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Objective: The heterogeneity of amyotrophic lateral sclerosis (ALS) survival duration,
which varies from <1 year to >10 years, challenges clinical decisions and trials.
Utilizing data from 801 deceased ALS patients, we: (1) assess the underlying complex
relationships among common clinical ALS metrics; (2) identify which clinical ALS metrics
are the “best” survival predictors and how their predictive ability changes as a function
of disease progression.

Methods: Analyses included examination of relationships within the raw data as well as
the construction of interactive survival regression and classification models (generalized
linear model and random forests model). Dimensionality reduction and feature clustering
enabled decomposition of clinical variable contributions. Thirty-eight metrics were
utilized, including Medical Research Council (MRC) muscle scores; respiratory function,
including forced vital capacity (FVC) and FVC % predicted, oxygen saturation, negative
inspiratory force (NIF); the Revised ALS Functional Rating Scale (ALSFRS-R) and its
activities of daily living (ADL) and respiratory sub-scores; body weight; onset type, onset
age, gender, and height. Prognostic random forest models confirm the dominance of
patient age-related parameters decline in classifying survival at thresholds of 30, 60, 90,
and 180 days and 1, 2, 3, 4, and 5 years.

Results: Collective prognostic insight derived from the overall investigation includes:
multi-dimensionality of ALSFRS-R scores suggests cautious usage for survival
forecasting; upper and lower extremities independently degenerate and are autonomous
from respiratory decline, with the latter associating with nearer-to-death classifications;
height and weight-based metrics are auxiliary predictors for farther-from-death
classifications; sex and onset site (limb, bulbar) are not independent survival predictors
due to age co-correlation.

Conclusion: The dimensionality and fluctuating predictors of ALS survival must be
considered when developing predictive models for clinical trial development or in-clinic
usage. Additional independent metrics and possible revisions to current metrics, like the
ALSFRS-R, are needed to capture the underlying complexity needed for population and
personalized forecasting of survival.
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INTRODUCTION

The prolific 2014 ALS Association’s Ice Bucket Challenge
commenced the world-wide dumping of ice water on the
heads of courageous supporters to bring awareness and research
funding to a lesser-known yet fatal neurodegenerative disease,
Amyotrophic Lateral Sclerosis (ALS) (Wicks, 2014). Despite
recent identification of genotypes (Hrastelj and Robertson,
2016) and phenotypes (Hollinger et al., 2016), ALS remains
elusive, largely due to its heterogeneous nature. The multi-
faceted etiology of ALS is reflected in its sporadic underpinnings,
as less than 10% of patients have a familial form (Hrastelj
and Robertson, 2016). Varied symptom onset types include
extremity muscle deficits, the dominant “limb onset”; dysarthria
or dysphagia symptoms, “bulbar onset”; and a small fraction have
onset with respiratory or generalized weakness. Finally, post-
onset ALS survival duration fluctuates from less than 1 year to
over 10 years (Beghi et al., 2011).

Inherent heterogeneity of ALS makes it exceedingly difficult
to predict and exacerbates anxiety among ALS patients and their
families. Heterogeneity also increases the physicians’ challenge
to develop a timely intervention plan and is blamed for
numerous failed clinical trials, as statistical variance drowns
all but inconceivable treatment effect sizes (Beghi et al., 2011).
The inability to accurately gauge varied outcomes makes the
assessment of therapeutic efficacy problematic, slowing curative
discovery (Rutkove, 2015). In short, the ability to account for
heterogeneity and predict real-time ALS clinical outcomes is a
necessity.

Recent crowdsourcing efforts (Atassi et al., 2014; Küffner et al.,
2015; Zach et al., 2015) focused on developing computer models
to predict clinical ALS progression. Namely, the DREAM-Phil
Bowen ALS Prediction Prize4Life challenge (Küffner et al., 2015)
used the PRO-ACT clinical trial data (Atassi et al., 2014) to
forecast slope of decline of the Revised ALS Functional Rating
Scale (ALSFRS-R) (Cedarbaum and Stambler, 1997; Cedarbaum
et al., 1999; Castrillo-Viguera et al., 2010; Creemers et al., 2015),
a clinical questionnaire that evaluates externally observable
function. However, the ambiguity and heterogeneity associated
with ALSFRS-R (Voustianiouk et al., 2008; Franchignoni et al.,
2013, 2015; Mandrioli et al., 2015) as an outcome metric and
the characteristics of the PRO-ACT cohort (Fournier and Glass,
2015) limit their translational usage. A very recently published
multi-clinic study was one of the first to develop a personalized
patient prediction model (Westeneng et al., 2018) for patients
who did not receive ventilation support. While the latter study
was yet another step forward, patient heterogeneity still greatly
complicates personalized prediction, much less population-level
models necessary for clinical trials.

