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Since the emergence of deep neural network (DNN), it has achieved excellent
performance in various research areas. As the combination of DNN and
reinforcement learning, deep reinforcement learning (DRL) becomes a new paradigm
for solving differential game problems. In this study, we build up a reinforcement learning
environment and apply relevant DRL methods to a specific bio-inspired differential game
problem: the dog sheep game. The dog sheep game environment is set on a circle where
the dog chases down the sheep attempting to escape. According to some
presuppositions, we are able to acquire the kinematic pursuit and evasion strategy.
Next, this study implements the value-based deep Q network (DQN) model and the deep
deterministic policy gradient (DDPG) model to the dog sheep game, attempting to
endow the sheep the ability to escape successfully. To enhance the performance of the
DQN model, this study brought up the reward mechanism with a time-out strategy and
the game environment with an attenuation mechanism of the steering angle of sheep.
These modifications effectively increase the probability of escape for the sheep.
Furthermore, the DDPG model is adopted due to its continuous action space.
Results show the modifications of the DQN model effectively increase the escape
probabilities to the same level as the DDPG model. When it comes to the learning
ability under various environment difficulties, the refined DQN and the DDPG models
have bigger performance enhancement over the naive evasion model in harsh
environments than in loose environments.

Keywords: dog sheep game, deep reinforcement learning, deep Q network, deep deterministic policy gradient,
differential game

1 INTRODUCTION

Bio-inspired differential games have received much attention in recent years due to their broad
applications in surveillance (1975) (Lewin and Breakwell, 1975) and air combat (1978, 1981) (Shinar
and Gutman, 1978; Shinar, 1981). Differential games were initially proposed by Isaacs (1965). It is a
game theory which solves dynamic game problems through differential equations. In each case,
autonomous agents divided into two sides, pursuers and evaders, are against each other. This article
focuses on the dog sheep game, which is a bio-inspired differential pursuit–evasion game in a
constrained environment. The dog chases down the escaping sheep on the circle, while the sheep
manages to run away without getting caught. According to the critical game conditions, we analyze
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the kinematics of pursuit and evasion strategy. The result shows
the circle can be divided into three parts, each representing the
position set of sheep based on whether the sheep is able to escape.

Designing reasonable differential equations from a given game
scenario is the theme of differential games. Recently, deep
reinforcement learning (DRL) methods have applied DNNs to
learn agent strategies, which guide agents to interact with the
environment. Earlier DRL methods like the deep Q network
(DQN) model developed by DeepMind (2013, 2015) (Mnih et al.,
2013; Mnih et al., 2015) which combines deep learning with
Q-Learning (1992) (Watkins and Dayan, 1992) not only
surpassed human-level performance but also outperformed
many reinforcement learning methods. The deep deterministic
policy gradient (DDPG) model (2015) (Lillicrap et al., 2015) uses
off-policy data and the Bellman equation to learn the Q value, and
uses the Q-function to learn the policy. The benefit of DRL
methods is that it avoids the chaos and potential confusion of
manually designed differential equations of each game scenario.
Once the game scenario is set up, deep reinforcement learning
methods allow us to directly acquire the kinematic strategy of
agents end to end. This allows us to directly obtain the pursuit
and evasion policy in a much easier way.

This study explores the use of DRL methods for guiding
ignorant sheep to escape from the circle, rather than a
handcraft for each game scenario. Powerful as the DQN
model may seem, adjustments and refinements are still
required when implementing it in various game scenarios such
as the experience replay and the carefully designed reward
mechanism. In this study, a delicate reward mechanism is
applied to help train the DQN model. According to the cost
function in the differential pursuit–evasion game (Yong, 2014), a
time-out reward strategy is introduced to help agents obtain the
optimal policy that minimizes the cost function. Due to its
discrete action space, it is not practical to let the sheep choose
the exact steering angle in the dog sheep game with limited
computing power. Therefore, an attenuation mechanism of the
steering angle is proposed based on the kinematic theory of the
dog sheep game. This reduces the action space dimension
significantly without compromising the chance of evasion for
the sheep too much. Another way to overcome the defect of the
discrete action space is to adopt different methods. This study
adopts the powerful deep deterministic policy gradient (DDPG)
model, which is actor-critic based and model-free. When
simulating the dog sheep game, the model is trained with no
knowledge in advance. Generally speaking, we mainly focus on
two DRL methods to this end, DQN and DDPG, each with a
different rationality. Later, we make some adjustments and
refinements to improve the performance of DRL methods.

