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Abstract: The pandemic of new coronary pneumonia caused by the COVID-19 virus continues to
ravage the world. Large-scale population testing is the key to controlling infection and related
mortality worldwide. Lateral flow immunochromatographic assay (LFIA) is fast, inexpensive, simple
to operate, and easy to carry, very suitable for detection sites. This study developed a COVID-19
N protein detect strip based on p-toluenesulfonyl modified rare earth fluorescent microspheres.
The p-toluenesulfonyl-activated nanomaterials provide reactive sulfonyl esters to covalently attach
antibodies or other ligands containing primary amino or sulfhydryl groups to the nanomaterial
surface. Antibodies are immobilized on these nanomaterials through the Fc region, which ensures
optimal orientation of the antibody, thereby increasing the capture rate of the target analyte. The use
of buffers with high ionic strength can promote hydrophobic binding; in addition, higher pH could
promote the reactivity of the tosyl group. The detection limit of the prepared COVID-19 N protein
strips can reach 0.01 ng/mL, so it has great application potential in large-scale population screening.

Keywords: COVID-19 N protein; p-toluenesulfonyl; fluorescent microspheres; lateral flow
immunochromatographic assay

1. Introduction

According to WHO data, the cumulative number of confirmed COVID-19 cases re-
ported globally was over 231 million, and the cumulative number of deaths was more
than 4.7 million until 28 September, 2021 [1]. Although governments have designated a
variety of measures to curb the spread of COVID-19, many countries have encountered
severe challenges as the epidemic spreads. More and more countries are experiencing an
uncontrollable COVID-19 epidemic, and they desperately need more medical equipment
and more extensive testing capabilities. The main symptoms of COVID-19 are respiratory
infection-like syndromes: fatigue, dry cough, upper respiratory tract congestion, runny
nose, sore throat, myalgia, headache and fever, and diarrhea may occur in a small num-
ber of patients. In addition, some patients may have difficulty breathing, while severe
COVID-19 patients may rapidly develop acute respiratory distress syndrome, coagulation
dysfunction, and septic shock [2].

The pandemic of new coronary pneumonia caused by the SARS-CoV-2 virus contin-
ues to ravage the world. Large-scale population testing is needed around the world to
successfully control infection and related mortality, which is key to the resumption of all
types of products and activities. In this unprecedented medical crisis, to prevent the further
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expansion of the disease, large-scale and effective detection is particularly important. As a
result, the detection technology of COVID-19 has proliferated, and researchers around the
world provided more than 200 diagnostic testing methods by 2020 [3]. These innovations
have promoted breakthroughs in COVID-19 detection in terms of sensitivity, throughput,
and detection time. The current diagnostic tests for COVID-19 are mainly divided into two
categories [4]: the detection of viral genetic material (RNA) and the antibodies produced
by the human body against viral infections.

Most diagnostic tests for viral RNA are based on reverse transcription-polymerase
chain reaction (RT-PCR), a technique considered the gold standard for viral RNA detec-
tion [5–7]. RT-PCR technology is highly sensitive and can amplify minimal amounts of
viral RNA, but it also has some disadvantages, such as multiple temperature changes and
long detection time. Researchers are seeking answers in other accounting amplification
methods to address these issues. For example, transcription-mediated amplification (TMA)
allows the entire amplification reaction to be carried out in a single reaction tube at a
constant temperature [8]. In addition, CRISPR technology has also been used to detect the
SARS-CoV-2 RNA. This method also uses isothermal amplification and may be used for
rapid screening at detection sites [9–11].

Antibody testing uses blood or plasma as a sample to determine the presence of
anti-coronavirus antibodies [12,13]. These antibodies are usually immunoglobulin M
(IgM) or/and immunoglobulin G (IgG). Specific antibody detection includes enzyme-
linked immunosorbent assay (ELISA), lateral flow immunochromatographic assay (LFIA),
neutralization test, and specific chemical sensors. ELISA is highly efficient and can test
multiple samples with high throughput, but its sensitivity varies, and it is not suitable for
detection sites. By contrast, LFIA detection is fast, cheap, simple to operate, easy to carry,
and very suitable for detection sites.

