
degree for each vertex using Lyapunov CLT, then it stores vertices
in an array in ascending order of their lower-bound values.
Then, the algorithm starts processing vertices based on their
(lower-bound on) η-degree. When a vertex v is being processed,
PA algorithm determines whether v’s exact η-degree is available
or v is on its lower-bound. If the former criteria holds, PA sets
v’s coreness to be equal to its η-degree at the time of process,
removes v, and decreases the η-degree (exact or lower-bound) of
v’s neighbors by one. Otherwise, if v is on its lower-bound, v’s
exact η-degree is computed and v is swapped to the proper place
in the array. At the end, (k, η)-core of G is obtained by collecting
all the vertices with coreness at least k. Note that for efficiency
reasons, (1) lower-bounds are used in the main parts of PA where
η-degree values are required, and only when a vertex becomes a
candidate for removal the exact η-degree is calculated, (2) after
removing a vertex v, the step of updating the η-degree of v’s
neighbors is delayed as much as possible (lazy updates strategy).

Step 3: Functional enrichment analysis

Pathway analysis could prove crucial in understanding how the
virus infects the human body [7]. To evaluate functional path-
ways of proteins involved in SARS-CoV-2 host interactions from
the core decomposition result of PA, gene enrichment analysis
was performed using clusterProfiler [32] and Metascape [33].

P-values were calculated by hypergeometric test [34],
adjusted using Benjamini–Hochberg procedure [35], and adjusted
P-value < 0.01 were used as the threshold of significance to
control the false-discovery rate. We also performed DAVID
functional annotation clustering [36, 37] on selected subgraphs.
Since Metascape and DAVID both restrict input gene list size
up to 3000, if our list exceeds that number, we will select the
top 3000 nodes based on their connections to the integrated
experimentally validated nodes. For UniProt indexing nodes,
we select UNIPROT_ACCESSION as the gene list identifier.
Everything else is kept as default.

Results
We merged the original SARS-CoV-2-host PPI network [8] with
the human Biomine database and we removed duplicated and
looped edges in the merged dataset. We also integrated the
experimentally validated pro/anti-SARS-CoV-2 gene lists by Wei
et al. [9]. We then passed the merged dataset through our pro-
posed analysis pipeline. Approximately 5.3% of nodes remained
after data screening and the algorithm revealed the presence
of 88 cores. More specifically, the nodes that remained in the
filtered dataset yielded 79 different coreness values ranging
from 0 to 88. Many node types exist in the filtered dataset, for
example, UniProt, STRING, PubMed, GO (including indexes for
biological process, cellular component, molecular function), etc.
Approximately 11.35% of nodes were assigned coreness 1 and
2, which accounts for 2685 nodes and 2539 nodes, respectively.

The 791 experimentally validated nodes (including the original
SARS-CoV-2-human PPI network and the pro/anti-SARS-CoV-2
gene lists by Wei et al.) were distributed across 74 different
coreness with minimum coreness of 1 and maximum coreness
of 88. The nodes that were directly connected to the experi-
mentally validated nodes (we refer to them as level 1 connections)
had similar node count distribution with roughly 16.88% nodes
assigned with coreness 1 and 2, followed by coreness 77 that
contains 2108 (≈ 6.84%) nodes.

Table 1 shows the top-10 coreness values in terms of node
count for the three scenarios: experimentally validated nodes,
level 1 connections and complete nodes set. As can be seen
from Table 1, core 69 and core 77 are the two most frequently
appeared denser cores that contain a significant fraction of
nodes. As indicated before in Equation 2, the denser cores are at
the same time among the smaller cores, so we further merged
all cores that are denser than 68 (i.e. coreness 69, 70, 71, 72, 73,
74, 75, 76, 77, 88) into a giant subgraph to avoid losing potential
connections as well as the corresponding information between
cores.

The resulting subgraph contains 3625 nodes and 2 025 378
edges. By definition, the merged subgraph is the same as core
69 (it contains nodes with coreness 69 and above). Among these
3625 nodes, a total of 179 nodes are experimentally validated and
57 (≈ 17.12%) SARS-CoV-2 interacting human proteins identified
by Gordon et al. [8] can be found in the subgraph. The other
3446 nodes are all level 1 connections. In addition, a majority of
nodes (3485, ≈ 96.14%) in the subgraph are proteins labeled with
corresponding UniProt ID. A complete dissection of node types
for the subgraph can be found in Table S2 in Supplementary
Methods.

SARS-CoV-2 associating genes discovery

We hypothesized that other protein nodes connected with the
reported 57 SARS-CoV-2 interacting human proteins in different
cores within the subgraph may contain potential missing con-
nections from the single experiment, and provide novel molec-
ular components for better understanding the pathogenicity of
SARS-CoV-2 infection which will eventually be beneficial for
identifying new biological/pharmaceutical targets.