This work addresses the aforementioned research problems by
implementing DRL methods for pursuit–evasion problems.
Considering the dog sheep game is set in a constrained
environment, the first problem this study addresses is solving
the kinematic pursuit and evasion policies based on the
differential pursuit–evasion game theory. DRL has shown its
powerful performance in games, and the question is whether it
is possible to endow the sheep the ability to escape. Therefore, the
second problem is to set up a reinforcement learning

environment and implement appropriate DRL methods to this
particular differential game. However, some DRL methods may
need adjustments when being applied to various scenarios.
Hence, the third problem is to optimize the performance of
DRL methods with the idea from the differential games
theory. We summarize the contributions of this work as follows:

• For the first problem, by finding the equilibrium point in the
dog sheep game, this study successfully establishes the
kinematic pursuit and evasion policies.

• For the second problem, a delicate reward mechanism is
introduced according to related theories of differential
pursuit–evasion games.

• For the third problem, due to the defect of DQN whose the
action space is discrete, an attenuation mechanism of the
steering angle is proposed.

• By quantifying the environment difficulty, this study
evaluates the performance and learning ability of our
refined DQN model and DDPG model and other
baseline models.

The rest of the article is organized as follows. In Section 3, the
mathematical form of differential pursuit–evasion game theory is
introduced. The kinematic pursuit and evasion strategy is solved
in Section 4, while the implementation of DRL methods for
evasion policy learning is elaborated in Section 5.

2 RELATED WORK

Researchers have studied the implementations of DRL methods
for differential pursuit–evasion games and improved them in
many aspects. Isaacs (1965) first proposed the theory of
differential games. In his book, Isaacs proposed a classic
“homicidal chauffeur” problem which is a classic differential
pursuit–evasion game. In this game, a slow but maneuverable
pedestrian is against a driver with a faster but less maneuverable
vehicle, attempting to run over the pedestrian. Merz (1971)
presented the complete solution for the “homicidal chauffeur”
game. Another classic game scenario is the game in constrained
environments. For example, agents in Sundaram et al.’s (2017)
study are constrained to road networks. The control policies of
our research are based on the kinematic pursuit and evasion game
theory. Apart from differential games, kinematic analysis is
applied to various research areas, such as robotic control
(2021) (Liu et al., 2021a; Liu et al., 2021b; Xiao et al., 2021;
Zhao et al., 2022).

Deep neural networks have shown their advantages over
traditional methods in multiple research areas. For example,
they have been adopted in semantic analysis (2021) (Chen
et al., 2021a; Chen et al., 2021b; Jiang et al., 2021b; Chen
et al., 2021c) and image recognitions (2021) (Hao et al., 2021;
Jiang et al., 2021a; Yang et al., 2021). The DRL method, which
combines DNNs and reinforcement learning, was first proposed
by DeepMind (2013, 2015) (Mnih et al., 2013; Mnih et al., 2015).
Their method called DQN is the combination of Q-learning and
deep neural network. It shows excellent performance in the Atari
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game. The emergence of the DQN leads to a number of similar
research studies based on DRL methods. Shao et al. (2019)
surveyed the application of DRL methods in video games.
Value-based, policy gradient, and model-based DRL methods
are applied to various video games such as Atari, Minecraft, and
StarCraft. For example, Wei et al. (2018) employed convolutional
neural networks trained with refined DQN to play the snake
game. DRL has been a long-standing research area when it comes
to artificial intelligence in differential games. Jiang et al. (2020)
introduced an approximate soft policy iteration-based
reinforcement learning method which used a value neural
network to provide cooperative policy for two pursuers versus
an evader. Lin (1992) proved that the experience replay helps the
network train faster and smoother.

To overcome the defect of the discrete action space,
researchers hypothesized several methods with a continuous
action space. The actor-critic (A3C) method is utilized in
many related research studies. For example, Perot et al. (2017)
adopted the A3C with CNN + LSTM as the state encoder to play
racing games. Lixin Wang et al. (2019) used a fuzzy deterministic
policy gradient algorithm to obtain the specific physical meaning
for policy learning in a pursuit–evasion game. Lillicrap et al.
(2015) first introduced the DDPG methods with the continuous
action space. Maolin Wang et al. (2019) implemented the DDPG
model to an open pursuit–evasion environment to learn the
control strategy. Several researchers (Lowe et al., 2020; Singh
et al., 2020; Wan et al., 2021) proposed an actor-critic multi-agent
DDPG algorithm to preprocess actions of multiple agents in the
virtual environment.

3 PRELIMINARY

This article focuses on the dog sheep game, in which the dog is the
pursuer and the sheep is the evader. The game takes place in a
circle. The dog is only allowed to pursue inside the circle, while
the sheep is randomly born inside the circle. The distance
between the sheep and the center of the circle is non-
decreasing; otherwise, it would cause confusion when solving
the kinematic evasion strategy. The objective of the sheep is to
obtain an evasion strategy that maximizes its chance of escaping,
while the objective of the dog is exactly the opposite.

