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Tumor cells commonly escape from elimination by innate and adaptive immune responses using multiple strategies among which
is the active suppression of effector immune cells. Regulatory T lymphocytes (Treg) and tolerogenic dendritic cells play essential
roles in the establishment and persistence of cancer-induced immunosuppression. Differentiating dendritic cells (DCs) exposed
to tumor-derived factors may be arrested at an immature stage becoming inept at initiating immune responses and may induce
effector T-cell anergy or deletion. These tolerogenic DCs, which accumulate in patients with different types of cancers, are also
involved in the generation of Treg. In turn, Treg that expand during tumor progression contribute to the immune tolerance of
cancer by impeding DCs’ ability to orchestrate immune responses and by directly inhibiting antitumoral T lymphocytes. Herein
we review these bidirectional communications between DCs and Treg as they relate to the promotion of cancer-induced tolerance.

1. Introduction

Despite the arsenal harbored by the immune system to avert
tumor development, cancers commonly elude immune de-
tection and elimination by employing multiple strategies
[1–5]. The past decade has witnessed considerable advances
in our understanding of the mechanisms responsible for
the resistance of tumor cells to immune control [6]. These
include the downregulation or loss of expression by cancer
cells of major histocompatibility complex (MHC) Class I
molecules, resulting in the lack of recognition by cytotoxic
T lymphocytes (CTL) [6–10]. Resistance to cell death (e.g.,
expression of antiapoptotic factors, deficiencies in the apop-
tosis cascade, deficiency in death receptor expression or
function, blockade of perforin/granzyme) also contributes to
avoidance of tumor cell killing by CTL [5, 11–15]. Addition-
ally, cancer cells may produce immunosuppressive factors
that negatively affect the function of DCs, T, and natural
killer (NK) cells [11]. Nitric oxide (NO), IL-6, IL-10, tumor
growth factor beta (TGF-β), indoleamine 2,3-dioxygen-
sase (IDO), arginase-1, prostaglandin E2 (PGE2), vascular

endothelial growth factor (VEGF), and cyclooxygenase-2
(COX-2) are examples of such molecules that can impede
the proliferation and function of CD4+ and CD8+ T cells
[5, 12, 16]. This immunosuppressive tumor environment
may also foster the generation and/or promotion of immu-
nosuppressive cells such as type 2 macrophages (M2), mye-
loid-derived suppressor cells (MDSCs), immature/toleroge-
nic DCs, and Treg [17–20].

By virtue of the immunosuppressive cytokines they se-
crete or through direct cell-cell contact interactions, both
tolerogenic DCs and Treg can block antitumoral T- or NK
cell activation and/or induce lymphocyte anergy or apoptosis
[20–26]. Such properties place these cells at the center
of tumor-induced immunosuppressive networks. Different
mechanisms responsible for the accumulation of tolerogenic
dendritic cells and Treg in cancer have been described but
are still subjected to intensive investigation. One of them
may involve a positive feedback loop by which tolerogenic
DCs induce Treg that in turn contribute to the induction of
immunocompromised DCs. We here review the bidirectional
communications between tolerogenic DCs and Treg and
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their roles in the context of tumor-induced immunosuppres-
sion.

2. The Central Role of Regulatory T Cells
and Dendritic Cells in the Induction and
Maintenance of an Immunosuppressive
Tumor Microenvironment