Before truly representative and personalized or population-
level prediction models can be a new standard for clinical trial
development and in-clinic decision-making, we must first better
understand the complex relationships among the clinical metrics
used to characterize ALS progression and forecast survival.
ALS is a diagnosis of exclusion, meaning there is not one
single objective medical “test” (imaging, blood test, genotyping,
etc.) that is applicable to positively identifying all ALS patients

nor is there one single “measurement” that can be used to
objectively and precisely stage the greatly variable temporal ALS
disease course. For this reason, a combination of assessments
must be used to characterize clinical ALS. Understanding the
relationships among existing clinical assessments and how they
correlate to various disease stages is critical to optimize clinical
ALS characterization, and ultimately, interventional and survival
forecasting.

The primary goals of this study are to: (1) assess the underlying
complex relationships among clinical ALS metrics; (2) identify
the “best” ALS clinical predictors and how predictor ranking
changes as a function of disease progression and/or disease
stage. First, we utilize raw clinical ALS assessment metrics and
patient characteristics to assess the complexity of the disease,
including the underlying latent dimensionality. Secondly, we
construct interactive models that directly utilize survival/lifespan
as the outcome metric for ALS patient survival classification
at various thresholds ranging from 30 days to 5 years. Our
analytical findings provide key insight for developing better ALS
progression metrics and resolving the heterogeneity of ALS that
plagues clinical trials and blurs clinical decision-making.

MATERIALS AND METHODS

We performed a retrospective analysis of 8,028 clinical visit
records collected from 1,585 patients at the Emory ALS Clinic
(Emory University Hospital, Atlanta, GA, United States). Data
collection, transcription, and quality control methods are as
previously published (Mitchell et al., 2015a; Hollinger et al.,
2016). All data was de-identified and anonymized. Institutional
Review Board approval was obtained from Georgia Institute of
Technology and Emory University.

We first performed an exploratory analysis of the raw clinical
data. We then construct interactive models to predict and/or
classify survival duration. Collectively, the analysis of raw data
and the models are used to assess the complex relationships
among clinical measures of ALS and their dynamic correlation
with survival forecasting. Figure 1 provides a diagrammatic
overview of the study’s methods with additional details presented
below.

Data Inclusion Criteria and Missing Value
Imputation
The 38 clinical variables utilized as predictors are listed in the
left column of Table 1. Included patients had a known date of
death and a complete set of Medical Research Council (MRC)
muscular scores measured for at least one visit. The final data set
(Table 1) for model development encompassed 3,918 visit records
collected from 801 patients. Missing values in the original data
set were imputed using the k-nearest neighbor (kNN) imputation
technique. Specifically we utilized the mean value for the 5-
nearest neighbors (e.g., kNN k-value of 5), with a Euclidean
distance metric as described in Ishwaran et al. (2008).

Metrics included are: forced vital capacity (FVC); the observed
percent of predicted FVC (% predict FVC); the negative
inspiratory force (NIF); oxygen saturation (O2 sat); left and

Frontiers in Neuroinformatics | www.frontiersin.org 2 June 2018 | Volume 12 | Article 36

https://www.frontiersin.org/journals/neuroinformatics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles


fninf-12-00036 June 12, 2018 Time: 16:8 # 3

Pfohl et al. Complexity of ALS Survival Prediction

FIGURE 1 | Overview of study design. Raw clinical data (801 patients, 38 variables) is imputed using k-nearest neighbors (kNN) technique. A combination of
statistical analysis of the clinical data, constructed survival prediction and classification models, and dimensionality reduction is utilized to accomplish two main
goals: (1) obtain a comprehensive view of complex clinical relationships; (2) determine which clinical variables are the “best” predictors of survival and, namely, how
their predictive influence changes with disease progression.

right sided MRC muscular function scores for eleven extremity
muscles; height; weight; onset type (bulbar or limb); sex; age;
the (ALSFRS-R) (Cedarbaum and Stambler, 1997; Cedarbaum
et al., 1999), including the ALSFRS-R total score, the ALSFRS-
R activities of daily living (ADL) sub-score, and the ALSFRS-R
respiratory sub-score; estimated date of ALS symptom onset (as
reported by patient); ALS diagnosis date; ALS “baseline” visit date
(first visit at tertiary ALS clinic); and date of death.