The dog sheep game perfectly fits the differential game
theory (1992) (Lin, 1992). In a differential pursuit–evasion
game, the pursuer and the escaper have their own strategy and
target. The following x, X() each refers to the state and the
state trajectory; α1, A1, u2, U2 each represents the strategy
used and the strategy set for the pursuer and the escaper;
and t and T (x, α1) are the game time and the capturing time
of a game, respectively.

{ _X(t) � f(X(t), α1[u2](t), u2(t)) t ∈ [0,∞)
X(0) � x x ∈ Rn . (1)

For the pursuer, let M be a moving target set. For any
(t, x) ∈ R+ × Rn, the objective is to find an α1 ∈ A1 such that
for any u2 ∈ U2,

X(t;x, α1(u2), u2) ∈ M(t) t ∈ [0, T (x, α1)] . (2)
In an actual pursuit game situation, the pursuer expects the

expression to be true. The game can be defined in five different
levels: capturable, locally capturable, globally capturable, small
time locally capturable (STLC), and small time globally
capturable (STGC). We define

⎧⎪⎨⎪⎩ P(t;M) � {x ∈ Rn|∃α1 ∈ A1, T(x, α1)≤ t},
P(M) � P(∞ ;M),
M ⊆ P(M).

(3)

Then the capturability can be described as follows (Yong,
1986):

⎧⎪⎪⎪⎨⎪⎪⎪⎩
locally capturable5∃O(M) ⊆ P(ε;M),
globally capturable5Rn ⊆ P(M),
STLC5∀ε> 0, ∃O ⊆ P(ε,M),
STGC5∀ε> 0, Rn ⊆ P(ε;M).

(4)

For any x ∈ Rn, a1 ∈ A1, and u2 ∈ U2, the minimum
terminating time T(x) can be defined as follows:

{T(x; α1[u2], u2) � inf {t≥ 0| d(X(t;x, α1[u2], u2),M) � 0,
T (x) � inf α1∈A1 supu2∈U2

T(x; α1[u2], u2).
(5)

Then, we introduce the cost function J(x; α1[u2], u2):

J(x; α1[u2], u2) � ∫T(x;α1[u2],u2)

0
e−sds � 1 − e−T(x;α1[u2],u2) (6)

The projective of the pursuer in the different pursuit games is
to minimize the terminating time and the cost function when the
game is capturable.

Symmetrically, the problem for the evader can be proposed in
the following way:

{ _X(t) � f(X(t), u1(t), α2[u1](t)) t ∈ [0,∞),
X(0) � x x ∈ Rn.

(7)

ConsideringM as the terminating set and Rn∖M as the survival
set. For any x ∈ Rn∖M and any u1 ∈ U1, find an α2 ∈ A2 that
makes the following expression true:

X(t;x, u1, α2[u1]) ∉ M t ∈ [0,∞) (8)
Correspondingly, the ability to evade (Lin, 1992) can be

summarized as evadable and uniformly evadable. If a game is
considered to be evadable from M, for any u1 ∈ U1 and
x ∈ Rn∖M, there exists an α2 ∈ A2. For those games to be
uniformly evadable from M, there exists a δ > 0 and an
α2 ∈ A2, the following expression holds:

d(X(t;x, u1, α2[u1]),M)≥ δ, ∀t≥ 0, u1 ∈ U1 . (9)
In the evasion circumstances, the minimum

terminating time and the cost function have similar
definition to those in pursuit games. The purpose of the
evader is to find out an α2 in the evadable game with less
terminating time and cost.
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T(x; u1, α2[u1]) � inf {t> 0X(t;x, u1, α2[u1]) ∈ M},
J(x; u1, α2[u1]) � ∫T(x;u1 ,α2[u1])

0
e−sds � 1 − e−T(x;u1 ,α2[u1]).

(10)

The idea of the cost function is to minimize the cost of the
evader, provided it can escape successfully. Later in this article, a
reward mechanism shares the similar philosophy with the cost
function here.

4 MODELING AND KINEMATIC ANALYSIS
OF DOG SHEEP GAME

4.1 Kinematic Analysis of Dog Pursuit Game
In the dog sheep game, the game environment is set to be a circle
of radius R in which the dog runs at a constant speed of Vd. The
sheep also runs at a constant speed of vs, while its original
position is set to be randomly distributed inside the circle. For
convenience, given the dog and the sheep coordinates of (Rd, θd)
and (rs, θs), (Rd � R, rs ∈ [0, R), θd, θs ∈ [0, 2π)). In case if the
sheep aborts its attempt to escape, the distance between the sheep
and the center of the circle rs is constrained to be monotonically
non-decreasing. It is assumed that the dog and the sheep both
have the ability to adjust their heading directions without losing
any speed. The game terminates as soon as the sheep gets caught
or successfully escapes.