2.1. Tolerogenic DCs and Their Contribution to

Cancer-Induced Immunosuppression

2.1.1. DC Function Depends on Their Maturation and Acti-
vation Status. Known for years for their unique capability
to function as professional antigen-presenting cells (APCs),
DCs play a central role in the initiation and regulation of
immune responses and are thereby essential for the pro-
tection against infectious pathogens and neoplastic cells [27–
30]. DCs are endowed with the potential to activate antigen-
specific effector T lymphocytes and are capable of promoting
NKT and NK cell function [27, 31, 32]. The efficient stim-
ulation of tumor-specific T lymphocytes by DCs requires
the presentation of tumor-derived epitopes on MHC class
I and II molecules together with second signals (costimula-
tory molecules CD80, CD86, CD40) and proinflammatory
cytokines such as IL-12 or TNF-α [27, 31–33]. Immature
DCs are characterized by high antigen uptake and pro-
cessing capabilities, but by low expression of costimulatory
molecules and thus are not capable of efficiently activating T
cells. Multiple DC activation molecules including cytokines
(such as interferons, TNF-α, GM-CSF, PGE2, or IL-1β),
ligands of the TNF receptor family, or TLR ligands can act as
“danger” signals when tissue damage occurs or pathogens are
present [33–35]. These signals promote the differentiation
of resident immature DCs into mature DCs characterized
by the upregulation of MHC (class I and II) and costim-
ulatory molecules (such as CD80/CD86, OX40L, ICOSL),
the production of proinflammatory cytokines including IL-
12, TNF-α, IL-1β, or IL-6, and the ability to migrate, in
response to specific chemokines, to the secondary lymphoid
organs where they encounter naı̈ve T cells [31, 36]. Only fully
matured DCs are capable of priming and activating CD4+

and CD8+ T lymphocytes [34, 37, 38]. The ability of DCs
to function as inducers of immunity thus depends on their
activation/maturation stage.

Although traditionally viewed as the main inducers of
immunity, DCs can also participate in the maintenance of
peripheral self-tolerance [39, 40]. Under steady-state condi-
tions, in the absence of inflammatory danger signals, imma-
ture DCs constantly engulf, process, and present self-antigens
from apoptotic cells to potentially self-reactive T lympho-
cytes, resulting in T-cell anergy or deletion [40–42]. Migra-
tion of these immature DCs to the secondary lymphoid
organs is contingent upon expression of CCR7, a chemokine
receptor normally expressed by mature DCs. This mech-
anism is essential for the prevention of autoimmunity. In
addition to anergizing antigen-specific T cells, these imma-
ture DCs have also been involved in the generation of Treg
which further contributes to peripheral tolerance [43–46].

2.1.2. Immature/Tolerogenic DCs in Cancer. A profound def-
icit in the function of DCs (lack of costimulatory mole-
cule expression, decreased production of proinflammatory
cytokines, deficiency in the antigen processing and pre-
senting machineries, inability of activating T lymphocytes)
has been described in cancer-bearing hosts [26, 47–50]. In
cancer patients, tumor-derived factors have been reported
to alter DC differentiation and maturation and thereby pro-
mote the accumulation of immature DCs (iDCs) in the tu-
mor (tumor-infiltrating DCs, TiDCs) and the lymph nodes.
These immunocompromised DCs are unable to initiate anti-
tumor immune responses but can tolerize T lymphocytes
[20, 26, 39, 40, 51–54] and, as discussed in Section 3, con-
tribute to the recruitment, expansion, and function of
Treg [43, 46, 55–58]. For instance, TiDCs isolated from
patients with breast cancer, ovarian cancer, head and neck or
lung cancer express inhibitory molecules and fail to induce
autologous T-cell proliferation [51, 59, 60]. In murine tumor
models a subset of immature myeloid DCs is expanded
in the tumor-draining lymph nodes. These immature DCs
have decreased production of IL-12, TNF-α, and IL-6 and
increased production of IL-10 and TGF-β and of IDO and
are responsible for the establishment of an immunosuppres-
sive environment [61]. Upregulation of immunosuppressive
molecules such as B7-H4 also contributed to the tolerogenic
characteristics of these DCs [62]. Immunocompromised
DCs have also been found in rat cancer models. TiDCs
expressing MHC class II and ICAM-1 but lacking costimula-
tory molecules are not capable of inducing allogeneic T-cell
proliferation [63–65]. In addition to myeloid iDCs, accumu-
lation of plasmacytoid DCs (pDCs) has also been found in
the tumor-draining lymph nodes in B16 tumor-bearing mice
[66] and in head and neck human tumors [67]. These pDCs
are recruited to the tumor microenvironment in response to
several chemokines, including CCL20, stromal cell-derived
factor-1/CXCL12, and Ag-5/vascular cell adhesion molecule-
1 interactions [68, 69]. The majority of these pDCs exhibit
poor immunostimulatory capacity, express IDO, and may
promote FoxP3+ Treg rather than activating effector T
lymphocytes [70, 71]. In humans, the accumulation of IDO-
expressing cells in melanoma [72–74], pancreatic ductal ade-
nocarcinoma [75], ovarian cancer [76], colon cancer [77,
78], and non-small-cell lung cancer [79] has been associated
with a worsened clinical outcome. However, in contrast to
these observations, IDO expression in tumor endothelial
cells of patients with renal cell carcinoma seems to restrict
tumor growth and to contribute to long-term survival, possi-
bly by limiting the influx of tryptophan from the blood to the
tumor or by generating metabolites toxic to tumor cells [80].
These opposite results may be explained by the type of cells
expressing IDO. In fact, unlike other malignancies where the
main source of IDO is either the cancer cells themselves or
tumor infiltrating leukocytes (DCs, eosinophils), in renal cell
carcinoma IDO is almost exclusively expressed by endothelial
cells of newly formed blood vessels. IDO expression by cells
involved in the microvasculature has been associated with
a Th-1-related cytokine milieu (mainly IFN-γ) [80] which
may impair tumor growth. Consistently, high microvessel
density correlates with lower tumor grade and prolonged
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survival of patients with renal cell carcinoma [81]. Imma-
ture/tolerogenic DCs may also contribute to tumor devel-
opment by fostering tumor angiogenesis. They are indeed
capable of producing different cytokines and growth factors
such as VEGF, promoting neoangiogenesis [82, 83].

