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ABSTRACT: Proteomics is presently dominated by the
“bottom-up” strategy, in which proteins are enzymatically
digested into peptides for mass spectrometric identification.
Although this approach is highly effective at identifying large
numbers of proteins present in complex samples, the digestion
into peptides renders it impossible to identify the proteoforms
from which they were derived. We present here a powerful
new strategy for the identification of proteoforms and the
elucidation of proteoform families (groups of related proteo-
forms) from the experimental determination of the accurate
proteoform mass and number of lysine residues contained.
Accurate proteoform masses are determined by standard LC−
MS analysis of undigested protein mixtures in an Orbitrap
mass spectrometer, and the lysine count is determined using the NeuCode isotopic tagging method. We demonstrate the
approach in analysis of the yeast proteome, revealing 8637 unique proteoforms and 1178 proteoform families. The elucidation of
proteoforms and proteoform families afforded here provides an unprecedented new perspective upon proteome complexity and
dynamics.
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■ INTRODUCTION

The dominant means for identification of proteins in complex
mixtures is bottom-up proteomics.1 In this approach, a mixture
of proteins from the sample of interest is cleaved into peptides,
typically using trypsin, and analyzed by liquid chromatog-
raphy−mass spectrometry (LC−MS). Fragmentation of the
peptides within the mass spectrometer yields product-ion mass
spectra, which are compared to theoretical mass spectra
produced in silico based upon a generic reference protein
database of the organism under study. Statistical analysis of the
results provides a list of peptides identified in the sample,
subject to a specified false discovery rate (FDR).2 Proteins
present in the sample are then inferred from the identified
peptides in a process referred to as protein inference.3,4

Implementations of this approach are routinely able to identify
thousands of proteins in yeast,5 human,6 or other organisms.7

The strategy can reveal differences in protein expression in
different cell types or in response to cellular growth conditions
or treatment with drugs.8

While the bottom-up strategy is powerful and widely
practiced, it does suffer from major shortcomings. Proteins
produced from the same gene can vary substantially in their
molecular structure: genetic variations, splice variants, RNA
edits, and post-translational modifications (PTMs) all give rise

to different forms of the proteins, referred to as “proteoforms”.9

Knowledge of the proteoforms that are present in a system
under study is absolutely essential to understanding that
system, as the different proteoforms often have dramatically
different functional behavior,10 and regulation of their
production is a central aspect of pathway control. One recent
example is the finding that intact and clipped human histones
differ in post-translational modification patterns11 and that
these combinations of sequence-length and PTM differences
have functional consequences. Bottom-up strategies are unable
to identify proteoforms for two reasons: first, the digestion of
the proteins into peptides means that information is lost as to
the protein context within which that peptide is found, making
impossible the identification of the parent proteoform from
which each peptide is derived; and second, the databases used
for peptide identification do not generally contain information
regarding amino-acid variant or modified peptides, causing such
peptides to be effectively invisible in the absence of specialized
search strategies,12−14 which can introduce problems with
search time and false identifications.
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One way in which these issues have been addressed is
through the alternative strategy of “top-down” proteomics.15 In
top-down proteomics, the entire intact protein is subjected to
fragmentation, and the proteoform is identified from the parent
mass and fragmentation products; in the ideal case, this can
yield a precise identification of the proteoform, including the
nature and positions of PTMs. While historically such efforts
have largely been limited to the exhaustive study of individual
purified protein species,16 recent work has extended the
approach to highly complex samples such as yeast17 and
human18 cell lysates. However, the highly complex nature and
voluminous quantities of the data produced, as well as the need
for long MS analysis times to produce data of sufficient
sensitivity and resolution for proteoform identification, make
this approach, at present, a highly specialized endeavor.
We present here an alternative proteomic approach that