Exploratory Clinical Data Statistical
Analysis
The linear Pearson correlation was computed for each pair of
visit-level variables for the 3,918 visit records and visualized as
a correlation matrix using corrplot (Wei and Simko, 2016). To
produce the dendrogram, correlations were re-calculated with
time until death (the response variable) excluded. The resulting
pairwise correlations were transformed to a distance metric such
that distance was (1-correlation)/2 and clustered hierarchically
with complete linkage.

The dimensionality of the imputed predictor dataset
was reduced with principal component analysis (PCA)
and results visualized with FactoMineR and factoextra (Lê
et al., 2008). Additionally, a partial least square (PLS) model

(Dayal and MacGregor, 1997; Friedman et al., 2010) was fit with
visit-level variables with time until death as the response variable.
The projection of a variable onto a PLS component was taken as
the corresponding element of PLS weight matrix [matrix R in
(Dayal and MacGregor, 1997)].

Overview of Survival Prediction Models
Two primary predictive model types were constructed: a
generalized linear model (GLM) where the regularization path is
computed using the elastic net penalty (e.g., a linear combination
between lasso and ridge regression) (Friedman et al., 2010),
abbreviated in the figures as “Lasso,” and the full random forest
model (Liaw and Wiener, 2002), depicted in the figures as “Full-
RF. Both the GLM model and the Full-RF included all 38
variables illustrated in Table 1. The GLM and random forest
model types were chosen based on their usage in prior ALS
survival prediction literature (Fournier and Glass, 2015; Küffner
et al., 2015), as well as their unique attributes that make them
suitable to the goals of this study. The GLM enables p-values
to be calculated to examine quantitative significance of clinical
variables as predictors for survival. The main disadvantages of the
GLM are that it does not account for complex interactions, and
the GLM implicitly assumes the input variables fit a multivariate
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TABLE 1 | Number of missing visit records by field.

Variable Missing records – Missing records –

all (%) valid (%)

Bicep.Left 3238 (39.8) 1451 (37.0)

Bicep.Right 3237 (39.8) 1446 (36.9)

Delt.Left 3240 (39.9) 1456 (37.2)

Delt.Right 3236 (39.8) 1452 (37.1)

Edb.Left 4869 (59.9) 2374 (60.6)

Edb.Right 4851 (59.7) 2347 (59.9)

Gas.Left 3911 (48.1) 1905 (48.6)

Gas.Right 3896 (47.9) 1900 (48.5)

Ham.Left 3475 (42.7) 1639 (41.8)

Ham.Right 3480 (42.8) 1641 (41.9)

Intrin.Left 3580 (44.0) 1657 (42.3)

Intrin.Right 3573 (43.9) 1657 (42.3)

IP.Left 3414 (42.0) 1589 (40.6)

IP.Right 3419 (42.1) 1587 (40.5)

Quad.Left 3385 (41.6) 1569 (40.0)

Quad.Right 3383 (41.6) 1566 (40.0)

TA.Left 3464 (42.6) 1619 (41.3)

TA.Right 3449 (42.4) 1608 (41.0)

Tricep.Left 3299 (40.6) 1501 (38.3)

Tricep.Right 3290 (40.5) 1490 (38.0)

Wrist.Left 3458 (42.5) 1592 (40.6)

Wrist.Right 3445 (42.4) 1580 (40.3)

Time.Since.First.Visit 0 (0.0) 0 (0.0)

Time.Until.Death 3495 (43.0) 0 (0.0)

Duration.From.Diagnosis 467 (5.7) 59 (1.5)

Duration.From.Onset 105 (1.3) 39 (1.0)

Forced.Vital.Capacity 2718 (33.4) 1226 (31.3)

% Predict 2502 (30.8) 1108 (28.3)

NIF 3388 (41.7) 1459 (37.2)

O2.sat 5086 (62.6) 2345 (59.9)

Age 0 (0.0) 0 (0.0)

Patient.Weight 5205 (64.0) 2114 (54.0)