Different approaches have been evaluated to correct the
phenotypical and functional deficiencies of DCs in cancer,
which include attempts to promote their maturation using
different techniques. For example, the combination of CpG
and anti-IL-10R antagonist has been reported to enhance IL-
12 production and therefore the capacity of DCs to activate
specific T cell in vitro and in vivo [84]. Interestingly, short-
term ablation of DCs in vivo using a diphtheria toxin-based
system has been reported to impair tumor growth in animal
models [85].

Tumors have developed a series of strategies to suppress
DC function. Some of the defined mechanisms underlying
the blockade of DC maturation and the accumulation of
tolerogenic DCs include the production of immunosup-
pressive factors such as TGF-β, IL-10, IL-6, VEGF, IDO,
and PGE2 [11, 18, 70, 86]. This results in the induction of
inhibitory signaling pathways in DCs. One of them involves
the transcription factor STAT-3, which plays a key role in
the regulation of inflammatory processes [87]. Constitutive
STAT-3 activation in tumors (both of hematopoietic and of
epithelial origin) inhibits the production of proinflamma-
tory cytokines by infiltrating immune cells while promoting
the release of soluble factors that suppress DC function [87–
92]. Furthermore, some tumor-derived molecules (VEGF,
IL-6) enhance the expression of STAT-3 in DCs [20, 91, 92].
STAT-3 activation, although an important event in early
differentiation of DCs, is decreased in fully differentiated
mature DCs [91]. Tumor-induced maintenance of consti-
tutive STAT-3 activation in DCs eventually results in the
acquisition of the tolerogenic potential of these cells [91,
93–98]. Expectedly, the disruption of STAT-3 signaling, for
example, using dominant negative STAT-3 variants in the
mouse, leads to tumor regression or growth control in vivo
[90, 98, 99]. Similarly, the cytokine signaling inhibitor SOCS-
1 has been highlighted as an important regulator of DC
APC function [100]. The inhibition of this molecule using
specific siRNA has been reported to break tolerance to the
self-antigen Trp2 in an established B16 tumor model [100].

In addition to the mechanisms described above, tumor-
induced Treg may also participate in the inhibition of DC
maturation and thus in the generation of tolerogenic DCs.

2.2. Regulatory T Cells Critically Contribute to

Tumor-Induced Tolerance

2.2.1. Regulatory T Lymphocytes. Initially described in the
field of autoimmunity, regulatory T cells (Treg) are com-
prised of a heterogeneous population of T lymphocytes de-
fined by their capacity to suppress immune responses to self-
and foreign antigens [23, 101–105]. Treg can act as critical
checkpoints in the control of autoimmunity, infections, or
cancer [19, 23, 101, 106–110]. A wide diversity of immuno-
suppressive T cells have been identified [101]. As a member