utilizes proteoform intact mass and lysine count determina-
tions, not tandem MS, to reveal proteoforms and proteoform
families. A proteoform family, a concept we introduce here, is a
set of proteoforms derived from a single gene. Individual
proteoforms in a proteoform family frequently differ from one
another by single post-translational modifications or amino acid
differences but can also differ by larger changes due to splice
variation or protein truncation. For example, all of the many
different post-translational variants of histone H4 are members
of a single proteoform family. A complex proteomic sample
such as a cell lysate may contain thousands of proteoform
families. We devised a computational process for the
determination of the proteoform families present in a complex
sample. The families are constructed from knowledge of just
two pieces of information for each proteoform, the accurate
proteoform mass and the number of lysine residues it contains.
Proteoforms are considered to be related, and thus members of
the same family, if their lysine counts are identical and their
intact masses differ by the mass of known modifications or
amino acid changes (in this initial study, we have not yet
attempted to include larger changes such as splice variation or

protein truncation). Identification of any given member of the
family then identifies all members of the family. This initial
identification is obtained by matching the accurate mass and
lysine count of the experimentally observed proteoform to
values calculated from a protein reference database and looking
for exact matches within a small mass tolerance. This strategy of
using the identification of one proteoform to leverage the
identification of many related proteoforms distinguishes this
approach from both top-down and bottom-up proteomics,
which are based solely upon the identification of individual
proteins. In addition, because all members of a family are
identified and visualized together, the relative abundances of
the related forms are easily compared (see below). The
representation and visualization of proteoform families
described here nicely parallels related work in the field19 that
connects individual proteoforms and proteoform interaction
networks to PTM and disease metadata. This provides an
incredible bridge between the experimental process of proteo-
form identification and the relationship between proteoform
observations and the presence of particular disease states.

■ EXPERIMENTAL PROCEDURES

The experimental workflow for identifying proteoforms is
straightforward (see the Materials and Methods section in the
Supplemental Text). Briefly, accurate proteoform masses are
determined by standard LC−MS analysis of undigested protein
mixtures in an orbitrap mass spectrometer, and the lysine count
is determined using the NeuCode stable isotope labeling by
amino acids in cell culture (SILAC) isotopic tagging method.20

We note that the use of intact mass determination and amino
acid count for protein identification has been previously
reported.21−23 We cultured yeast with media containing either
of two isotopically heavy forms of lysine: 13C6

15N2-lysine
(+8.0142 Da) or 2H8-lysine (+8.0502 Da). These two
isotopologues of lysine differ in mass by 36 mDa. Pairs of
identical proteoforms produced upon mixing and lysing cells

Figure 1. Example intact protein chromatogram and spectrum. (A) An LC−MS chromatogram for one gel electrophoresis fraction of NeuCode
SILAC yeast. (B) A full-scan mass spectrum obtained at a resolution of 100 000. (C) An expanded view of the mass spectrum showing one charge-
state envelope containing multiple isotope peaks for each of the two isotopologues. (D) A further expanded view displaying the “Light” (left peak)
and “Heavy” (right peak) isotopologues; the spacing between these two peaks is used to determine the number of lysines in this proteoform.
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from both cultures have a monoisotopic mass difference equal
to 36 mDa times the number of lysines in the proteoform. For
these experiments, cells grown in media enriched with
“NeuCode Light” and “NeuCode Heavy” lysine are combined
in a 2:1 ratio. Experiments here were limited to analysis of
proteins below 30 000 Da because of the mass range limitation
of the mass spectrometer employed (Thermo LTQ Orbitrap
Velos). Cells are lysed, and a soluble protein cleared lysate is
prepared, followed by gel electrophoretic separation into 12
molecular weight fractions, which are analyzed by LC-MS.24