We first explored the distribution of the 57 SARS-CoV-2 inter-
acting human proteins in the merged subgraph, and observed
that 27 of them has coreness 69, two of them has coreness 71, one
of them has coreness 73, 20 of them has coreness 77 and seven
belongs to core 88 with coreness 88 assigned (Table 2). Since our
goal is to extend the integrated experimentally validated results
(we mainly want to focus on the SARS-CoV-2-human PPI network
found by Gordon et al.) and generate more research hypotheses,
in the merged subgraph (the extended network), all the nodes
not belonging to the original PPI network or the pro/anti-SARS-
CoV-2 gene lists can be considered as generated hypotheses.
We then try to identify the hypotheses that had already been
studied by other researchers. From the subgraph, we obtained
3306 UniProt indexing nodes that are directly connected to the
179 experimentally validated nodes. We further ranked these
3306 nodes by their connections to the reported experimentally
validated results (we will refer to this number as nConnect, the
complete ranked list can be found in Table S7 in Supplementary
Result) and performed literature mining on their association-
s/correlations with COVID-19. After an automatic web crawling
followed by manual inspection, we identified 306 nodes (≈ 9.26%)
that show associations or correlations with COVID-19 supported
by at least one study. Among the 306 literature-verified nodes, 68

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab455#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab455#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab455#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab455#supplementary-data
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Table 1. Top-10 coreness values revealed by peeling algorithm (sorted by node count)

Experimentally validated Level 1 connections All nodes
nodes (coreness(count)) (coreness(count)) (coreness(count))

69(78) 1(2675) 1(2685)
77(71) 2(2532) 2(2539)
88(20) 77(2108) 77(2179)
48(18) 3(1526) 9(2086)
64(17) 4(1077) 10(2035)
11(16) 69(828) 11(1756)
62(15) 22(15) 5(824) 12(1594)
59(14) 12(14) 10(807) 3(1544)
54(13) 38(13) 29(13) 19(13) 9(797) 8(1512)
63(12) 49(12) 23(12) 7(756) 14(1509)

In the table, for duplicated node counts, we display all matching coreness.

Table 2. Node distribution of the merged subgraph

Coreness Total number of nodes Total number of
PPI network nodes

69 906 27
70 56 0
71 61 2
72 46 0
73 54 1
74 10 0
75 21 0
76 38 0
77 2179 20
88 254 7

of them has coreness 69, 193 of them has coreness 77 (in total, ≈
85.29% of literature-verified nodes were either assigned coreness
69 or coreness 77, a complete plot on coreness distribution is
shown in Figure S2 in Supplementary Methods). As mentioned
before, cores 69 and 77 are the most frequently appeared cores
and showed denser sub-communities compared with others in
different contexts in Table 1. And for the 57 SARS-CoV-2 interact-
ing human proteins in core 69, 47 of them (≈ 82.46%) either have
coreness 69 or coreness 77. We believe these findings support
our assumption that more valuable information can be found in
dense sub-communities and we move on to explore the criteria
for high quality hypothesis (i.e. hypothesis that most likely to be
true).

Table 3 lists the top genes and encoded proteins that are
connected to more than half of the integrated experimentally
validated nodes in the subgraph, ranked by nConnect. Over 20% of
nodes in Table 3 received literature supports. Therefore, we con-
sider nodes in Table 3 to be high quality hypotheses compared
to the rest of the nodes in the subgraph, and we recommend
researchers start validating them first. The subgraph node list
and the complete list of nodes that received literature supports
can be found in Tables S3 and S4 in Supplementary Result. A
detailed discussion on the literature-supported nodes in Table 3
can be found in the Discussion section.

Gene ontology over-representation analysis

We first performed an enrichment test of gene ontology (GO) bio-
logical process for genes that encode all of the UniProt indexing

nodes in the subgraph using the enrichGO function of cluster-
Profiler package in R with default parameters [32]. The top 30
GO terms with the smallest adjusted P-value were presented in
Figure 3. The most significant GO term is protein polyubiquitination
(adjusted P-value ≈ 8.96 ∗ 10−75), which accounts for 204 of the
total 3352 mapped input genes (≈ 6.09%), followed by ribonu-
cleoprotein complex biogenesis (adjusted P-value ≈ 2.42 ∗ 10−58).
The top enriched term might suggest that SARS-CoV-2 hijacks
cell’s ubiquitination pathways for replication and pathogenesis,
which is one of the findings of [8]. Interestingly, the virus-
associated biological processes viral gene expression and viral
transcription were also found to be enriched and account for
about 3.73% and 3.49% of input eligible gene set, respectively.
In addition, we noted that 10 out of the top 30 GO terms were
RNA-related. For example, mRNA catabolic process (6.06% of total
input eligible genes), RNA catabolic process (6.38%) and nuclear-
transcribed mRNA catabolic process, nonsense-mediated decay (3.04%)
were the top items. This is in line with Gordon’s study where
they found SARS-CoV-2 proteins NSP8 and N involved in RNA
processing and regulation [8].