Under the aforementioned conditions, this section
concentrates on the optimal pursuit strategy for the dog
that maximizes its chance of successful pursuit and the
kinematic evasion policy for the sheep, provided the dog
adopts the optimal tactics. When the sheep escapes from
the circle, the quickest way is to run outward along the
radius where it is located. Hence, the ideal situation for the
dog is to arrive at the intersection of the certain radius and the

circle (R, θs) sooner than the sheep does, supposing that the
sheep does not adjust its heading direction, which is not often
the case. Therefore, the heading direction of the dog may
change dynamically, but it is always the one that reduces the
inferior angle Δθ formed by the radii where the dog and the
sheep are located. Thus, the pursuit policy α1 for the dog can
be summarized as follows:

θs − θd ∈ (−2π,−π] ∪ (0, π] The dog runs clockwise,
θs − θd ∈ (−π, 0) ∪ (π, 2π) The dog runs anticlockwise,

otherwise Staywhere it is.

⎧⎪⎨⎪⎩
(11)

From the perspective of differential games, the dog’s kinematic
pursuit strategy α1 simply depends on the relative position of the
sheep and the dog. Figure 1 portrays the pursuit strategy for
the dog.

Considering the influence of the relative position of the sheep
on the pursuit strategy, the capturability of the game needs to be
discussed based on different origin positions of sheep. This
inferior angle Δθ is determined by the angular velocity of the
dog and the sheep, each being represented as ωd and ωs,
respectively. The closer the sheep is to the circle, the slower
will be its angular velocity ωs. Correspondingly, ωs may go to
infinity as long as the sheep is close enough to the center of the
circle (rs → 0). Thus, there exists an r0 that meets the condition
ωs � ωd if rs � r0. The set M0 � {(rs, θs) | 0≤ rs < r0}, which is
the green part in Figure 2, and the sheep located in it is capable to
run at a larger angular velocity. This means the sheep has
the ability to adjust Δθ as it wishes. Supposing the sheep has
infinite physical power, it could run to the place with the greatest
chance of escaping and then start running outward. So, when the
sheep is born inside the circle of radius r0, the game is capturable

FIGURE 1 | Diagram of the dog’s pursuit strategy.

FIGURE 2 | Sheep divided into three parts based on its relative position.
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when the sheep has no way of escaping if the following expression
holds:

R − r0
vs

≥
πR

Vd
. (12)

This means the sheep could not escape even at the place with
the greatest chance of escaping {(rs, θs) | |θs − θd| � π}.

Running inside the ring defined as Mr formed by the outside
circle and the circle of radius r0, the sheep’s angular velocity ωs is
smaller than ωd. Considering the condition in which sheep is
born inside this ring, there exists a set where any sheep located in
it has no chance of escaping as long as the dog adopts the optimal
pursuit strategy. We define this set as M1 and it can be
represented as follows:

M1 � {(rs, θs)r0 ≤ rs <R, |θs − θd|≤ (Rd − rs)Vd

vsRd
} . (13)

The game is capturable to the pursuer when sheep is located in
M1, which is the red part in Figure 2. For the sheep located in
Mr\M1, which is the blue part in Figure 2, there exist some
strategies that make it impossible for the dog to chase it down.

Figure 2 portrays the sheep in different parts of the circle to
help better analyze the capturability of the game.

4.2 Kinematic Modeling of Sheep Evasion
Game
In this part of the article, we focus on the kinematic evasionmodel
of sheep in the dog sheep game under the circumstances that the
dog adopts the optimal strategies to chase down the sheep. As
discussed earlier, kinematic analyses for the sheep located in
M0,M1, andMr\M1 should be separately conducted.

4.2.1 Sheep Located in M0

For the sheep whose initial states x are in M0, its kinematic
evasion models can be uniformly discussed, since its relatively
larger angular velocity endows it the ability to adjust Δθ and rs.
This simplifies the analysis of game’s ability to evade and sheep’s
evasion strategy from M0 to those from {(rs, θs) | rs � r0}. As
discussed before, the game is evadable if the following expression
holds:

R − r0
vs

< πR

Vd
. (14)

Assuming the game is evadable fromM0, the strategy for sheep
is to utilize its advantage to the dog in angular velocity to change
the angle Δθ until the following evasion condition is satisfied:

R − rs
vs

< |θs − θd|R
Vd

rs ∈ [0, r0] . (15)

Once the aforementioned expression holds, the evasion
strategy for the sheep is to run straight outward.