The resultant mass spectra (28 847 in the present study) are
processed in a multistep data-analysis pipeline to provide
proteoform identifications (an example is shown in Figure 1).
The first step in the pipeline is charge-state deconvolution and
deisotoping to yield proteoform monoisotopic intact mass
values. Protein mass spectra produced by electrospray
ionization are highly complex. Each individual protein is
observed in multiple different charge states. In addition, the
natural abundance C, H, N, O, and S atoms in each proteoform
yield multiple different isotopologues. Therefore, mass spectra
must be deconvoluted to eliminate the charge-state differences
and deisotoped to eliminate the isotopologue effect to obtain a
single monoisotopic mass for each proteoform. Next, we paired
together mass values that were NeuCode-Light and NeuCode-
Heavy isotopologues of one another. The stringent pairing
criteria include: a small mass difference of <6 Da, an intensity
ratio between 1.4:1 and 6:1 (based on the expected mixing ratio
of 2:1), and also observation in the same spectrum and the
same charge states (see the Materials and Methods section in
the Supplemental Text). This pairing serves two purposes.
First, it greatly increases the confidence that the mass values
correspond to actual proteoforms from the sample. Second, the
number of lysines present in each protein is determined from
the mass difference between the doublet peaks for the two
proteoform isotopologues using the 36 mDa per lysine
conversion factor. Overall, this yielded a set of 70 564 intact
masses with associated lysine counts (Supplemental Table S-1),
of which 8637 were nonredundant and thus likely to
correspond to unique proteoforms (Supplemental Table S-2).

■ RESULTS AND DISCUSSION
We sought to identify the known yeast proteins to which these
8637 proteoforms correspond. This is not possible to achieve
by direct comparison of the UniProt database entries with the
experimental data because of the wide variety of possible post-
translational modifications, which change the intact proteoform
masses. We devised a three-stage strategy to address this
problem (Figure 2). In stage 1, experimentally observed
proteoforms are identified by pairing them with their
theoretical counterparts (experimental−theoretical (ET)
pairs); in stage 2, pairs of proteoforms that differ from one
another by the mass of well-known protein modifications are
identified by pairing them with one another (experimental−
experimental (EE) pairs); and in stage 3, all ET and EE pairs
sharing a common proteoform are joined together to form
proteoform families.
In stage 1 of the strategy, ET pairs are identified by

comparing experimental masses with theoretical masses from
the UniProt entries having the same lysine count. For each of
the 8637 observed proteoforms, we determined the UniProt
entries (including single annotated PTMs when present) falling
within 500 Da and calculated the differences between the
experimental and theoretical proteoform masses. Figure 3A

shows a histogram of the results out to 200 Da. The most
intense peaks in the histogram correspond to the mass
differences associated with frequent protein modifications.
Note that several of the major peaks have satellites within one

Figure 2. Three-stage strategy for elucidating proteoform families. In
the first stage, experimental intact masses, En, are compared to
theoretical masses, Tn, (having the same lysine count) to create ET
pairs for certain mass differences (e.g., 42 Da). In the second stage, EE
pairs are similarly generated. In the third stage, the pairs are clustered
together to produce proteoform families, two examples of which are
shown here.
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or two Da, which are likely due to well-known challenges in the
deisotoping of mass spectra of intact proteins.25 We selected 13
of these mass differences that met an average false discovery
rate (FDR) of 21%, ranging from 8 to 35% (see below for a
discussion of FDR). This threshold was selected because it
captured the major peaks in the histogram corresponding to
known prevalent modifications. There were 550 ET pairs
identified by this process.
In stage 2 of the strategy, EE pairs are identified by

comparing all experimental masses of the same lysine count
with one another. For each of the 8637 observed proteoforms,
we identified the sets of observed proteoforms having the same
lysine count and then calculated all pairwise mass differences