We further used Metascape v3.5-210201 [33] to perform path-
way and process enrichment analysis on UniProt indexing nodes
with different coreness. Two subsets showed significant enrich-
ment in the molecular functions of immune response to bac-
teria or viruses. Specifically, 5.77% protein-encoding genes with
coreness 70 enriched the term The human immune response to
tuberculosis and other 5.77% genes enriched the term regula-
tion of viral process, see Figure 4-(a) for other relevant enriched
items (negative regulation of protein kinase activity, Signaling by
Receptor Tyrosine Kinases, etc.). Regarding UniProt indexing nodes
with coreness 73, network enrichment analysis using Metascape
returned a few significant modules (Figure 4 -(b)). Interestingly,
G2/M DNA damage checkpoint is found to be the top enriched
term which is consistent with the observations from recent
studies. For instance, Garcia Jr. et al. [38] detected key pro-
teins involved in cellular signaling pathways mTOR-PI3K-AKT,
ABL-BCR/MAPK and DNA-damage response that are critical for
SARS-CoV-2 infection, and further they identified DNA-damage
response inhibitor as potent blocker of SARS-CoV-2 replication.
Bouhaddou et al. [39] infected Vero E6 cells with SARS-CoV-2
and observed a significant increase in the fraction of cells at
the G2/M transition phase. Gordon et al. [8] found that SARS-
CoV-2 NSP1 protein interacts with all four members of the DNA
polymerase alpha complex, which couples DNA replication with
DNA-damage response [40]. Additionally, Blanco-Melo et al. [6]
found the excessive expression of cytokine as one of the strong

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab455#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab455#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab455#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab455#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab455#supplementary-data
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Table 3. Discovered top genes potentially related to COVID-19

Gene Name UniProt ID nConnect References (‘etc.’ means found > 10 references)

UBA52 P62987 131 −
PRDM10 Q9NQV6 130 −
GAPDH P04406 124 [42–44]
ASH1L Q9NR48 121 −
DICER1 Q9UPY3 120 [45]
SRC P12931 118 [46–49]
POLR2A P24928 117 −
POTEF A5A3E0 117 −
EHMT2 Q96KQ7 116 −
RIPK4 P57078 116 −
POLR2B P30876 115 −
EHMT1 Q9H9B1 114 −
ACTB P60709 114 −
SMARCA2 P51531 114 −
GSK3B P49841 114 [50–53]
TOP2A P11388 113 −
HSPA4 P34932 113 −
UBC P0CG48 112 [54]
PIKFYVE Q9Y2I7 111 −
ABL1 P00519 111 [55]
JAK2 O60674 110 [56–64], etc.
TOP2B Q02880 110 −
MTOR P42345 109 [65–74], etc.
PIK3CA P42336 109 −
XPO1 O14980 109 −
CDC27 P30260 108 −
NFKB1 P19838 107 −
HRAS P01112 107 −
HACE1 Q8IYU2 107 −
CDK1 P06493 107 −
AKT1 P31749 106 [48, 75–78]
PCNA P12004 106 −
PIK3CG P48736 106 −
LRRK2 Q5S007 106 −
JAK1 P23458 105 [58–60, 62, 79–83], etc.
UBB P0CG47 104 −
HSP90AA1 P07900 104 [84]
FYN P06241 104 −
PHLPP1 O60346 104 −
RANBP2 P49792 104 −
ZDHHC17 Q8IUH5 103 −
MAPK1 P28482 103 −
CDK4 P11802 103 −
PIK3CB P42338 102 −
DDX5 P17844 102 −
HSPA8 P11142 102 [85]
POTEJ P0CG39 102 −
POTEE Q6S8J3 102 −
POTEI P0CG38 101 −
RPS27A P62979 101 −
IGF1R P08069 101 [86]
KIT P10721 101 −
PTEN P60484 100 −

features of SARS-CoV-2 infection; here we are able to find several
terms that are related to cytokine storm induced by SARS-
CoV-2 (see Figure 4-(b) for details). For instance, IL-4 Signaling
Pathway and Cytokine Signaling in Immune system are related to
cytokine storm upon virus infection. Particularly, IL-4 is one kind
of cytokine that acts as a regulator of the JAK-STAT pathway and
contributes to human body immune responses [41].