of the growing family of immunosuppressive/regulatory T
lymphocytes [23, 101, 107], the CD4+CD25+ Treg subset has
been extensively studied over the last two decades. These
cells constitute about 10% of the circulating T-lymphocyte
population in mice and 5% in healthy humans [111]. In
addition to CD25, the α-chain of the IL-2 receptor, this
lymphocyte subpopulation also expresses multiple mark-
ers including cytotoxic T lymphocyte-associated antigen-4
(CTLA-4), glucocorticoid-induced TNF receptor (GITR),
CD62L, lymphocyte activation gene 3 (LAG 3), Toll-like re-
ceptors (TLR-4, -5, -7, -8) [112]. In human, the IL-7 receptor
(CD127) has been used to distinguish Treg from activated
T cells. CD127 expression has indeed been reported to
inversely correlate with FoxP3 expression and the suppressive
function of Treg [113, 114]. However, increased CD127
expression has also been detected on activated (ICOS-
and CD103-expressing) Treg subsets [115]. Expression of
the ectonucleotidase CD39 by FoxP3+ Treg has been reported
in mouse and human [116]. However, in contrast to mice,
in human this enzyme seems to be restricted to a sub-
set of FoxP3+ regulatory effector/memory-like T (Trem) cells
[116]. CD39 together with another ectoenzyme (CD73) is
involved in the generation of pericellular adenosine from ex-
tracellular nucleotides, resulting in the suppression of ad-
enosine A2A receptor-expressing activated T-effector cells
[117]. The forkhead/winged helix transcription factor FoxP3
appears fundamental for the development and function of
CD4+CD25+ Treg and remains the most specific molecular
marker for these cells [112, 118–121]. Treg contribute to
the prevention of autoimmune diseases by controlling the
activity of autoreactive T lymphocytes that have escaped
negative selection in the thymus [103, 105, 122]. Elimination
of Treg or genetic alteration of the FoxP3 gene results in the
development of lethal autoimmune conditions, evidencing
the essential role of these cells in the maintenance of active
dominant peripheral tolerance [111, 123–125]. Depending
on their origin, two types of CD4+CD25+FoxP3+ Treg can
be identified. Naturally occurring Treg (natural or nTreg)
that develop in the thymus and adaptive (inducible or iTreg)
are generated by the conversion of CD4+CD25− naı̈ve T
cells in the periphery [126–128]. It has been documented
that Treg survival and immunosuppressive function and Treg
production from naı̈ve T cells depend on external signals,
some of which are relayed by the TCR, CD28, TGF-β, and
IL-2 receptors and other yet to be identified molecules
[101–103, 129–132], converging towards the regulation of
specific gene expression such as FoxP3. Although most iTreg
are characterized by a CD25high phenotype, the generation
of CD25− Treg by coimmunization with highly antigenic
epitopes has also been reported [133]. In addition, the
significance of CD25 expression by Treg is subjected to
discussion, and T cells with regulatory properties have also
been detected in the CD4+CD25− subset [134–136]. The
cellular and molecular bases for the suppressive activity of
CD4+CD25+ Treg cells remain contentious [101, 119, 137–
140]. Some proposed mechanisms include the production of
inhibitory cytokines such as IL-10, TGF-β, and IL-35, a direct
cell contact involving CTLA-4 and CD80/CD86, expression
of granzymes, the depletion of IL-2 from the environment,
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the transfer of cAMP to the target cells, the release of nucleo-
sides, and other yet unidentified mechanisms [23, 138, 141–
148].

2.2.2. Role of Treg in Cancer. Multiple studies have demon-
strated that, besides their role in autoimmunity, Treg crit-
ically contribute to the immune tolerance of cancer. An
increase in the number of these cells has been detected in the
blood, lymph nodes, and spleen of tumor-bearing hosts and
correlates with poor prognosis [24, 48, 127, 149–153]. Treg
expansion observed during tumor progression may result
from the proliferation of nTreg or from the conversion of
CD4+CD25−FoxP3− T cells into CD4+CD25+FoxP3+ iTreg
[19, 126]. These two mechanisms may be complementary
and may act in concert to achieve an optimal Treg expansion
as reviewed in [102, 103, 111, 154]. In addition, it has been
documented that a variety of tumors including breast cancer,
melanoma, and lymphoma may recruit Treg to the tumor
site. This Treg recruitment may involve a CCR4-dependent
trafficking induced by CCL22 released by tumor cells and
immune cells infiltrating the tumors such as macrophages
and DCs [155]. This attraction of Treg by cancer cells and
the modulation of Treg trafficking by tumor may be an
essential element for the accumulation of Treg in the tumor
microenvironment and for the mode of action of these cells
in cancer [19, 106, 120, 127, 151, 156–159]. Treg impede
antitumoral immune responses by suppressing the function
of effectors CD4+, CD8+, and NK cells [24, 160–164] and also
by inhibiting DC activation [48, 144, 165–168] as discussed
in Section 4.