In LFIA technology, it is necessary to couple color probes (nanomaterials) with
biomolecules, and the chemical coupling technology is quite classic and perfect [14,15].
For example, in the most classic and widely used amide reaction, the amino group on
the surface of the antibody and the carboxyl group on the surface of the probe material
are biologically coupled under the action of activators and protectors. When nanoma-
terials and biomolecules are coupled, the distribution and direction of biomolecules on
nanomaterials are random, which reduces the coupling efficiency between nanomaterials
and biomolecules and the activity of biomolecules. In organic chemistry, tosyl is a good
leaving group in the nucleophilic substitution (SN2) reaction, and tosylate can also react
with other nucleophiles [16]. Tosyl-activated nanomaterials provide reactive sulfonyl esters,
and antibodies or other ligands containing primary amino groups or sulfhydryl groups are
covalently attached to the surface of the nanomaterials [17]. The antibodies are immobilized
on these nanomaterials through the Fc region to ensure the best orientation of the antibodies
while increasing the capture rate of target analytes.

In this article, we prepared p-toluenesulfonyl modified fluorescent PS microspheres
with rare earth fluorescent complexes and used them for the detection of antibodies to the
N protein of COVID-19. The COVID-19 fluorescent immunoassay test strips we prepared
have high sensitivity and specificity and can be quickly screened for COVID-19, making
them ideal for on-site use.

2. Materials and Methods
2.1. Materials

Europium (III) chloride hexahydrate (EuCl3·6H2O), 2-thenoyltrifluoroacetone (TTA),
1,10-phenanthroline (Phen), N,N-dimethylformamide (DMF), succinic anhydride, styrene
(St), methyl methacrylate (MMA), potassium persulfate (KPS), p-toluene sulfonyl chlo-
ride (99%), polyvinylpyrrolidone (K30, Wt. 40,000), Sodium bicarbonate (98%), Sodium
dodecyl sulfate (99%), Dichloromethane, Terahydrofuran, and D-(+)-glucose were pur-
chased from Sigma-Aldrich (Shanghai, China). Sodium phosphate dibasic, sodium
phosphate monobasic monohydrate, bovine serum albumin (BSA), dimethyl sulphox-
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ide (DMSO), and Tween20 were purchased from Shanghai Sangon Ltd. (Shanghai,
China). Gibco® newborn bovine serum was purchased from Thermo Fisher Scientiflc,
Inc. (Waltham, MA, USA). Goat anti-mouse IgG antibody was purchased from Arista
Biologicals, Inc. (Allentown, PA, USA). Styrene and methyl methacrylate were washed
using 10% sodium hydroxide solution and deionized water three times before use to
remove the inhibitor.

2.1.1. Synthesis of Eu(TTA)3Phen

Eu(TTA)3Phen was synthesized based on previous studies [18]. Typically, 0.73 g of
EuCl3·6H2O salt (2 mmol) was dissolved in 20 mL of ethanol in a flask. TTA (6 mmol) and
Phen (2 mmol) were dissolved in 20 mL of ethanol in another flask. The EuCl3·6H2O salt
solution was slowly dropped into the TTA and Phen solution with continuous stirring. The
pH value of the solution was adjusted to 7. Then the solution reacted at room temperature
for 2 h. The precipitate produced was washed with ethanol and centrifuged three times at
10,000× g. The product formed is dried for 12 h at 60 ◦C in the oven.

2.1.2. Synthesis of p-Toluenesulfonyl Modified PS Microspheres

Briefly, 2 mL styrene and 1 mL MMA were mixed uniformly. Dispersed 0.1 g of
p-toluenesulfonyl chloride in 0.5 mL of n-hexane and added to the above-mixed solution.
After mixing evenly, transferred to a 100 mL three-neck flask and added 50 mL of water. The
reaction solution was heated to 80 ◦C after forming a stable microemulsion by ultrasonic
treatment, then 2.5 mL of water containing 0.05 g of potassium persulfate was added. After
10 h of reaction, the reaction was finished, and the obtained product was centrifuged to
remove impurities and dispersed in water for later use.