4.2.2 Sheep Located in M1

Next, we focus on the sheep born inside M1. Theoretically
speaking, it has no chance of escaping, provided the dog

makes no mistake, that is, for any α2 ∈ A2, x ∈ M1, there
exists an u1 ∈ U1, and M1 ∩ (Rn\M) � ∅ holds. This means
the game is not evadable from M1.

4.2.3 Sheep Located in Mr\M1

The only one scenario remains is when the sheep is born inside
Mr\M1. In this scenario, the sheep has the opportunity to escape
successfully in many different ways, among which running
outward along the radius where it is located is the quickest. In
the meantime, the intersection of the circle and the certain radius
E0(R, θE0) is defined. There exists an open neighborhood
(θE−

0
, θE+

0
) of θE0 such that for the sheep running straight

toward the point inside this neighborhood, the dog would not
be able to hunt it down. Define E−

0(R, θE−
0
), E+

0(R, θE+
0
), and the

distance between the sheep and E−
0 , E+

0 as dsE−
0
, dsE+

0
for

convenience. Specific details are shown in Figure 3.
We are able to solve dsE− and dsE+ first and then

θE0− and θE0+ :

⎧⎪⎨⎪⎩ dsE−
0
�

																																		
r2s sin

2(θs − θE−
0
) + (R − rs cos(θs − θE−

0
))2√

dsE+
0
�

																																		
r2s sin

2(θs − θE+
0
) + (R − rs cos(θs − θE+

0
))2√ . (16)

By definition, if the sheep runs straight toward E−
0 and E+

0 , the
dog would catch it just in time. Therefore, we have

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
dsE−

0

vs
�
∣∣∣∣∣θd − θE−

0

∣∣∣∣∣R
Vd

dsE+
0

vs
�
∣∣∣∣∣θd − θE+

0

∣∣∣∣∣R
Vd

0

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
dsE−

0
�
∣∣∣∣∣θd − θE−

0

∣∣∣∣∣vsR
Vd

dsE+
0
�
∣∣∣∣∣θd − θE+

0

∣∣∣∣∣vsR
Vd

. (17)

So, the polar coordinates of E−
0 and E

+
0 can be solved as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
θE−

0
� θd − sgn(sin(θs − θd)) ·

Vd

																																		
r2s sin

2(θs − θE−
0
) + (R − rs cos(θs − θE−

0
))2√

vsR

θE+
0
� θd + sgn(sin(θs − θd)) ·

Vd

																																		
r2s sin

2(θs − θE+
0
) + (R − rs cos(θs − θE+

0
))2√

vsR

.

(18)

For the sheep whose initial position is Mr\M1, if it does not
run straight to the inferior arc formed by E−

0 and E+
0 , the evasion

time is limited to the open interval (R−rsvs
, min(dsE−0vs

,
dsE+

0
vs
)) or it

would miss the chance of escaping.

5 IMPLEMENTATION OF DEEP
REINFORCEMENT LEARNING METHODS
FOR DOG SHEEP GAME
5.1 Technical Foundation of Deep
Reinforcement Learning Methods
Deep reinforcement learning (DRL) has shown its advantages in
various games over the past few years, especially since DeepMind
creatively introduced DQN (2013) (Jiang et al., 2021a), which
combines reinforcement learning and deep learning. Recently,
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many similar research studies on implementations of DRL for
different game scenarios emerged.

DQN was initially presented by DeepMind (2013) (Jiang et al.,
2021a) to play the Atari video game, and it successfully learned
the control policy and remarkably outperformed human-level
performance. Excellent as DQN may seem, adjustments are still
required when it is applied to other game scenarios such as the
design of reward systems and the adoption of replay buffers
(2018) (Wei et al., 2018).

As a value-based method, it evaluates each possible action at
certain stages in the game based on the Q-value. When an agent is
at state st and takes an action at, Q(st, at) is used to estimate the
value at this certain time step t. Then it chooses the suitable action
based on the action select strategy. After the execution of action a
at state s, the reward is rt, and the game goes to the next state st+1.
In order to enable the neural network to learn from experiences,
the experience replay is introduced. A four-tuple (st, at, rt, st+1) is
stored in the experience replay buffer, and the network would
sample and learn from it.

5.2 Implementation of Deep Q Network for
Dog Sheep Game
In this subsection, we propose DQN to the dog sheep game.
Technical details and model optimizations will be elaborated
as well.

5.2.1 Environment Settings
Environment settings are of great significance since the
environment is the one the agent interacts with. To simulate
the dog sheep game, our game environment consists of basic
parameters, initializations, and environment updates.