Since Treg represent a major obstacle for the elimination
of tumors by immune cells, their therapeutic depletion or
their functional inactivation using drugs or antibodies has
been shown to improve responses to cancer immunotherapy
including DC-based vaccines [150, 163, 169–171]. Different
strategies have thus been explored to deplete/inactivate
Treg in vivo [150, 163, 169–186]. However, the selective
elimination or inactivation of Treg still constitutes a major
challenge in immunotherapy since these cells share the same
surface markers as activated conventional nonsuppressive
T cells. Antibody-based approaches indistinctly target both
Treg and activated effector T lymphocytes, and in most
cases chemotherapeutic agents used to eliminate Treg do
not exert specific effects on these cells. We have shown
in the rat that cyclophosphamide administration results in
elimination of both regulatory and effector T cells but that
effector cell reconstitution occurs earlier than that of Treg
[150]. Cyclophosphamide therapy enhanced tumor-specific
vaccination [150]. At a low dose cyclophosphamide has been
shown to trigger apoptosis of mouse Tregs in vitro and in
vivo without significant changes in CD4+CD25− cell via-
bility [183, 187, 188]. However, clinical studies have also
indicated that cyclophosphamide may not significantly af-
fect Treg number and function [189]. Elimination of Treg
based on CD25 expression results in the concurrent deple-
tion of activated effector lymphocytes [154]. In addition, this
strategy may foster tumor-driven conversion of Treg from
CD4+CD25−FoxP3− T cells [154, 185].

3. Promotion of Treg Expansion and
Function by DCs

The mechanisms controlling the induction and maintenance
of Treg during tumor development are still being elucidated.
As outlined above, although critical for the development of
adaptive immune responses, DCs may also contribute to the
mechanisms of immune tolerance. These “tolerogenic” DCs
of both plasmacytoid (pDCs) or myeloid (mDCs) origin
are not only capable of anergizing effector T lymphocytes
but may also be endowed with the capacity to drive the
differentiation and/or proliferation of FoxP3+ Treg [39, 43,
46, 53, 58, 67, 190–199]. The ability of DCs to induce
immune tolerance is believed to depend on their origin,
activation state, the nature of the maturation signals and the
cytokine context at the time they encounter T lymphocytes.
Different subsets of tolerogenic DCs capable of promoting
Treg expansion and/or function have been described [53, 57,
192, 195, 199, 200]. In physiological conditions, steady-state
immature myeloid DCs constantly engulf and process self-
antigens and upon migration to the draining lymph nodes
can block self-reactive effector T cells and promote Treg
expansion [39, 40, 58], thus contributing to the prevention of
autoimmunity. In addition, semimature myeloid DCs, which
exhibit some of the characteristics of mature DCs (including
costimulatory molecule expression) but that produce signif-
icantly lower level of proinflammatory cytokines, have also
been described for their ability to drive the differentiation
of adaptive Treg [20, 39, 55, 196, 201, 202]. Importantly,
phenotypically mature DCs not only induce immunity but
may also exhibit a tolerogenic function. For instance, DCs
isolated from Peyer’s patches, lungs, or the anterior chamber
of the eye display a mature phenotype, secrete IL-10, and are
capable of inducing Treg [200]. CD40L-activated pDCs may
also be tolerogenic and support Treg expansion [43, 203].
In addition, following extensive stimulation in vitro with
maturation signals (e.g., LPS), DCs become “exhausted” and
produce IL-10 but not IL-12 and elicit nonpolarized memory
cells and/or Th2 responses [204]. Whether these “exhausted”
DCs may also induce Treg in vivo remains however to be
determined. In addition, variable results have been reported
as to whether mature or immature DCs may preferentially
lead to Treg induction [55, 200].