2.1.3. Synthesis of Fluorescent PS Microspheres

We used the swelling method to prepare fluorescent PS microspheres. Generally,
2 mL of the p-toluenesulfonyl modified PS microspheres obtained earlier was added to
8 mL of water, 0.1 g PVP, 0.1 g SDS and 0.01 g NaHCO3 to dissolve the solids for use. A
total of 0.04 g Eu(TTA)3Phen dispersed in 1.67 mL dichloromethane, then added 0.083 mL
tretahydrofuran and mixed well. Added the mixture to the aqueous solution and stirred
under airtight conditions for two hours, then opened the lid and continued stirring for 22 h.
The obtained product was centrifuged to remove impurities and dispersed in water for
later use.

2.1.4. Preparation of COVID-19 N Protein Monoclonal Antibody

Prepared COVID-19 N protein monoclonal antibody based on previous research [19].

2.1.5. Preparation of p-Toluenesulfonyl Modified Fluorescent PS Microspheres
Antibodies Conjugates

After washing with 0.1 M borate buffer (pH = 9.5), an appropriate amount of
p-toluenesulfonyl fluorescent microspheres were dispersed into 66.6 µL borate buffer
(pH = 8.5) to obtain reaction solution 1. Mixed 0.1 M borate buffer (pH = 8.5) and 0.3 M
(NH4)2SO4 solution uniformly, and then added the labeled antibody to obtain reaction
solution 2. A total of 33.3 µL reaction solution 2 was added to reaction solution 1 and
incubated at 37 ◦C for 4 h. It was then washed twice in PBS (phosphate buffered saline)
containing 0.5% BSA and incubated in PBS containing 0.5% BSA in 1 mL for 1 h at 37 ◦C.
The fluorescent microspheres were then washed twice in PBS containing 0.1% BSA and
reconstituted in 1 mL PBS containing 0.1% BSA for storage.

2.1.6. Preparation of p-Toluenesulfonyl Fluorescent Microspheres
Immunochromatographic Assay Test Strips

The anti-COVID-19 N protein antibody was diluted with 20 mM PBS buffer (pH = 7.4),
and the detection line was drawn on the nitrocellulose membrane at a concentration of
1.5 mg/mL using the XYZ distribution system (BioDot Inc., Irvine, CA, USA). Then the
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goat anti-mouse IgG antibody was delimited on the nitrocellulose membrane at 1 mg/mL
concentration as the quality control line. The nitrocellulose membrane was dried at 37 ◦C
for 4 h. The sample pad was saturated with PBS buffer containing BSA (1%, w/v) and
Tween-20 (0.1%, w/v) and dried at 37 ◦C for 3 h after treatment. After the nitrocellulose
membrane was dried, the antibody-labeled fluorescent microspheres were sprayed onto
the sample pad, and finally, the fluorescent microsphere-LFIA test strips were assembled
according to the standard and cut into individual 3.5 mm wide test strips using CM4000
Guillotine Cutter (BioDot Inc., Irvine, CA, USA).

2.2. Analytical Procedure

60 µL COVID-19 standard samples with different concentrations were added to the
sample pads on the fluorescent microsphere-LFIA test strips for 15 min. Then scanned with
the fluorescence test strip scanner to obtain the fluorescence signal intensity on the strip.
Precisely, when the COVID-19 N protein was present in the sample, it could specifically
bind to the antibody-labeled fluorescent microspheres prepared before and then be captured
by the coated antibody at the detection line to form a sandwich structure to generate a
fluorescent signal (Figure 1B). Conversely, if there was no COVID-19 heavy N protein in the
test sample, the antibody-labeled fluorescent microspheres would be captured by the goat
anti-mouse antibody at the quality control line, and there would be no fluorescent signal
at the test line (Figure 1A). When the fluorescent microspheres were captured, a bright
fluorescent band appeared under the UV lamp of 365 nm, and its fluorescence intensity
was proportional to the number of antigens captured.
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Figure 1. Analytical representation of the immunoassay strip. (A) If the sample does not contain
COVID-19 N protein, there is no fluorescent signal at the test line (B) If the sample contains N protein,
there is a bright fluorescent signal at the test line.

3. Results and Discussion
3.1. Properties of p-Toluenesulfonyl Modified PS Microspheres

The microemulsion polymerization method is used to prepare polystyrene micro-
spheres. During the growth of polystyrene microspheres, due to the presence of p-toluene
sulfonyl chloride in the oil droplets, it will react with the hydroxyl groups on the surface of
the polystyrene microspheres to finally obtain p-toluenesulfonyl modified PS microspheres,
and the pH of the solution will become acidic. The reaction process is shown in Figure 2A.
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Figure 2. (A) Schematic diagram of p-toluenesulfonyl modified PS microspheres. (B) Conjugation of
antibodies to p-toluenesulfonyl modified fluorescent PS microspheres.