Patient.Info.Height 3931 (48.4) 1590 (40.6)

ALSFRS.r.total 5076 (62.4) 2611 (66.6)

ALSFRS.r.ADL 6615 (81.4) 2996 (76.5)

ALSFRS.r.Respiratory 6316 (77.7) 2818 (71.9)

Onset.Type 221 (2.7) 112 (2.9)

Sex 0 (0.0) 0 (0.0)

The Valid designation refers to those records belonging to patients in which the
time of death was known and for which muscular measurements were recorded
for at least one visit.

normal distribution. In contrast, the random forest models do
account for complex interactions, do not require the assumption
of a multivariate normal distribution, are non-parametric and
robust under arbitrary re-scalings of the inputs (Svetnik et al.,
2003). In summary, random forest models are simply better
suited for examining temporal dynamics and for elucidating
data structure complexity with model dimensionality reduction
techniques (Strobl et al., 2008).

For the stated goals of this study, which focuses on
examining complex clinical ALS metric relationships and their
varying correlation with survival as a function of disease

progression, using independent records was preferable to using
patient-specific histories (e.g., patient-specific variable slopes)
to minimize over-fitting. Therefore, all survival models predict
time until death using independent visit records. Specifically,
time until death (in days) for each visit was considered as
the response variable with the visit-level variables (Table 1) as
predictors. Both predictive regression and classification random
forest models of survival were constructed. Using standard
random forest classification models, mortality was predicted as
a binary outcome across mortality thresholds (Table 2) in which
a positive result is assigned to visits with a time until death
smaller than the threshold time. Random forest out of bag
predictions for the final model were used to estimate sensitivity
(recall), specificity, precision (positive predictive value) across the
spectrum of internal decision cut-offs and mortality thresholds.

Reduced Models Using Dimensionality Reduction
In machine learning, dimensionality reduction is the process of
reducing the number of model variables under consideration by
obtaining a set of principal variables from the full set of variables
that can be used to accurately predict outcome. Dimensional
reduction is typically divided into feature selection and feature
extraction. In short, the primary purpose of dimensional
reduction in the present study is to better elucidate underlying
characteristics of the data set and what variables most contribute
to model performance (e.g., better survival prediction).

We used four standard dimensionality reduction settings to
iteratively examine predictive performance in reduced random
forest models with k components, “PCA-RF” utilized projections
of data on to the principal components as predictors in the
random forest (Tolosi and Lengauer, 2011); “PLS-RF” used the
PLS scores (Dayal and MacGregor, 1997) as predictors in the
random forest; “Importance” used rank-ordering of variable
importance values from the Full-RF to reduce the number of
predictors (Strobl et al., 2007); “Clusters” used the clustered
features from supervised feature clustering (Tolosi and Lengauer,
2011) as predictors to random forest. No explicit specifications
are made regarding the number of dimensions included in
the reduced models. Instead, the relative performance of the
models for a grid of potential reduced model component values,
k, is performed and illustrated for all four dimensionality

TABLE 2 | Number of visits and patients across mortality thresholds.

Mortality threshold Number of visits (%) Number of patients (%)

30 days 91 (2.3) 85 (10.6)

60 days 194 (5.0) 172 (21.5)

90 days 324 (8.3) 283 (35.3)

180 days 721 (18.4) 491 (61.3)

1 year 1506 (38.4) 639 (79.8)

2 years 2565 (65.5) 732 (91.4)

3 years 3101 (79.1) 766 (95.6)

4 years 3396 (86.7) 782 (97.6)

5 years 3591 (91.7) 789 (98.5)

Data shown are the number of visits in the dataset with a time until death of less
than associated mortality threshold and the patients associated with those visits.
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reduction methods. This allows visualization of the necessary
dimensionality to attain performance comparable to that of the
full random forest model, “Full-RF,” which uses all 38 clinical
variables.

In addition to reduced models constructed using standard
dimensionality reduction techniques as described above, a
reduced model variable sub-set combination experiment was
performed using concept-based variables grouped by clinical
concept: “duration” (time from onset, diagnosis, and first visit);
“age”; “respiratory” (O2 saturation, NIF, FVC, and % predicted
FVC); “muscle” (all individual muscle scores), “ALSFRS”
(ALSFRS-R total, respiratory and ADL sub-scores); “weight and
height”; “onset type and sex” (bulbar or limb; male or female).
Concept-based variable grouping assists in understanding the
importance of variable sub-sets that are clinically intuitive.