The mechanisms underlying DC-mediated induction of
Treg are still not entirely clear. Evidence has been provided
that IDO, a key-enzyme that catalyses the degradation of the
essential amino acid tryptophan into kynurenine, may play
an important role in this process [70, 205]. IDO-mediated
tryptophan deprivation from the T-lymphocyte environ-
ment results in the downregulation of TCR-ζ-chain and leads
to the activation of the GCN2 (general control nonrepressed
2) kinase pathway that prevents T-cell cycling and activation
[206, 207]. In addition the byproducts of the tryptophan
catabolism such as L-kynurenine, 3-hydroxykynurenie, or 3-
hydroxyanthranilic acid may be endowed with inherent sup-
pressive activity [206, 207]. IDO can be expressed by different
DC subsets in mouse and human [208]. Although CD8+ DCs
and plasmacytoid DCs were originally identified as the main
source of IDO, it has recently been shown that CD8a− IDO−
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DCs can be converted into IDO+ tolerogenic DCs [209]. IDO
expression has been identified as a possible factor involved
in DC-mediated induction of Treg [66]. In mice and human
it has been reported that IDO+ DCs are able to promote
the differentiation of iTreg from a pool of naı̈ve T cells
[206–208, 210]. Treg induction and activation by IDO+ DCs
require the GCN2 pathway and may be prevented by CTLA-4
blockade [66]. It has also been shown that the production of
TGF-β by DCs conditioned by the tumor microenvironment
also promotes iTreg generation [126]. TGF-β, together with
TCR and CD28 ligation, induces an intracellular signaling
that involves the cytosolic Smad proteins (Smad 2 and 3)
and STAT-3 and -5 activation, resulting in FoxP3 expression
[112, 118, 126, 211]. Engagement of T-cell CTLA-4 and GITR
by their ligands on DCs induces the activation of preexisting
Treg as well as their de novo generation [66, 156, 208, 210].
The engagement of programmed death receptor-1 (PD-1)
expressed by T cells with B7-H1 expressed by DCs and
macrophages results in the negative regulation of target
T lymphocytes [212]. B7-H1-expressing DCs generated in
the tumor environment exhibit reduced T-cell stimulatory
capacity and have been reported to foster Treg expansion by
conversion of naı̈ve T cells into iTreg and/or by promoting
the proliferation of nTreg [212–215].

The homing of Treg to the tumor site or to the tumor-
draining lymph nodes where they interact with their targets
is essential for their role in cancer-induced tolerance. DCs
are capable of modulating the trafficking and therefore the
recruitment of Treg to the tumor site or to the secondary
lymphoid organs [44, 155, 216]. Blood Treg have been shown
to express high CCR4 and to selectively migrate in response
to the CCR4 ligand CCL22 produced by tumor cells but also
by tumor infiltrating DCs [127, 217–221].

In summary, DCs subverted by the tumor microenviron-
ment lack effector T-cell stimulatory capacity but are en-
dowed with the ability to promote suppressive Treg. In
addition to tumor-derived factors which can directly induce
Treg proliferation and/or generation from naı̈ve T cells, DCs
that differentiate in the tumor microenvironment provide
essential signals that contribute to Treg expansion. Induction
of Treg by DCs thus appears as one essential mechanism
employed by cancers to generate immunosuppressive Treg
and thereby to escape from antitumor immune responses
(Figure 1).

4. Treg Negatively Modulate DC Maturation and
Promote the Generation of Tolerogenic DCs

These interactions between immunosuppressive/tolerogenic
DCs and Treg are not unidirectional, and Treg can “talk back”
to DCs, influencing their maturation status (Figure 1). In a
nontumor setting, the downregulation of DC costimulatory
molecule expression [144] and IL-12 secretion [167] by
Treg has been documented in the mouse. Human Treg
have also been reported to exhibit suppressive effects on
monocyte/macrophages [168] and on DCs generated from
peripheral blood monocytes [166]. An inhibition by Treg
of the maturation induced by a cocktail of TLR ligands of