within each set. A histogram of the aggregated results for all
mass differences below 200 Da is shown in Figure 3B. Peaks
highlighted in the histogram include PTMs, amino acid losses,
and other protein modifications commonly observed in protein
mass spectrometry. We selected the 88 mass differences that
met an average false discovery rate (FDR) of 22% (ranging
from 5 to 36%; see below for a discussion of FDR). The larger
number of significant mass differences observed for EE pairs
(88) than for ET pairs (13) is due in part to the multiplicative
effect of the monoisotopic errors. For example, we may see a
proteoform with a monoisotopic mass of 10 000 Da and a
missed monoisotopic mass for that same proteoform at 10 001
Da. The oxidized version of these two forms would have
monoisotopic masses of 10 016 and 10 017 Da, respectively.
The EE mass differences for all four species would be 1, 15, 16,
and 17 Da, with relative intensities of 1:1:2:1. Thus, two actual
proteoforms produce four separate peaks in the EE histogram.
Stage 2 yielded 11 213 EE pairs.
In the third stage of analysis, proteoform families are formed

by joining together all ET and EE pairs sharing a common
proteoform. Each pair consists of two nodes (masses of the two
proteoforms) and one edge (the mass difference between the
two proteoforms). All pairs having a common node are joined
together to form discrete proteoform families. This process
yielded 1178 proteoform families ranging in size from 2 to 150
members, as displayed in Figure 4A. The proteoform families
are represented as collections of nodes and edges, where each
node corresponds to a particular proteoform with an associated
intact mass and lysine count, and the edges correspond to the
mass differences between related proteoforms. The red nodes
represent the mass and lysine count of an unmodified (base)
protein from a protein reference database (UniProt), the green
nodes represent the mass and lysine count of a UniProt-curated
post-translational modification of the base reference protein
entry (base + PTM), and the blue nodes represent
experimental mass and lysine count observations from the
yeast lysate sample. The area of each blue node is proportional
in size to the number of times that proteoform was observed
experimentally, providing a crude measure of abundance. In the
simple proteoform family shown in Figure 4B for Negative
cofactor 2 complex subunit β, for example, there are four nodes
and three edges. The red and green nodes represent the
UniProt entries for the base and phosphorylated protein,
respectively, and the two blue nodes correspond to the
experimentally observed mass and lysine count pairs for both
proteoforms. There are two zero Da mass difference edges
shown, connecting the UniProt entries with the experimental
observations for those proteoforms, and one 80 Da mass
difference edge connecting the two experimentally observed
proteoforms, corresponding to the mass added upon
phosphorylation. Figure 4C−E shows three other proteoform
families of increasing complexity, showing multiple methyl-
ations of 60S ribosomal protein L12-A, multiple acetylations of
Histone H2B.1, and a pattern of amino acid losses from the N-
terminal degradation of 60S ribosomal protein L40. The ability
shown here to identify and visualize the members of
proteoform families provides a powerful and unprecedented
new view of proteome complexity at the intact proteoform
level, information that is critical to understanding biological
systems and pathways.
Figure 5 summarizes the proteoforms and proteoform

families identified. Of the total 8637 proteoforms observed,
2378 were not associated with any other proteoform or a

Figure 3. Histograms of observed mass differences. (A) Mass
differences between experimental masses and theoretical ones
calculated from UniProt entries, which have the same number of
lysines. (B) Mass differences between pairs of experimental
observations, again stipulating the same lysine count. The most
frequently observed mass differences correspond to common PTM or
amino acid masses. A total of 31 of the 88 mass differences
(highlighted in pink) were directly attributable to known modifications
(e.g., oxidation, methylation, and acetylation) or amino acid losses at
one of the proteoform termini. Another 34 peaks were adjacent to
these 31 primary mass shifts, up to 2 Da away, and were attributed to
misassignment of the proteoform monoisotopic mass. Several other
mass shifts (e.g., 46 and 72 Da) were included in the construction of
proteoform families because they exceeded the threshold but they
remain unidentified. These two mass shifts in particular are absent in
the compendium of modifications at unimod.org. They could arise
from a combination of modifications. An FDR threshold is shown
(green line). See also the Supplemental Tables S-9 and S-11 for the
complete list of ET and EE mass differences to 500 Da.
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UniProt accession number and hence are not members of
families (orphans). The rest of the proteoforms formed 1178
proteoform families composed of 1460 proteoforms belonging
to 199 families that correspond to a known protein (i.e., are
associated with a single UniProt accession number); 802
proteoforms in 27 families that leave some ambiguity in
identification in that they were associated with two or more
accession numbers; and the remaining 3997 proteoforms in 952
families that remain unidentified. Of the 70 564 total
experimental proteoform observations, 92% belong to one of
the 1178 proteoform families. 1216 (14%) of the 8637
proteoforms observed, and 253 (11%) of the 2262 that were
also identified, had masses below 5000 Da and thus might be
considered as peptides rather than proteins (see Supplemental
Table S-2 for a list of all observed and identified proteoform
masses, along with histograms showing their distribution as a
function of mass). The size distribution of the families is
plotted in Supplemental Figure S-1 and shows a roughly
exponential decrease in frequency with increasing size. This
plot reveals for the first time the number of different