5.2.1.1 Basic Parameters and Initializations
In the dog sheep game environment, the radius of the circle R is
set to be 200. Since determining whether the game terminates
requires judging whether they have physical contact or not, it
would be inappropriate to consider both sides as particles. Apart
from the sizes of both agents, their running speed should be
specified as well. For relatively bigger sizes or a smaller dog sheep
speed ratio, the difficulty for sheep to evade increases
considerably. Hence, proper sizes and speed should be
initialized to prevent the environment from being partial to
one side in the pursuit–evasion game. After a number of
experiments and simulations, we set the size of both agents as
10 and the dog speed Vd � 16 to make sure each episode ends at
around 11 steps. The speed of the sheep is determined by the
speed ratio η � Vd

vs
, which is a key parameter to evaluate the

environment difficulty. The exact value of η will be given later.

5.2.1.2 Environment Updates
As the simulation proceeds, whether the game is terminated
should be checked every time the game enters a new time step.
Then the sheep and the dog could take actions resulting in the
changes of their positions if the game is not finished. Their next
positions can be deduced using their current positions and their
heading directions.

As it is discussed previously, the dog’s heading direction is
decided by its capture strategy, while the sheep’s heading direction
is something to be learned in the DRL model. For DQN, the action
space is discrete. If we allow the sheep to adjust its deflection angle
in degree, this means there would be 181 different possible actions
at each time step. This will lead to the exponential growth of the
requirement for computational power. Therefore, we adjust the
action space and set it to be two dimensional and come up with an
attenuation mechanism of the deflection angle. The sheep in the
game is only left with the choice to turn left or right, while the
steering angle θsa ∈ [−π

2,
π
2] is determined by a function set in

advance. Given the fact that ωs decreases as rs grows and equals to
ωd when rs � r0, it may be quite costly if the sheep chose to make a
90° turn when it is close to the circle of the radius R. For the sheep
inside or on the circle of radius r0, the value of θsa has no negative
influence on their chances of escaping. However, due to the fact
that ωs is at a disadvantage when rs ∈ (r0, R), the sheep should
make its escape as soon as possible, which means θsa should be
relatively small. As discussed previously, we introduce the steering
angle function as follows:

θsa � π

2
· (1 − rs

R
)

Distance discount

· |cos(0.5(θs − θd))|
Angle discount

. (19)

The attenuation mechanism of the deflection angle consists of
a distance discount and an angle discount. As the sheep runs
outward, its maximum steering angle is restricted by the distance
discount. This prevents the sheep from making sharp turns at
unsuitable locations. However, it would be unnecessary for the
sheep that already is an ideal initial position to turn its heading
direction. So the angle discount is introduced to prevent that from
happening. When the sheep is at an ideal position where |θs − θd|

FIGURE 3 | Diagram of evasion strategy for sheep located in Mr\M1.
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like π, the angle discount is 0. This means the sheep does not have
to change its heading direction at all. The angle discount is 1 when
|θs − θd| is 0 or 2π, resulting in a relatively large steering angle.

5.2.2 Reward Mechanism
Agents in reinforcement learning models interact with
environments, striving for high rewards. Therefore, a carefully
designed reward mechanism is required when DQN is applied to
a new scenario. A poorly designed one may lead to ineffectiveness
and incapacity to learn the optimal strategy. The dog sheep game
is also a zero-sum game, thus escaping successfully is of utmost
significance to the sheep. Whenever the sheep escapes
successfully, the terminate reward of 10 is given. On the

contrary, once the sheep gets caught, the reward would be
−10. This basic reward mechanism encourages the sheep to
find a way to escape from the circle without being captured
and win the pursuit–evasion game.

In the evasion game theory, the cost function is
J(x; u1, α2[u1]) � ∫T(x;u1 ,α2[u1])

0
e−sds. As time passes by, the

cost increases correspondingly. Apart from the terminate
reward, another reward should be given in each step to help
minimize the evasion cost. Therefore, we have come up with a
time-out reward strategy. If the sheep stays in the circle for too
long, it will be given a negative reward. This reward should take
the different origin locations into consideration. The sheep that is
close to the circle needs less time for evasion than the sheep

FIGURE 4 | Flowchart of DQN training.

FIGURE 5 | Flowchart of DDPG training.
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located around the center of the circle. So the time-out reward
strategy is designed based on the origin location and the current
time step.

Rto �
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ρlog vs
Vd
(t − R − rs

vs
) t − R − rs

vs
> 1,

0 else.

(20)

When the time is still within R−rs
vs
, which is the minimum

evasion time for the sheep, there will be no reward given. Once
the time exceeds the minimum evasion time, the negative reward
is given and will increase as time passes by. Adding up this
negative reward effectively prevents the sheep from lingering in
the circle.