human myeloid but not plasmacytoid DCs has also been
reported [222]. Other studies have indicated that Treg may
suppress DC costimulatory molecules CD80 and CD86
without affecting CD40 expression and that inhibition of
DC maturation occurs in the absence of CD40-CD40L inter-
action [198]. In tumor immunity, Treg have primarily been
described for their ability to impair the function of tumor-
specific CD4+ and CD8+ T cells [102, 106, 223]. However, it
has been reported that Treg from tumor-bearing mice may
impair the expression of DC costimulatory molecules CD80,
CD86, and CD40, suppress DC production of proinflam-
matory cytokines IL-12 and TNF-α, and inhibit their ability
to induce T-cell activation in vitro [48, 165]. A proposed
mechanism underlying tumor-induced Treg-mediated sup-
pression of DCs may involve the suppressive cytokines TGF-
β and IL-10 [48].

Treg have also been reported to induce the expression of
the immunosuppressive molecules B7-H3 and B7-H4 on
DCs [44, 224–226]. B7-H3 and B7-H4 are members of the
B7 family, but, in contrast to their activating counterparts,
they trigger inhibitory signals in T lymphocytes and thus
contribute to the immunosuppressive function of DCs and
thereby to cancer-induced tolerance [44, 212, 225]. These
modifications in the expression of DC surface markers may
depend on diverse mechanisms, and, in addition to CTLA-
4, a role for LFA-1 (lymphocyte function-associated antigen
1), LAG-3 [227], and neuropilin-1 has been proposed [227].
The engagement of the B7 molecules on DCs by CTLA-4
on Treg has been shown to upregulate IDO production in
human and murine DCs which then promote Treg [206]. In
turn, IDO-activated Treg have been shown to induce PD-
L1 upregulation on DCs [66, 207] resulting in an efficient
feedback amplification loop [66]. An additional mechanism
by which Treg may promote tolerogenic DCs involves the
induction of IL-10 production by DC [226].

Importantly, mature DCs have been shown to be refrac-
tory to Treg-mediated inhibition and seem to display a stable
phenotype when exposed to these suppressive cells [144,
222]. Mouse bone-marrow-derived DCs first activated with
the TLR4 ligand LPS and exposed to tumor-induced Treg
maintain expression of CD80, CD86, and CD40, produce
IL-12 or TNF-a, and are not impaired in their allostimu-
latory activity [48]. This resistance of mature DCs to Treg
suppression has therapeutic implications as it underlines the
importance of activating in vitro DCs used as vaccines prior
to their administration.

Thus, Treg contribute to tumor-induced tolerance by re-
straining DC maturation, proinflammatory cytokine pro-
duction, and APC function, therefore participating in the in-
duction and accumulation of tolerogenic DCs.

5. Conclusion

There is clear evidence that DCs rendered tolerogenic by the
immunosuppressive tumor microenvironment are capable
not only of inhibiting effector antitumoral T cells but also of
promoting the differentiation of iTreg from naı̈ve T lympho-
cytes or of fostering the proliferation of nTreg. Reciprocally,
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Figure 1: Bidirectional communications between Treg and tolerogenic DCs in cancer. Tumor-derived factors can promote the differentiation
of immature DCs and naı̈ve T cells into tolerogenic DCs and Treg. Tolerogenic DCs contribute to the generation of Treg by various
mechanisms. In turn, Treg participate in tumor-induced tolerance by restraining DC maturation and fostering the accumulation of
tolerogenic DCs.

cancer-induced Treg, by restraining DC maturation and by
inducing DC expression and production of immunosup-
pressive molecules, may skew their differentiation towards a
tolerogenic cell population. This positive feedback loop by
which suppressed/tolerogenic DCs may induce Treg that in
turn enhance DC immune inhibitory function may signifi-
cantly contribute to the persistence of the immune tolerance
to cancer.

These DC-Treg interactions, by enhancing tumor-in-
duced immunosuppression, represent a major barrier to suc-
cessful immunotherapy. Therefore, targeting the generation
of these two suppressive cell populations is a desirable goal
in chemo- and immunotherapeutic approaches. To achieve
this objective there is a need to further improve strategies
to simultaneously promote the full activation of DC using
selective adjuvants such as TLR ligands or cytokines and
impair Treg expansion, function, and recruitment.
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