SARS-CoV-2 interacts with tyrosine-related proteins

Bouhaddou et al. [39] found changes in activities for 97 out of 518
human kinases during SARS-CoV-2 virus infection. Surprisingly,
among the 97 kinases list they discovered, 76 were found in
our merged subgraph (≈78.35%). This motivated us to check
for all the 321 kinases-related UniProt indexing nodes in our
subgraph (the complete list of kinases-related nodes can be
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Figure 3. Top GO terms of all mapped UniProt indexing nodes in the subgraph ranked by GeneRatio.

Figure 4. Metascape enrichment results for coreness 70 and 73. (a) Top biological terms (pathway, process, etc.) enriched for coreness 70 ranked by P-values (b) Network

of enriched terms for coreness 73 colored by cluster ID, nodes shared the same cluster ID typically lie close together. Node size is proportional to P-value significance.

found in Table S5 in Supplementary Result). Interestingly, 85
of them are tyrosine-related nodes (≈26.48%). As mentioned
previously, we found 306 out of the 3306 UniProt indexing level 1
connections (≈ 9.26%) in the merged subgraph that had at least

one study showing they have some relations with COVID-19.
When we restrict to tyrosine-related proteins, this proportion
increased more than 3-fold to 28.24% (Table 4). That is, 24 of the
85 tyrosine-related proteins (Table S6 in Supplementary Result)

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab455#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab455#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab455#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab455#supplementary-data
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Table 4. All tyrosine-related proteins in the subgraph that received literature support

UniProt ID Gene Name Protein Name

P12931 SRC Proto-oncogene tyrosine-protein kinase SRC
P23458 JAK1 Tyrosine-protein kinase JAK1
O60674 JAK2 Tyrosine-protein kinase JAK2
P08069 IGF1R Insulin-like growth factor 1 receptor
P00519 ABL1 Tyrosine-protein kinase ABL1
Q06418 TYRO3 Tyrosine-protein kinase receptor TYRO3
P17948 FLT1 Vascular endothelial growth factor receptor 1
P35968 KDR Vascular endothelial growth factor receptor 2
P08581 MET Hepatocyte growth factor receptor
P36888 FLT3 Receptor-type tyrosine-protein kinase FLT3
P29597 TYK2 Non-receptor tyrosine-protein kinase TYK2
P07333 CSF1R Macrophage colony-stimulating factor 1 receptor
Q06187 BTK Tyrosine-protein kinase BTK
P16234 PDGFRA Platelet-derived growth factor receptor alpha
P42684 ABL2 Tyrosine-protein kinase ABL2
P42680 TEC Tyrosine-protein kinase TEC
P43405 SYK Tyrosine-protein kinase SYK
Q08881 ITK Tyrosine-protein kinase ITK/TSK
P30530 AXL Tyrosine-protein kinase receptor UFO
Q12866 MERTK Tyrosine-protein kinase MER
P00533 EGFR Epidermal growth factor receptor
P04626 ERBB2 Receptor tyrosine-protein kinase ErbB-2
Q9Y463 DYRK1B Dual specificity tyrosine-phosphorylation-regulated kinase 1B
O14733 MAP2K7 Dual specificity mitogen-activated protein kinase kinase 7

in the merged subgraph have been explored for their associa-
tions with SARS-CoV-2 virus, including SRC, JAK1, JAK2, IGF1R,
ABL1, TYRO3, etc. The high proportion of validated tyrosine-
related proteins further motivated us to perform a DAVID
functional annotation clustering [36, 37] on level 1 connections
UniProt indexing nodes in core 69 (the merged subgraph). In
total, 341 clusters were identified and the term Tyrosine-protein
kinase (fold-change = 5.1, P-value = 1.5 ∗ 10−44) is among the
top 10 clusters ranked by enrichment score (the DAVID analysis
report can be found in Supplementary Report). Of particular
importance, SRC, JAK1, JAK2, ABL1 are among the top of the
list with large connections to the integrated experimentally
validated nodes (Table S7 in Supplementary Result). Since
our main focus is the PPI network found by Gordon et al., in
Figure 5 we presented a complete PPI network between tyrosine-
protein kinase SRC, JAK1/2, ABL1/2 and their connections to
the SARS-CoV-2 interacting human proteins in the subgraph.
We also include the SARS-CoV-2 viral proteins (red diamond)
from the original PPI network. This network covered half (n =
13) of the 27 SARS-CoV-2 viral proteins, including envelope (E),
NSP7, NSP9, ORF10, etc. It showed these five proteins were not
directly interacting with the virus but at level one connections
where SRC, JAK1/2 and ABL1/2 are hub nodes and connect
with each other (connection degree being 42, 37, 37, 36 and 29,
respectively).