Survival Model Construction and Validation
All regression and classification models were built with the caret
framework in the R programming language. Random forest
models were built with the randomForest (Liaw and Wiener,
2002) package and generalized linear models were built with the
glmnet package (Friedman et al., 2010). For each model, 10-fold
cross validation was repeated ten times. The mean and standard
deviation for model performance metrics are computed based
on pooling the performance results across the ten repetitions of
10-fold cross validation, corresponding to 100 values.

For ten repetitions of 10-fold cross-validation, the original
sample is first randomly partitioned into ten equal size
subsamples. Of the ten subsamples, a single subsample is retained
as the validation data for testing the model, and the remaining
subsamples are used as training data. The cross-validation
process is then repeated ten times (the folds), with each of
the subsamples used exactly once for validation. The results
from the folds are then combined to produce a mean and
standard deviation for each performance metric. The advantage
of this method is that it maximizes the analytical sample size
as all observations are used for both training and validation,
and each observation is used for validation exactly once. For
this exploratory study to assess clinical ALS dimensionality and
complexity, 10 repetitions of 10-fold cross-validation was deemed
superior to a truly split training and validation data, the latter
which is better for non-exploratory models solely focused on
personalized prediction accuracy.

In regression cases, performance is defined as either the
root mean squared error (RMSE) or the testing R2 (squared
correlation or percent variance explained) of the predicted
response for testing samples with respect to their known value.
In classification cases, the performance was defined as the area
under the curve (AUC) of the receiver-operating-characteristic
(ROC) for testing samples.

For each testing-training split of the cross-validation
procedure, the missing data were imputed using kNN technique
and scaled to zero-mean and unit-variance. This process
was repeated over a grid search of the tuning parameters (α
and λ for elastic net, mtry for random forest) to determine
the parameters that result in optimal performance (minimal
RMSE or maximal AUC). Other relevant random forest

parameters followed the defaults from the randomForest R
package (Liaw and Wiener, 2002); that is, 500 trees were
used for each forest and trees were grown to maximal depth
subject to the constraints that terminal nodes had a minimum
of size 5 for regression tasks and of size 1 for classification
tasks. In each case, a final model was then generated with
the optimal parameters for the full dataset after missing value
imputation using kNN. If unspecified, data are presented as
mean ± standard deviation and the results visualized with ggplot
(Wickham, 2009).

Assessment of Survival Model Variable Importance
The importance of variables in the random forest models was
assessed as the percent increase in the out-of-bag mean squared
error upon independent permutation of each variable for the
final model following cross validation with the supervised feature
clustering method used to correct for potential correlation bias
(Tolosi and Lengauer, 2011). The significance of variables in
the GLM model was assessed with the exact post-selection
inference method for the lasso (Tibshirani et al., 2014), enabling
p-value computation while controlling for implicit multiple
comparison.

RESULTS

A total of 801 deceased patients, 3,918 clinic visits, and 38
assessed clinical variables (Table 1) were ultimately included in
the results and analysis of this study. As depicted in Figure 1, this
exploratory study consists of analysis of complex relationships
within the raw data, development of survival prediction and
classification models, and dimensionality reduction of the
raw data and survival models. The resulting overlapping
insights bring into focus a comprehensive view of the complex
relationships among variables currently utilized to assess disease
progression and predict ALS patient survival.

Exploratory Clinical Data Analysis
We begin with an exploratory analysis of the raw clinical data
to examine relationships, correlations, complexity, and variance
that can impart clinical and theoretical insight.

Correlation of Visit-Level Variables (Clinical Metrics)
The visualization of the correlation structure of the raw data
reveals several high level relationships among the visit-level
variables (Figures 2A,B). In particular, there is a high degree
of correlated decline (r ≈ 0.7–0.9) in the upper body muscles
(bicep, tricep, deltoid, wrist, intrinsic), which occurs largely
independently of an analogously correlated decline of the lower
body muscles (hamstring, quadriceps, gastrocnemius, iliopsoas,
extensor digitorum brevis, transverse abdominis), as is evident by
the lesser correlation (r ≈ 0.3–0.45) between the upper and lower
scores.