proteoforms for a given base protein, providing a new way of
assessing the complexity of the entire yeast proteome.
To assess the statistical confidence associated with the

identifications, we estimated the false discovery rate (FDR) for
the ET and EE pairs. FDR is an estimate of the fraction of false
positive identifications in a group of identifications. The
strategies for assessing FDR for each pair type are described
briefly below and provided in greater detail in the Supporting
Information.
FDRs for the ET pairs were determined using a target-decoy

strategy, analogous to the widely employed estimation of FDR
in bottom-up proteomics.26 In bottom-up proteomics, the most
common method of creating a decoy database for all proteins in
an organism of interest is to reverse all of the amino acid
sequences. However, this method of creating a decoy database
is not useful here because all of the decoy entries would have
the same masses and lysine counts as the true target database.
We accordingly developed an alternative strategy for the
construction of the decoy database. We first concatenated all
yeast protein sequences in random order into a single

Figure 4. Proteoform families. (A) Display of 1178 proteoform families discovered in this work. (B−E) Expanded views of four example proteoform
families. Theoretical unmodified proteins (red nodes) are labeled with their UniProt accession number. Theoretical modified proteins (green nodes)
are labeled with their accession number and a PTM known to occur on that protein. Experimentally observed proteoforms (blue nodes) are labeled
with their intact mass and the number of times it was detected. The area of each blue node is proportional in size to the number of times that
proteoform was observed experimentally; however, to facilitate visualization, all nodes corresponding to 1−10 observations were given the same
(minimum) size. Proteoforms are connected by select mass differences (edges) indicated by black lines with orange mass-difference values.
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continuous string and then divided the string into substrings
with lengths equal to each of the known yeast proteins. This
yields a decoy database, in which the number and length of
decoy protein sequences matches exactly to the known set of
yeast proteins, but the masses and lysine counts differ. The
database was further expanded to include proteoforms with
single post-translational modifications, one for each modifica-
tion annotated in the UniProt yeast protein database. We
created 10 such decoy databases and employed each of them
for the stage 1 ET identification to determine the number of
experimental−decoy (ED) pairs, which represent false ET
connections. The FDR at each mass difference is the ratio of
the median number of ED pairs to the number of ET pairs and
ranged from 8 to 35%, with an average of 21%. The primary
factor driving this high FDR for ET pairs (and for EE pairs
below) is mass accuracy, which is limited by the instability and
drift in the measurement of intact mass that occurs over the
course of the experiment, which requires several days of
instrument operation. The false discovery rate is expected to
drop with improvements to instrument stability, such as the
utilization of a lock-mass standard in the chromatographic
buffer for continuous mass calibration.27