Additionally, we ranked all the nodes in the merged subgraph
by their degrees and investigated the top 5% of the sorted nodes
(181 out of 3625 nodes, Table S3 in Supplementary Result). There
are 102 ‘kinase’ protein nodes and 53 of them are ‘Tyrosine-
protein kinase’. Among the 53 tyrosine-related nodes, the top
ranking ones were SRC (ranked 5 out of 181), ABL1 (ranked tie
at 19 out of 181) and JAK2 (ranked 22 out of 181) with degree con-
nection 2687, 2483 and 2477, respectively. Take together, evidence
obtained so far highly implied that SRC, ABL1 and JAK2 are three
important hub genes.

Figure 5. SARS-CoV-2 protein interaction with Tyrosine-protein kinase JAK1/2,

ABL1/2, SRC. The dashed edges indicate the proteins that do not belong to the

identified subgraph.

COVID-19 related tissues and diseases discovery

Through the 332 human viral-interacting proteins across differ-
ent tissues, Gordon et al. [8] identified lung as the tissue with the
highest level of differential expression of the SARS-CoV-2 inter-
acting human proteins. They also found 15 other tissues with
a high abundance of SARS-CoV-2 human interacting proteins. In
our subgraph, we were able to locate five out of the top 16 tissues
identified by [8]: lung (coreness = 69), testis (coreness = 69),
placenta (coreness = 69), liver (coreness = 69) and brain (coreness
= 77). Curiously, we also discovered two diseases that seem to

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab455#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab455#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab455#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab455#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab455#supplementary-data
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Figure 6. Interactions between tissue, disease and UniProt indexing nodes in the subgraph. All of the edges have is_expressed_in as edge relationship type. (a) Interaction

map between UniProt indexing nodes, identified tissue nodes and disease nodes (b) Association between SARS-CoV-2 host interacting proteins and tissue/disease nodes

in core 69, we add SARS-CoV-2 viral proteins (red diamond with dashed links, indicating they do not exist in the subgraph) for clarity.

be associated with COVID-19 within the subgraph (Table S in
Supplementary Result): cervix carcinoma (coreness = 70) and
erythroleukemia (coreness = 69). Figure 6-(a) presents a network
consisting of the five identified tissue nodes, two disease nodes
and 2988 UniProt indexing nodes that directly connect to tissue
nodes and disease nodes in the subgraph (an interactive version
of the network can be found in our GitHub repository, and also in
Supplementary Result). A total of 54 out of the 57 reported SARS-
CoV-2 interacting human proteins can be found in this network.
Figure 6-(b) shows the interaction between the 54 SARS-CoV-2
interacting human proteins and the tissue and disease nodes
identified in the subgraph under a higher resolution. Similar
to what Gordon et al. [8] found, lung, testis, placenta, liver
and brain are heavily involved during SARS-CoV-2 infection. For
example, the HDAC2 protein, which is observed to be expressed
in testis, lung, overexpressed in cervical cancer, etc., has been
identified by Gordon et al. to be associated with the SARS-CoV-2
NSP5 protein. We noted that the same SARS-CoV-2 interacting
human proteins are also expressed in cervix carcinoma and
erythroleukemia in the sub-graph. We hypothesized drugs used
to treat these two diseases might be useful to treat COVID-19.

Idarubicin, daunorubicin and cytarabine are the three drugs
used to treat erythroleukemia. Chandra et al. [87] suggest idaru-
bicin as a potential drug that can be repurposed for controlling
SARS-CoV-2 infection due to its good binding affinity to SARS-
CoV-2 NSP15 encode endoribonuclease enzyme.

Bevacizumab is used to treat cervix carcinoma. According to
Rosa et al. [88], there have been clinical trials about repositioning
bevacizumab for COVID-19. In addition, Amawi et al. and Zhang
et al. [89, 90] identified bevacizumab as one of the promising
therapeutic treatments against COVID-19.

Validation from independent evidence

To validate our generated hypotheses with independent evi-
dence, we compared them with results obtained through both

computational and experimental approaches. The consistent
parts are considered as independent evidence of each other,
whereas the non-overlap parts in our result can be consid-
ered as novel findings. It is worth noting that our work is the
only one that starts with probabilistic networks and performed
integrative network analysis.