The respiratory measures of FVC, % predicted of FVC, and
NIF tend to correlate together (r ≈ 0.6–0.8). The FVC and the %
predicted of FVC show mild correlations with the muscle scores
(r ≈ 0.25–0.35), while the relationship between NIF and the
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FIGURE 2 | Correlations between raw amyotrophic lateral sclerosis (ALS) clinical variables. The raw clinical data was filtered to include only those patients in which
the time of death was known and for which muscular measurements were recorded for at least one visit (N = 801, variables = 38). Missing values were imputed
using kNN technique (see section “Materials and Methods”). (A) The pairwise Pearson correlation was computed for each pair of variables following kNN imputation.
The matrix illustrates the sign and magnitude of correlation for each pair. (B) The correlations were transformed to a distance metric (see section “Materials and
Methods”) and clustered hierarchically with complete linkage. Time of death was excluded from the clustering so as to obtain a representation of the correlation
structure of the predictor data.

muscle scores is weaker (r ≈ 0.07–0.15). The oxygen saturation
shows a mild relationship with FVC, % predicted of FVC, and
NIF (r≈ 0.20–0.25), but has very little relationship with muscular
scores (r ≈ 0–0.06).

The ADL sub-score of ALSFRS-R moderately correlates with
the muscular measures (r ≈ 0.5–0.65), while the respiratory sub-
scores show a weak relationship with the muscle scores (r ≈
0.16–0.22). Interestingly, the ADL and respiratory ALSFRS-R
sub-scores correlate comparably with FVC, % predicted FVC,
and NIF (ALSFRS-ADL: r = 0.548, 0.587, 0.432; ALSFRS-
Respiratory: r = 0.504, 0.519, 0.386), with a slightly larger
degree of correlation between the respiratory measures and ADL
sub-score than with the respiratory measures and ALSFRS-R
respiratory sub-score.

Negative correlations with the disease start variables (time
since first visit, duration from diagnosis, duration from onset)
implies that the variable in question declines after the start of
disease. For each declining variable, the duration from onset
shows a lesser magnitude of negative correlation than time
since first visit (e.g., baseline). There is lesser correspondence
between the visit-level variables and the time until death. The
muscle scores, which showed a moderate degree of decline
with respect to the disease start variables, have very little
correlation with the time until death (r ≈ −0.03–0.09). In
contrast, the respiratory measures, which show a lesser degree
of decline with respect to the disease start, have a somewhat
stronger correlation with the time until death (FVC: r = 0.28;
% predicted FVC: r = 0.22; NIF: r = 0.24). There are

mild correlations of the time until death with ALSFRS (total:
r = 0.21; ADL: r = 0.15; respiratory: r = 0.23) and with age
(r = −0.27). The lack of any large correspondence of any
one variable with the time until death implies that a complex
interaction of measures may be required for accurate survival
prediction.

Exploratory Dimensionality Reduction of Raw Clinical
Variables
Decomposition of the visit-level predictor variables (all visit-level
variables with the exception of time until death) with PCA gives
an alternate representation of the data in terms of a reduced
number of orthogonal components. In this representation,
the first and second principal components account for 43.03
and 13.64% of the variance with 91.06% of the variance
accounted for by the first thirteen components (Figure 3A).
The projections of the variables onto the first two components
(Figure 3B) reveal that the majority of the variance in the
predictor data is due to variance in the muscle scores and
the ALSFRS-R total and its ADL sub-score. The third and
fourth components (Supplementary Figure S1A) account for
variance in the respiratory visit data and patient characteristics.
An analogous partial-least decomposition of the variables was
generated through a PLS model for time until death as
the response variable. In this case, age, onset type, and the
duration from onset have the most prominent contributions
to the first four components (Figure 3C and Supplementary
Figure S1B), implying that those variables may account for
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FIGURE 3 | Principal component and partial least squares (PLS) decomposition of raw ALS clinical variables. (A) The raw ALS clinical dataset was imputed and then
decomposed with principal component analysis (PCA) and the % variance explained by each component plotted. The variables were projected onto (B) the first and
second principal components. A PLS model with the time until death as the response was generated and the columns of the weight matrix visualized as variable
projections for (C) the first and second columns.

much of the predictive signal in the context of the PLS
model.