5.2.3 Model Architecture
DQN has shown its capability to train the agent to play video
games. It trains the agent to learn through the Q value throughout
the training episode. Its structure is displayed in Figure 4.

To observe the game state, an MLP works as the state encoder.
At each time step, based on the current game state st observed, the
neural network, whose parameters are randomly initialized, is
able to calculate the Q value of every possible action and therefore
come out of the best action with the highest potential rewards.
Among all the actions, the agent chooses one of them based on
the ε-greedy strategy. This means the agent would go for the
action with the highest Q value at the possibility of 1 − ε, while
one of the remaining actions is chosen randomly and is executed
at the possibility of ε. Introducing the ε-greedy strategy helps the
agent learn from those actions that seem less attractive but may
lead to higher rewards in the long run. This is of immense help at
the threshold of each training episode. The pseudo code of DQN
is shown in Algorithm 1.

Algorithm 1. Deep Q-learning Network.

Once the action at is selected, the reward rt is given and the
next game state st+1 is observed. A four-tuple (st, at, rt, st+1) is
stored in the experience replay buffer. The optimizer takes a
random sample from the replay buffer and utilizes it to update
the parameters of the online Q network. This endows the agent
the ability to learn from the valuable experience and helps
optimize the learning process. Every several steps, the
parameters of target Q network get a soft update from the
online Q network.

5.3 Implementation of Deep Deterministic
Policy Gradient for Dog Sheep Game
Compared with DQN, the action space of agents in DDPG
is continuous. As discussed before, although the steering
angle is carefully considered and designed with a
distance discount and an angle discount, the action space is
discrete after all. The discrete action space with only 2
choices is just a compromise to insufficient computational
power. It is always better to have a continuous action
space.

DDPG has an actor-critic architecture, where the actor
network optimizes its policy and the critic network estimates
the Q-value for current policy. The training process is displayed
in Figure 5. The online Q network estimates the Q-value based
on the sampled four-tuple (st, at, rt, st+1). Like DQN, the
experience replay and the reward mechanism work similarly
in DDPG.

While the Q network updates its parameters, the online
policy network, which is an MLP, updates its parameters at the
same time. Every couple of steps, the parameters of both target
Q and policy networks each gets a soft update from the online
Q and policy networks. The details of DDPG are summarized
in the Algorithm 2.

Algorithm 2. Deep Deterministic Policy Gradient (DDPG).
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5.4 Learning Ability Evaluation
The implementation of the aforementioned methods is
done when the speed ratio is 2 and the size of both agents
is 10. This section focuses on the learning abilities of
DRL methods under different environment difficulties.
Among all the parameters, we choose the escape
probability of baseline model and the escape rate
improvement to quantify the environment difficulty and
the learning ability. In this scenario, the size is 10 and
the dog speed Vd is 16. Sheep speed vs fluctuates
according to the speed ratio η. If the game is evadable, the
speed ratio η has

πR

Vd
> R − r0

vs
, (21)

R

Vd
� r0
vs
, (22)

η � Vd

vs
< π + 1 . (23)

This article only focuses on the performance of DRL methods
while speed ratio is η ∈ (1, π + 1). Each speed ratio η corresponds
to an escape probability. A baseline model is introduced to help
quantify the environment difficulty. The sheep in this baseline
model has no evasion policy and runs straight outward regardless
of the condition. After implementing the DRL methods under
various environment difficulties, the escape rate improvement is
utilized to evaluate their learning ability.

6 DEEP REINFORCEMENT LEARNING
TRAINING RESULTS

When implementing the DQN model, an MLP of three layers
with game states as input is adopted to evaluate the Q value of
each action. ε in the ε-greedy strategy decays linearly from 0.9
to 0.01, which allows the agent to attempt various actions when
it is relatively ignorant and gradually prefers the action with
the highest potential reward. The experiencing replay buffer is

FIGURE 6 | Average escape rate in 50 episodes.

FIGURE 7 | Trajectories of sheep. (A) From left to right, each represents the trajectory of sheep from the baseline models 1 and 2 and the DRL model. (B) Blue
curves are the trajectories of sheep, while the red ones are those of dogs.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org March 2022 | Volume 10 | Article 8274089

Xu et al. Pursuit and Evasion Strategy on DRL

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


set to be 10,000. The discount factor in Algorithm 1 is set to
be 0.95.

In our experiment, we introduce several baseline models whose
key characteristics are displayed in the followingTable 1. The DQN-
T, DDPG-T, and DQN-A model are tested to evaluate the
effectiveness of the time-out reward strategy and the attenuation
mechanism.