First, to investigate how our results relate or overlap with the
results obtained by other computational approaches, we com-
pared our generated hypotheses with their presented SARS-CoV-
2-related interactomes, proteins and PPIs. Perrin-Cocon et al.
[13] assembled a coronavirus-host interactome and 325 (28.63%)
of the total 1135 human proteins mapped to UniProt database
within the constructed network can be found in our merged
subgraph. Krämer et al. [14] constructed 70 hypothesis networks
using a machine learning algorithm and 197 (37.31%) of the
528 proteins mapped to Homo sapiens UniProt database can
be found in our merged subgraph. Gysi et al. [15] searched
extensively in the literature and public databases to assemble
a large human interactome with the goal of identifying possi-
ble COVID-19 repurposing drugs. Their constructed interactome
contains 17 349 proteins that can be mapped to Homo sapiens
UniProt database which results in a huge overlap (3320 proteins)
with our merged subgraph. However, there are still 165 (4.74%)
UniProt indexing nodes in our subgraph that they are not able
to identify despite their extensive search in literature. Sadegh et
al. [16] developed an online platform that implemented systems
medicine algorithms for network-based prediction of drug can-
didates. Using the 332 viral-interacting human proteins identi-
fied by Gordon et al. [8] as input to their default Multi-Steiner
algorithm for drug target discovery with default parameters we
obtained a total of 393 human proteins, with 332 being the
original human proteins in the input. In the rest of 61 proteins, 29
(47.54%) can be found in our merged subgraph. In addition, Khor-
sand et al. [17] constructed a three-layer SARS-CoV-2-human
PPI network using Alpha-influenzavirus proteins that are most
similar to SARS-CoV-2 proteins and 662 (34.88%) of the identified

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab455#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab455#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab455#supplementary-data
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1898 UniProt mapped human proteins in their network can be
found in our merged subgraph. Messina et al. [18] constructed
interactomes for three human coronaviruses: SARS-CoV, MERS-
CoV and HCoV-229E and employed RWR algorithm to identify the
top 200 closest proteins for each of the virus (total 600 proteins).
A total of 548 proteins can be mapped to Homo sapiens UniProt
database and 241 (43.98%) of them can be found in our merged
subgraph. In total, 3323 (95.35%) of the UniProt indexing nodes
in our subgraph can be found in the aforementioned works and
161 of the remaining 162 UniProt indexing nodes are not found
in literature and therefore can be considered complete novel
findings (Table S8 in Supplementary Result).

Then, we validate our findings against experimentally
obtained results. Stukalov et al. [10] identified the human-virus
interactomes of SARS-CoV and SARS-CoV-2 as consisting of
1801 interactions between SARS-CoV/SARS-CoV-2 viral proteins
and 1086 human proteins (1082 of them can be mapped to
the human Biomine database). Li et al. [11] experimentally
identified 295 SARS-CoV-2 virus-host protein interactions
(between SARS-CoV-2 viral proteins and 286 human proteins)
and found potential molecular mechanism for SARS-CoV-
2-induced cytokine storm. We are able to map 284 of the
human proteins to the human Biomine database. To validate the
robustness of our discovered dense sub-communities, we redid
our analysis and considered their discovered PPIs as additional
ground truth. Our experiments indicate that by integrating more
ground truth nodes from these two studies, our final extended
network has a nearly identical structure as the presented ones
in our paper and with exactly the same 3625 nodes. The main
change is that more nodes in our final merged subgraph are
being validated and the total number of generated hypotheses
(nodes in the extended network that do not belong to the
integrated experimentally validated results) has decreased,
indicating that our identified dense sub-communities are robust
enough. Besides validating the network, we also validated the
biological stories of our findings. For example, SRC, ABL1 and
JAK1/2 are generated hypotheses and we identified SRC, ABL1
and JAK2 to be important hub genes in previous section. In [10],
JAK1 and JAK2 have been experimentally validated to interact
with SARS-CoV and SARS-CoV-2 viral proteins. Similarly, we
identified HSPA4, XPO1, CDK4, KIT to be among the high quality
(most likely to be true) hypotheses in Table 3. Li et al. [11] have
experimentally validated that HSPA4 interacts with SARS-CoV-2
N protein, XPO1 interacts with SARS-CoV-2 NSP8 protein, CDK4
interacts with SARS-CoV-2 NSP10 protein and KIT interacts with
SARS-CoV-2 ORF3a protein.

Discussion
Using the rich Biomine database, we extended the SARS-CoV-
2-human PPI network identified by Gordon et al. [8] and also
integrated the discovered lists of pro/anti-SARS-CoV-2 genes by
Wei et al. [9]. Through the proposed three-stage analysis pipeline,
we were able to filter the large extended network, uncover dense
sub-communities, and therefore generate research hypotheses
related to COVID-19 by identifying dense cores in the Biomine
database that have as many same nodes as the integrated exper-
imentally validated results.

There are two fundamental assumptions in this work. First,
to extend the experimentally validated results (we mainly focus
on the PPI network), we assume the results by Gordon et al.
and Wei et al. to be correct. Secondly, to identify a small list
of important proteins from a large network, we assume sub-
communities of nodes (that are highly connected with each

other and well connected with experimentally validated nodes)
to be more important than other nodes. In the literature, highly
connected nodes such as hotspots or hub genes [10, 91, 92]
have received substantial attention. Our analysis targets ‘high-
activity sub-network’ and can be considered as an extension to
hotspot (i.e. a cluster of connected hotspots, which is a higher
level structure and is harder to detect). This is one of the novel
contributions in this work.