In Figure 3, FT-IR spectroscopy shows the characteristic frequency of the copolymeriza-
tion of styrene, methyl methacrylate, and the p-toluenesulfonyl group. The peak position
at 1727 cm−1 is the C=O stretching vibration of carboxylic acid carbonyl; the peak position
at 1180 cm−1 is the symmetrical stretching vibration of sulfonyl chloride O=S=O and the
peak at 1380 cm−1 is sulfonyl chloride O=S=O antisymmetric stretching vibration.
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3.2. Properties of Fluorescent PS Microspheres

Fluorescent PS microspheres with a similar core-shell structure are prepared by a
swelling method, and their TEM images are shown in Figure 4A. Figure 4B shows the
appearance of the fluorescent PS microspheres under natural light and 360 nm ultraviolet
irradiation. Under 365 nm ultraviolet light irradiation, the fluorescent PS microspheres emit
bright red light. It is worth noting that the shell thickness of fluorescent PS microspheres
increases gradually with increasing the amount of p-Toluenesulfonyl chloride. The amount
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of p-toluenesulfonyl chloride added in Figure 4C is five times that in Figure 4A, and it is
obvious that the thickness of the shell layer has increased a lot.
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microspheres with 5 times the amount of p-toluenesulfonyl chloride.

As can be seen from Figure 5A, when Eu(TTA)3Phen is swelled into the p-toluenesulfonyl
modified PS microspheres, the fluorescence emission peak position was basically unchanged.
On the other hand, under the same molar concentration and the same experimental conditions,
the fluorescence intensity of the fluorescent PS microspheres was 90.24% of that of the free
complex, which shows that this method can ensure the optical properties of the fluorescent
material as much as possible. Figure 5B shows the change in the hydrated particle size of the
PS microspheres during the reaction. The results show that Eu(TTA)3Phen was successfully
swollen into the PS microspheres, and then the microspheres were successfully coupled with
the antibody. Figure 5C shows the change of the zeta potential on the surface of the PS
microspheres during the reaction, and the results once again proved that the fluorescent
microspheres were successfully coupled with the antibody.
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on the surface of PS microspheres during the reaction.

3.3. Properties of p-Toluenesulfonyl Fluorescent Microspheres Immunochromatographic Assay
Test Strips

The standard sample of COVID-19 N protein was used for the analysis of the per-
formance of the LFIA strips. In order to verify the availability of the strips, the strip was
scanned by a fluorescence test strip scanner after 15 min of adding the samples. We detected
a series of different concentrations of COVID-19 N protein standards. The COVID-19 N
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protein standards were diluted in NBS to obtained 0, 0.001, 0.01, 0.1, 1, 10, 100, 1000 ng/mL
samples respectively. The samples of each concentration were tested three times, and
the average values were calculated. The results obtained are given in Figure 6. With the
concentration increasing, the fluorescence signals on the test line of QDs-LFIA strips were
still visible at 0.01 ng/mL. After testing, the LOD of COVID-19 N protein LFIA strips is
0.01 ng/mL, and the linearity range is 0.01~10 ng/mL. Particularly, if the concentration of
standards was over a critical concentration (10 ng/mL), the hook effect would lead to an
obvious fluorescence signal interference.
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(B) Different concentrations of COVID-19 N protein standards measured by the fluorescence strip
scanning device.

3.4. Conjugation of Antibodies to Fluorescent Microspheres

At present, there are many methods for coupling nanomaterials to biomolecules, of
which chemical-based labeling techniques are quite classic and perfect. These chemical-
based labeling techniques cover a wide range and are applicable to native proteins. Chemi-
cal reactive functional groups are exposed on the surface of all natural proteins, such as
thiol (Cys), amine (Lys), carboxyl (Asp, Glu), hydroxyl (Ser, Thr, Tyr), guanidine (Arg),
imidazole (His), and indole (Trp), which can be modified by traditional chemical reactions.
For example, thiol coupling reactions such as Cys-maleimide and amine (Lys) coupling
reactions with active esters or isocyanates are widely used. One of the fatal drawbacks of
these chemical-bioconjugation methods [14,15] is their low selectivity in targeting many
other proteins and/or modifying specific sites in the target protein. Traditional chemical
labeling methods, such as the amide reaction between amino and carboxyl groups, require
the addition of NHS and EDC as activators and protectors, and when nanomaterials are
coupled with biomolecules, the distribution and orientation of biomolecules on nanomate-
rials are random. More importantly, these problems reduce the coupling efficiency between
materials and biomolecules, as well as the activity of biomolecules.