For the DQN models and the DDPG models, the number of
training episodes is set to be 1,500 and that of simulation episodes

is 500. The dog speed is 16, and the sheep speed is 8. Experiments
show that the DDPG and DQN models both outperform the
baseline models. Compared to the two baseline models, all DRL
methods improve the escape rate by a large margin of about 50%.
The escape rate of each model in 50 rounds of simulation with
various random speed is plotted in Figure 6.

It can be seen that the sheep trained by the refined DQNmodel
has a greater chance of escaping than the DQN-T and DQN-A
models. The DDPGmodel also achieves a higher escape rate than
the DDPG-T model. This indicates the effectiveness of the time-
out reward strategy. It is illustrated that the modifications and
adjustments effectively increase the success rate of evasion and
the performance of the DQN model. To better illustrate the
differences in the DRL methods and the baseline models, the
trajectories of sheep during their evasion process are shown in
Figure 7. From left to right, each represents the trajectory of
sheep from the baseline models 1 and 2 and the DRL model.

In addition, the performance difference between the refined
DQN model and the DDPG model is quite narrow. Yet generally
speaking, the refined DQN model outperforms the DDPG model
by a small margin.

To better evaluate the performance of the aforementioned
models, the average reward in 50 rounds of simulation is
displayed in Table 2. Unsurprisingly, the average reward of
each model corresponds to the average escape rate. Compared
to the time-out reward strategy, the attenuationmechanism of the
deflection angle causes greater enhancement for the DQN and
DDPG models. This attenuation mechanism helps the DQN
model achieve even better performance than the DDPG model.

Furthermore, we manage to evaluate the learning abilities of
the aforementioned DRL methods. For speed ratio η taken at
the interval of 0.5 from 1.5 to 4, the average improvement of
escape probabilities in 50 rounds of simulation is shown in
Figure 8.

TABLE 1 | Models adopted in our experiments.

Type Model Characteristic

Models with discrete
action space

DQN-T DQN model without the time-out reward
strategy

DQN-A DQN model without the attenuation
mechanism of the deflection angle

Refined
DQN

Refined deep Q network model

Baseline 1 Sheep run straight outwards
Models with continuous
action space

DDPG Deep deterministic policy gradient
DDPG-T DDPG model without the time-out reward

strategy
Baseline 2 Sheep take random deflection angle

TABLE 2 | Average reward of different models.

Model Average reward

Refined DQN 7.3601
DDPG 7.2507
DQN-T 6.6804
DQN-A 5.7600
DDPG-T 6.8300
Baseline 1 1.8237
Baseline 2 2.9427

FIGURE 8 | Escape rate improvement of DRL methods over the baseline model.
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As the speed ratio increases, the game environment difficulty
increases. Correspondingly, the average improvement of escape
probability increases. The DRL models have stronger learning
ability in harsh game environments.

7 DISCUSSION

In this article, we first introduce a bio-inspired differential
pursuit–evasion game: the dog sheep game. Our research
explores the implementation of DRL methods for training the
ignorant sheep to escape. Compared to other methods applied to
differential pursuit–evasion games, DRL methods adopted are
model-free and require less optimization.

Based on the traditional differential pursuit–evasion game
theory, we come up with the kinematic model for the dog and
the sheep. The dog’s strategy can be summarized as reducing the
inferior angle formed by the radii where the dog and the sheep are
located. The sheep’s strategy, which depends on its original
location, is a bit more complicated. For a sheep that is
theoretically evadable, it should run straight outward once the
critical evasion conditions are satisfied.

Subsequently, we manage to adopt deep reinforcement
learning methods to learn evasion strategy. In terms of the
game environment settings, an attenuation mechanism of the
deflection angle is applied due to the discrete action space of the
DQN model. According to the idea of the cost function in
differential evasion games, a time-out strategy is added to the
reward mechanism. The aforementioned modifications show
great improvement compared to the original DQN model and
the baseline model. We also adopt the DDPG model, which
allows the action space to be continuous. It has excellent
performance as well. The refined DQN model outperforms the
DDPGmodel by a small margin. The learning abilities of the DRL
methods under different environment difficulties are assessed
based on the improvement of the escape probabilities to the
baseline model. Simulations indicate that they both have excellent
learning ability in harsh environments.

This research shows that DRL methods are of great significance
to differential pursuit–evasion games. Implementing these

methods requires no manually designed features and less
optimization for different game scenarios. The limitation of this
research is the dog sheep game itself. This particular differential
pursuit–evasion game scenario is simple. The DRL methods
adopted by us are able to cope with more complex game
scenarios, and we are looking forward to applying them to
other games in the future.
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