In the first step of our proposed pipeline, we have two data-
screening sub-steps added; this design is based on our assump-
tion and will enable the peeling algorithm (PA) to focus more
on cores with high activities. Furthermore, by focusing on dense
cores, the PA can run faster due to a decrease in the input dataset
size.

It is worth noting that when the network contains more than
one connected component after the two-stage data screening,
our proposed pipeline will produce the result even faster since
the network complexity will be further reduced and we can run
PA in parallel for each connected component. But in Biomine, the
network is connected after screening and we were unable to run
PA in parallel.

Based on the aforementioned assumption, the Biomine
database, and the proposed analysis pipeline, we quickly
identified sub-communities in the extended PPI network that
have high activities and we discovered novel diseases, genes
and proteins that could potentially relate to COVID-19 as
research hypotheses. The generated hypotheses (Table S7 in
Supplementary Result) provide candidates for follow-up work to
validate.

Kumar et al. [20] also employed a similar graph decompo-
sition concept on a host-viral network. The difference between
their analysis approach and ours is that they started with a deter-
ministic graph and added edge weight later while we started
with probabilistic graph decomposition which is more challeng-
ing. Another notable difference is they utilized a graph decom-
position method called weighted k-shell. In contrast to our k-core
decomposition, k-shell asks for all the nodes in the subgraph to
have coreness precisely equal to k, while k-core asks for all nodes’
coreness to be at least k. k-core has the advantage of connecting
different subsets of nodes in the network and helps discover
missing links between them. Additionally, when we perform
pathway and process enrichment analysis on the subgraph, we
also use the subset of nodes with the same coreness, which by
definition is the k-shell of the subgraph.

There are three user-defined thresholds in the first and sec-
ond steps of our proposed analysis pipeline: threshold based on
degree expectation, threshold based on η-degree lower-bounds
and η. These thresholds can be changed based on users’ specific
needs. The first two thresholds are used to filter out nodes with
very low connectivity, which cannot be members of dense sub-
communities in the network. By filtering out low connectivity
nodes, we reduce the network volume and speed up the analysis.
So, the first threshold should be a number much smaller than
the coreness of nodes in the dense sub-network. In our analysis,
we set the threshold as 5, and we are interested in the dense
sub-network with coreness ≥ 69, hence threshold 5 is a conser-
vative choice. As long as the first threshold is set relatively far
away from the coreness in our final dense subgraph, its value
only affects the computation speed, and not the results. The
user could use a larger threshold to increase speed, if they are
ok to take more risk of missing important nodes. Similar rule
also applies to the second threshold. For the third threshold,
η, its choice is rather subjective, but we found the results of
our analysis are robust to the choice of its value. Figure S3 in

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab455#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab455#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab455#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab455#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab455#supplementary-data
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Supplementary Methods shows the results of different settings
of η (0.3, 0.5, 0.7) to be very consistent (nodes’ coreness under
different η values are in almost perfect linear relationship).

For determining the merged subgraph, we need to pick an
optimal threshold of coreness that will balance the denseness
and the complexity of the graph. We observed that cores 69
and 77 are both dense, frequently appeared, and contain more
information. Compared to core 77, we preferred core 69 as we
want to include more nodes into the subgraph. On the other
hand, it is not practical to involve too many nodes because it
results in generating a vast amount of hypotheses to validate.
Therefore after comparing with coreness 77 and other core
number in Table 1, we chose coreness 69 as the final optimal
threshold.

We did a literature review for most of the genes detected
in our subgraph and listed top genes in Table 3. Take entries
with nConnect ≥ 110 as an example, seven genes received litera-
ture support (we will discuss the tyrosine-related ones together
in the next paragraph). The other 15 genes with nConnect ≥
110 might be strong candidates with high priority and worth
for future validation. For GAPDH (Glyceraldehyde-3-phosphate
dehydrogenase), Zheng et al. [42] obtained potential COVID-19
effector targets of Chinese medicine Xuebijing (XBJ) which was
used in treating mild cases of COVID-19 patients, and GAPDH
is found to be one of the key targets. Taniguchi-Ponciano et
al. [43] identified HIF1α as a potential marker for COVID-19
severity and GAPDH is found to be among the expressed HIF1α