Protein affinity labeling based on ligand-directed chemistry has been widely used to
specifically label native proteins. In this approach, an optical or chemical reaction handle is
attached to a ligand, such as a drug or natural product that can specifically bind to the target
protein. The ligand-protein interaction then promotes protein labeling in the environment
with greater specificity. Although this technique can be used to identify and characterize
ligand-specific target proteins, it often suffers from low yields of cross-linked products.
Recent advances in affinity labeling using proximity-driven nucleophilic reactions with
moderate reactivity have provided reasonably high yields [20].
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In organic chemistry, the tosyl group is one of the good leaving groups for nucleophilic
substitution (SN2) reactions. Tosylates can also react with other nucleophiles, such as
hydroxyl groups (such as alkoxides, RO-) to form ether bonds under higher pH conditions,
thiols (such as thiolate anions RS-) to form thioether bonds, and OH- in alkaline conditions,
which would result in the hydrolysis of OH- back to the hydroxyl group. Reaction with
these groups under non-aqueous conditions requires organic bases as proton acceptors to
catalyze the coupling [16]. Tosyl-activated nanomaterials provide reactive sulfonyl esters
to covalently attach antibodies or other ligands containing primary amino or sulfhydryl
groups to the nanomaterial surface (Figure 2B). Antibodies are immobilized on these nano-
materials via the Fc region, which ensures optimal orientation of the antibody, thereby
increasing the capture rate of the target analyte [17]. The physical adsorption of antibodies
to nanomaterials is rapid; however, the formation of covalent bonds therein takes a rela-
tively long time. In order to improve coupling efficiency, buffers with high ionic strength
should be used because they promote hydrophobic binding. Furthermore, the tosyl group
is more reactive at higher pH, so sodium borate buffer (pH 9.5) should be used.

3.5. Specificity of COVID-19 N Protein LFIA Strips

HCoV-229E, HCoV-OC43, HCoV-NL63, HCoV-HKU1, influenza A H1N1, influenza
A H3N2, influenza A H5N1, influenza A H7N9, influenza A H9N2, influenza B Victoria
strain, influenza B Yamagata strain, Measles virus, Mumps virus, Rubella virus, Varicella
zoster virus, Staphylococcus aureus, Pseudomonas aeruginosa, SARS-CoV-2 N protein,
and MERS-CoV N protein were used to evaluate the specificity of COVID-19 N protein
LFIA strips respectively. After testing, the COVID-19 N protein LFIA strips do not cross-
react with other common coronaviruses except SARS-CoV-2 N protein (Figure 7), which
was caused by the structural similarity between SARS-CoV-2 N protein and COVID-19
N protein.
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3.6. Stability Testing of COVID-19 N Protein LFIA Strips

LIFA test strips were tested using standard samples of COVID-19 N protein at con-
centrations of 0.1 and 1 ng/mL, respectively. Then the test strips were stored at 37 ◦C for
28 days, and the fluorescence intensity of the detection line was detected on days 14, 21,
and 28, respectively. The experimental results are shown in Figure 8. The 28-day aging did
not have too much influence on the fluorescence intensity at the detection line of the strip,
which indicates that our LFIA strip has good stability.
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3.7. Discussion