The target-decoy strategy just described for the estimation of
FDR for ET pairs is not applicable to estimation of FDR for EE
pairs because no theoretical database is utilized for identifying
EE pairs. A different method was needed to estimate the
number of false EE pairs at each of the 88 mass differences. We
hypothesized that because all true EE pairs are between
proteoforms having the same lysine count, we could use mass
differences between experimental values having unequal lysine
count as a proxy for false-positive connections. To implement
this approach, we calculated the mass differences between all
experimentally observed proteoforms differing in lysine count
by two or more lysines. Because this set of mass differences is
vastly larger than the set created when considering only
experimental values with the same lysine count, we selected a
random subset of size equal to the number of mass differences

produced in the EE comparison of Figure 3B. We counted the
number of mass differences in this subset in a small window (±
0.04 Da) around each of the selected EE peaks. This count
provides an estimate of the number of false EE connections
(experimental−false lysine count (EF) pairs) in each peak. The
FDR at each mass difference is the ratio of the number of EF
pairs to the number of EE pairs and ranged from 5 to 36%, with
an average of 22%.
We note that the modest FDR values reported here (21% for

ET and 22% for EE) do not compare favorably with either
bottom-up proteomics, which commonly reports 1% FDR
values for protein identification, or top-down proteomics, which
commonly reports 1−5% FDR values for protein identifica-
tions. These FDR values for the intact mass and lysine count
approach are highly dependent on instrumental factors that can
be improved, and therefore, they should not detract from the
importance of this new approach to proteoform and proteo-
form family identification.
We compared the identifications obtained from the intact

mass and lysine count strategy with those obtained by top-
down proteomics. Briefly, we aggregated yeast top-down search
results (Supplemental Table S-3) obtained in our own
laboratory (Supplemental Tables S-4 and S-5) with those
reported by the Kelleher laboratory in the most comprehensive
study published to date.17 A detailed explanation of this
comparison is provided in the Supplemental Text and further
supported by additional data found in Supplemental Tables S-6
through S-17. We found 75% agreement between the
proteoforms identified by top-down proteomics and the ones
identified by the intact mass and lysine count strategy.
It is of interest to note several current limitations of the

intact-mass approach to identification of proteoforms and
proteoform families, which offer interesting paths forward for
the further development of the strategy. The method does not
localize PTMs. Localization could possibly be achieved using
either bottom-up or top-down mass spectrometry, but neither
method guarantees sequence coverage over the region
containing the PTM. The strategy will be necessarily more
difficult to implement on samples from more complex
organisms such as plant and mammalian species because they
have larger proteomes and include genetic variation among
individuals. Thus, it will be necessary to characterize the
sequence variation of the individual under study using large-
scale genomic or transcriptomic sequence data to inform and
improve the proteomic analysis. Efforts to accomplish this are
currently an active area of research, referred to as
“proteogenomics”.28 We have used this approach successfully
to improve bottom-up proteomic analyses in a variety of
mammalian cell lines29,30 and anticipate that it will be similarly
useful for proteoform family analysis. The NeuCode SILAC
isotopic tagging strategy employed in this study to provide
lysine counts for each proteoform was extremely useful but also
limits the approach, as it is not applicable to tissue samples.
However, it may be that as comprehensive proteoform
databases are established in higher organisms, the lysine-
count parameter will become less critical to the identifications
and can be replaced by other readily measured or calculated
parameters such as chromatographic retention time.31 Only the
rudimentary quantification of proteoforms was accomplished in
the current work based on the number of times each mass and
lysine count was observed. The accuracy and precision will be
greatly improved by using intensity-based measurements or
isotopic tagging strategies such as NeuCode SILAC for relative

Figure 5. Distribution of observed proteoforms in various types of
proteoform families. Most of the observed proteoforms clustered with
theoretical or other experimental proteoforms to make families,
although some did not (i.e., “orphans”). The proteoform families are
categorized as identified, ambiguous, or not yet identified based on
containing one, two or more, or zero theoretical accession numbers,
respectively. The term “Observation” here refers to each detection of a
proteoform intact mass and lysine count in any of the 29 847 mass
spectra collected in this study.
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quantification.20,32 Finally, we believe that there is room for
much improvement over the first-generation bioinformatic and
biostatistical approaches presented here. For instance, we are
devising descriptive statistical approaches that will provide
confidence intervals for the likelihood that each individual node
(proteoform) is included in the correct family. See the
Supporting Information for more in-depth discussion of these
current limitations.
We encountered a few interesting phenomena having