responsive genes. Ebrahimi et al. [44] found inhibiting GAPDH
in patients with degenerated innate immunity can potentially
help in treating COVID-19. For DICER1 (Endoribonuclease Dicer),
Mu et al. [45] found that SARS-CoV-2 N protein prevent Endori-
bonuclease Dicer from the recognition and cleavage of virus-
derived dsRNA. For GSK3B (Glycogen synthase kinase-3 beta),
Liu et al [50] investigated COVID-19 traditional Chinese medicine
treatment ShenFuHuang formula and identified GSK3B as the
medicine’s potential drug target. Khalil [51] and Nowak et al.
[52] hypothesized lithium chloride (directly inhibits GSK3B) to be
a potential treatment for COVID-19 due to its inhibition effect
on other members of the CoV family. Embi et al. [53] found
chloroquine treatment (preventing SARS-CoV-2 to fusion with
the host cell membrane) results in the inhibition of GSK3B.

For tyrosine-related proteins in the merged subgraph
and their associations with COVID-19, many tyrosine kinase
inhibitors have been identified to inhibit the SARS-CoV-2 virus.
Cagno et al. [93] found three ABL tyrosine-protein kinase
inhibitors imatinib, dasatinib and nilotinib to exert inhibitory
activity against SARS-CoV-2. Alijotas-Reig et al. [94] found
two JAK tyrosine-protein kinase ruxolitinib and baricitinib
to be useful in treating the COVID-19 induced systemic
hyperinflammatory response (cytokine storm). Wu et al. and Seif
et al. [56, 95] found another JAK inhibitor fedratinib to mitigate
the serious conditions in COVID-19 patients. We identified SRC,
JAK1/2, ABL1/2 as hub nodes in Figure 5. For SRC (Proto-oncogene
tyrosine-protein kinase SRC), in Lin et al. [46], ibrutinib is found
to block SRC family kinases, which might reduce viral entry
as well as the inflammatory cytokine response in the lungs.
Morenikeji et al. [47] identified SRC to be one of the genes
associated with Bovine coronavirus and by implication, other
coronaviruses. Tiwari et al. [48] found SRC to play a vital role in
SARS-CoV-2 infection related pathways. Xie et al. [49] found SRC
participates in cytokines storm in patients with obesity which
could lead to negative outcomes when infected with SARS-CoV-
2. Additionally, many works in literature have targeted JAK1/2
in the hope to treat or prevent COVID-19. Shi et al. [79] found

decreasing of lymphocyte in patients with COVID-19 correlated
with low expression of JAK1-STAT5 signaling pathway. Zhang et
al. [58] found that by suppressing JAK1/2 using baricitinib, several
cytokines signals inciting inflammation will be inhibited. Others
have also suggested using drugs that inhibit JAK1/2 to help
patients with COVID-19 [59–63, 80–82]. As for ABL1/2, Abruzzese
et al. [55] have suggested a possibility that patients treated with
BCR-ABL tyrosine kinase inhibitors may be protected from the
virus infection.

Conclusion
With the SARS-CoV-2 outbreak being declared as a pandemic by
the World Health Organization (WHO) [96], researchers around
the globe are shifting their focus to COVID-19. In this work, we
are especially interested in the PPI network between SARS-CoV-
2 proteins and human proteins identified by Gordon et al. [8]
and the lists of pro/anti-SARS-CoV-2 genes discovered by Wei
et al. [9], and our focus mainly lies in extending the network to
generate biological hypotheses for further validation. To achieve
that, we connect the single experiment derived PPI network
with the large Biomine database, integrate the findings of Wei
et al., and aim to locate sub-communities with high activities
in the extended network. We propose a data analysis pipeline
based on a graph peeling algorithm (PA) that enabled us to
compute core decomposition efficiently. We select dense cores
in the Biomine database that overlap most with the integrated
experimentally validated results. The dense subgraph is the
resulting extended network, and nodes not belonging to the
integrated experimentally validated results in the subgraph are
generated hypotheses. We then evaluate the selected subgraph
in three contexts: we performed literature validation for uncov-
ered virus targeting genes and proteins and found genes that
have already been validated by others on their relationships to
COVID-19; we carried out gene ontology over-representation test
on the subgraph and found underlying enriched terms related
to viral replication, viral pathogenesis, cytokine storm, etc.; we
also searched for literature support on the identified tissues and
diseases related to COVID-19 and found the possibility of drug
repurposing for COVID-19 treatment. To further assign priorities
to the generated hypotheses, we sorted all UniProt indexing
nodes in the subgraph by their connections to the integrated
experimentally validated nodes. The top ranking nodes (Table 3)
in the list have a high proportion of literature validated nodes
(for instance, GAPDH, DICER1, GSK3B, UBC, HSP90AA1, HSPA8,
and tyrosine-protein kinase SRC, JAK1, JAK2, ABL1, etc.), we
deem the rest non-validated nodes in the table as high quality
hypotheses.
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