Survival Models to Explore Clinical
Variables as Predictors
Explicitly, time until death from each visit was modeled as
a continuous outcome with visit-level variables (Table 1) as
predictors. Because the visits are treated independently, the
resulting predictions are not attached to the known history of a
given patient, making them suitable for exploratory population-
level insight. The two primary predictive models, which included
all 38 metrics shown in Table 1, included the GLM illustrated in
Figure 4A as, “Lasso,” and the full random forest model, “Full-
RF.” Additionally, dimensionality reduction techniques were
used to construct reduced random forest models.

Survival Regression Model Performance
The full random forest regression model, “Full-RF,” for time
until death with all 38 visit-level variables (Table 1) attains
a testing RMSE of 547.73 ± 45.94 days and a testing R2 of
0.524 ± 0.065 over ten repetitions of 10-fold cross validation,
greatly outperforming the GLM, “Lasso,” with a testing RMSE of
697.07± 47.10 days and a testing R2 of 0.216± 0.037 (Figure 4A)
for a mixing parameter α = 0.01 and a regularization parameter
λ= 6.629. The out-of-bag random forest variable importance for
the full model in terms of the % increase in MSE (Figure 4B)
indicates that age is the most important of the visit-level variables
for the prediction of time until death. Following age, the duration
from onset and diagnosis, patient height, % predicted of FVC, and
NIF are the next most important variables. None of the muscle
scores rank in the top ten in the variable importance list, although
the ALSFRS total and ADL sub-score, which moderately correlate
with muscle scores, are ranked at 10 and 11, respectively. The
patient sex and onset type rank near the bottom of the variable
importance list at rank 31 and 37, respectively.

Predictive Performance of Dimensionally Reduced
Models
Examination of reduced models (models constructed using
dimensionality reduction techniques, which utilize fewer
variables to predict survival) provide additional insight into
the full data structure and relationships among the underlying
clinical metrics. The performance of the full random forest
model, “Full-RF,” was analyzed under various dimensionality
reduction settings to determine if a reduced representation can
perform as well as the full model. The random forest models built
off of principal component and PLS projections, “PCA-RF” and
“PLS-RF,” fail to replicate the performance of the full random
forest model (Figure 4A). The model built by stepwise inclusion
of the variables by variable importance measures, “importance,”
performs within one standard deviation of the full model with
only four components (age, duration from onset, duration from
diagnosis, patient height); applying supervised feature clustering,
performance is consistent with the full model through 23
merging steps at which point there are fourteen variable clusters
in the model as components, k (Figure 4A). Variable importance
ranking for this reduced 14-component model (Figure 4C)
compares favorably with the full model (Figure 4B).

Variable Combination Experiment Identifies Key
Clinical Concepts
An experiment was performed to determine which concept-based
groupings of clinical variables have the most impact in predicting
survival: “duration”; “age”; “respiratory,” “muscle” “ALSFRS”;
“weight and height”; “onset type and sex.” See Section “Reduced
Models Using Dimensionality Reduction” for concept cluster
definitions. The evidence that the prediction of time until death
is primarily driven by the age and disease duration variables
is furthered by the results of the concept-based variable group
combination experiment (Figure 5). In fact, a model consisting
solely of duration and age variables outperforms all models in
which only the duration or age is excluded. Beyond that inflection
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FIGURE 4 | Prediction of time until death using survival models constructed from independent visit records. Time until death from each visit was modeled as a
continuous outcome with visit-level variables (Table 1) as predictors. Data shown are the mean ± SD of the testing R2 computed over ten repetitions of 10-fold
cross validation with calculated missing values (imputed using kNN, see section “Materials and Methods”) embedded within the cross-validation procedure for (A)
GLM and random forest models at the value of the tuning parameters that minimize the cross-validation RMSE and are plotted over the number of components in
the model for several dimensionality reduction techniques (see section “Materials and Methods”). (B) The out-of-bag random forest variable importance results for
the random forest with all predictors included in terms of the % increase in MSE of prediction upon permutation of the values of each variable. (C) Variable
importance for a random forest model at the 23rd iteration of the variable clustering algorithm with 14 variable clusters. (D) Significance results for variable inclusion
in the GLM, as computed by the selective inference method (see section “Materials and Methods”).

point in the trend, the relative gains in model performance upon
inclusion of additional sets are marginal.