potential, yet currently unknown, biological significance. First,
the process used for determining ET and EE pairs, which
involves making a histogram showing the frequency of mass
difference values, revealed several frequent but previously
unknown differences. These peaks, like those revealed in similar
work by ourselves and others,12 suggest the possibility of
unknown protein modifications. Two examples are the peaks at
46 and 72 Da in the EE plot (Figure 3B). We have observed
these mass differences in mass-tolerant bottom-up proteomics
analyses of yeast. These two particular cases have also been
reported elsewhere.12 We are currently working to interpret
them. Second, we observe a considerable number of proteo-
forms that are missing one or more amino acids from either the
N- or C-terminus or both. Proteoforms displaying this behavior
were also identified by us and by Kelleher’s group17 using top-
down proteomics.
This new strategy of identifying proteoforms from intact

mass, lysine count, and clustering into proteoform families
serves to complement rather than replace top-down and
bottom-up proteomic approaches. We found 1460 proteoforms
associated with 199 single accession numbers and an additional
802 proteoforms associated with two or more accession
numbers. These numbers compare reasonably well with the
most extensive top-down study in yeast to date, which reported
1103 proteoforms associated with 530 accession numbers at 5%
FDR, from the same type of sample and gel fractionation.17 We
also compared our results with bottom-up analyses of the same
samples, which yielded 2651 protein identifications. We found
that the frequency of intact proteoform identifications
correlated strongly with the bottom-up protein abundance as
determined by spectral counting (Supplemental Figure S-2),
indicating that the more abundant proteins are more readily
detected in both strategies. Although it is clear that bottom-up
analyses are able to identify far more proteins than either intact
mass or top-down analyses, they are not able to reveal
proteoforms. The intact mass and lysine count strategy could
potentially identify more proteoforms than top-down proteo-
mics within a given amount of instrument time due to the
intrinsically simpler nature of the data. The intact mass
approach is capable of identifying several proteoforms from
each high-resolution full spectrum scan, and there are no
fragmentation spectra to acquire. However, on the one hand, in
top-down mass spectrometry, each identification comes from a
high-resolution fragmentation spectrum obtained for a single
selected and isolated precursor (intact proteoform). On the
other hand, top-down analysis can yield invaluable data that
cannot be obtained from intact mass measurements, namely the
positional localization of modifications or sequence variations.
Furthermore, the proteoform family concept introduced here is
not exclusive to intact mass analyses but could easily be applied
to top-down proteomics data to identify additional proteo-
forms. It is thus apparent that the three proteomic approaches
are complementary to one another rather than competitive

because each is characterized by differing strengths and
weaknesses.
Another interesting way of comparing top-down and intact

mass approaches is to consider “discovery” versus “scoring”
strategies for proteomics. During the human genome project,
the initial phase of single nucleotide polymorphism (SNP)
analysis was a discovery phase: as the DNA sequence was
generated from different individuals, sequence differences were
discovered and catalogued, leading over time to vast databases
containing millions of genetic variations. Once these variations
were known, the need for additional discovery was diminished,
and instead, platforms were developed to query samples for
already known SNPs33 or “scoring”. We envision a similar
transition developing for proteoform analysis, with a “discov-
ery” phase during which proteoforms are identified and
catalogued, populating databases that then enable simpler,
less expensive, and higher-throughput proteoform “scoring”
approaches to be utilized for most biological studies. An early
effort at establishing such proteoform databases has recently
been initiated by the Consortium for Top-Down Proteo-
mics.34,35 We posit that the intact-mass approach will function
particularly well for scoring proteoforms, and the proteoform
family concept will greatly benefit both proteoform discovery
and scoring.
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