By comparison, our work proved that the nucleocapsid antigen-monoclonal an-
tibody (mAbs) system was more suitable for the immunodetection of the COVID-19.
On this basis, a rapid test strip was developed for mass screening of the COVID-19
population. This kind of test strip uses colloidal gold as a probe, and its detection
limit is 0.1 ng/mL [19]. In this article, we used p-toluenesulfonyl-modified fluorescent
microspheres as fluorescent probes. The p-toluenesulfonyl group improves the coupling
efficiency of fluorescent probes and antibodies, eliminating the need for NHS and EDCs
as activators and protectors, thus simplifying the reaction steps. Table 1 shows the fluo-
rescence signal intensities of the detection lines on the COVID-19 N protein LFIA strips
using the fluorescence test strip scanner to detect different concentrations of COVID-
19 N protein standard samples. Obviously, a fluorescence signal that is significantly
different from the background noise can be observed on the strip with the standard
concentration of 0.01 ng/mL. This proves that the detection limit of the prepared test
strip is 0.01 ng/mL, which is 10 times higher than the previous work. In order to further
study of quantitative measurement of N proteins, the concentration of N proteins and
the corresponding fluorescence intensity were well fitted by the nonlinear equation. The
variables satisfy the Logistic function model; the confident function expression is as
follows:Y = A2+ A1−A2

1+( x
x0 )

p . The associated parameters are shown in Figure 9. At the same

time, the test strip has good specificity, and these advantages make the test strip have
great potential in the application of large-scale population screening for COVID-19.

Table 1. The fluorescence signal intensities of the detection lines on the COVID-19 N protein LFIA
strips with different concentrations of COVID-19 N protein standard samples.

Concentration (ng/mL) TEST 1 TEST 2 TEST 3 Average STDEV

1000 19,252 20,629 20,582 20,154.33 781.7969
100 20,498 20,678 20,526 20,567.33 96.85728
10 20,910 21,133 21,172 21,071.67 141.3589
1 6102 6493 6490 6361.667 224.8829

0.1 1294 1362 1285 1313.667 42.09909
0.01 872 896 804 857.3333 47.72141
0.001 368 400 365 377.6667 19.39931

0 265 254 344 287.6667 49.09515
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By comparing our research with the detection properties of other similar studies [19,21–25],
it can be found that the detection sensitivity of this study can basically reach 10 times that of
the same type of research (Table 2). Even for methods such as Plasmon color-preserved gold
nanoparticle clusters, which can amplify the detection signal twice, our detection sensitivity is
still considerably higher.

Table 2. Comparison of the specificities of the p-toluenesulfonyl fluorescent PS microspheres LFIA
sensor with previously developed lateral flow immunoassay.

No. Probe Limit of
Detection (LOD) Assay Time Detection Method Ref.

1 Fluorescent microparticles - 10 min Fluorescence analyzer Diao et al. (2021) [21]
2 Fluorescent microsphere 100 ng/mL 15 min UV-LED/detector Zhang et al. (2020a) [22]
3 Latex beads 0.65 ng/mL 30 min Optical reader Grant et al. (2020) [23]
4 Gold nanoparticles 0.25 ng/mL 15 min - Mertens et al. (2020) [24]
5 Colloidal gold 0.1 ng/mL 15 min Optical reader Liu et al. (2021) [19]
6 PLASCOP AuNP clusters 0.038 ng/mL 10 min Optical reader Oh et al. (2022) [25]

This study Fluorescent microspheres 0.01 ng/mL 15 min UV-LED/detector -

The COVID-19 N protein detection test strip prepared in this study has the advantages
of fast reaction speed, simple use, high sensitivity, and easy storage and carrying, so it is
very suitable for large-scale population screening and detection.

Antigen detection is mainly used in the acute infection period, that is, the detection
of samples within 5–7 days of the symptoms of suspected people. Antigens can be used
as screening for close contacts, and continuous screening can improve the detection rate.
Therefore, when patients have early symptoms or there are infected people around them,
multiple tests in a short period of time can effectively improve the detection rate. The high
sensitivity of the COVID-19 N protein detection test strip prepared in this study can also
alleviate the problem of the detection window period to a certain extent.
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4. Conclusions

In this study, p-toluenesulfonyl modified rare earth fluorescent microspheres were
prepared by a swelling method. After p-toluenesulfonyl activates the fluorescent probe,
the Fc region of the antibody will be coupled to the surface of the fluorescent probe,
thereby ensuring the orientation of the antibody biomolecules on the surface of the
nanomaterial, which can effectively improve the coupling efficiency. When the pH value
is higher, the coupling efficiency will be higher. After that, a COVID-19 N protein detect
strip was prepared, which has the advantages of fast detection speed, good specificity,
and high sensitivity and has great potential in the application of large-scale screening of
the COVID-19 population.
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