Model Comparisons Illustrate Importance of Complex
Interactions
While the GLM model (“Lasso”) performance results do
not compare favorably with the random forest (“Full-RF”)
performance results, the p-values for variable inclusion
(Figure 4D) obtained from the selective inference framework

(Tibshirani et al., 2014) are statistically interpretable. The
results generally support the random forest variable importance,
but a few specific departures, such as the insignificance of %
predict FVC, likely owed to lasso-prone correlation bias (Tolosi
and Lengauer, 2011), and the exaggerated significance of the
ALSFRS-R total, collectively reveal the predictive importance of
complex interactions and correlation structure accounted by the
random forest. Thus, for the purpose of survival prediction, the
random forest model is superior.
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FIGURE 5 | Clinical concept variable grouping combination experiment to
compare the performance of reduced models to the full random forest model.
Variables were grouped as “Muscle,” “Respiratory,” “Duration,” “ALSFRS,”
“Weight and Height,” “Sex and Onset Type” (see section “Materials and
Methods”) and all possible combinations of these variable groupings were
used as visit-level predictors in random forest models for time until death.
Plotted are boxplots of the testing R2 across the folds of the cross-validation
procedure for the model built with the value of mtry that minimizes the testing
RMSE.

Survival Model Classification Task Performance
The random forest survival model regression task was reframed
as multiple classification tasks where the target response is a
binary indicator of whether the time of until death for the
visit is less than the specified mortality threshold. Mortality
thresholds of 30, 60, 90, and 180 days, and 1, 2, 3, 4,
and 5 years were considered (Table 2). The AUC of the
ROC estimate over the cross-validation procedure (Figure 6A)
tends to increase as a function of the mortality threshold
(30 days: 0.77 ± 0.0713; 1 year: 0.85 ± 0.0202; 5 years:
0.907 ± 0.028). The out-of-bag ROC estimate for the final
model (Figure 6B) demonstrates the tradeoff between the
true positive rate (sensitivity) and the false positive rate (1-
specificity) for each mortality prediction threshold in general
correspondence with the cross-validation ROC results. The
analogous out-of-bag precision (positive predictive value) and
recall (sensitivity) relationship (Supplementary Figure S2A)
indicates severe tradeoffs for detection at 30, 60, and 90 days
with roughly linear tradeoffs for thresholds at 1 and 2 years.
Additionally, the optimal internal decision cutoff, the fraction
of decision tree votes required for positive classification, as
measured by the out-of-bag F1 score (Supplementary Figure
S2B), tends to increase as the mortality threshold increases due
to the class imbalance at higher mortality thresholds.

The formulation of the model in terms of classification tasks
across many time thresholds allows for the assessment of the
variable importance for each of those thresholds to obtain a
measure of the change in variable importance over the course

of disease. At 30 days (Figure 6C), the magnitudes of the
variable importance measures are diminished with respect to
those observed at 1 year (Figure 6D) or 5 years (Figure 6E)
and are relatively uniform in value. At 30 days, the top ranking
variables are primarily associated with the time since disease
start, the ALSFRS-R total and ADL sub-score, and the FVC
and % predicted of FVC. In contrast to other models, the age
does not appear to be highly informative for classification at
30 days. At 1 year (Figure 6D), the age stands out as the
most important variable, followed by the NIF, duration from
diagnosis, % predicted of FVC, and the ALSFRS total. At 5 years,
the influence of measured clinical variables seem to lose out
in importance to time based variables, age, weight, and height.
For this case, the FVC (rank 6) is most influential respiratory
measure, followed by the % predicted of FVC (rank 8) and
NIF (rank 9). In no case do any of the muscle scores seem to
rank favorably in terms of variable importance and the onset
type, and patient sex consistently rank as the least informative
variables.

DISCUSSION

Our novel assessment of clinical ALS disease complexity using
both raw clinical data analysis and interactive survival models
identifies dynamic, changing correlations among ALS clinical
metrics with disease progression. Knowing how the “best”
predictors change with time or ALS disease progression is critical
for developing future personalized survival models ready for
real-time usage in the clinic or population models for clinical
trial development. The relationships identified in the raw data
and the predictive models illustrate key prognostic insights that
can also lead to the development of better ALS assessment
metrics.

Unlike most previous predictive computational models of
ALS (Atassi et al., 2014; Küffner et al., 2015; Zach et al., 2015),
we directly utilized survival and lifespan-based outcome metrics
rather than specifying the ALSFRS-R slope as a measure of ALS
progression a priori. Using survival as the predicted outcome
removes any associated interpretative ambiguity. By utilizing
survival as the outcome metric, we were able to evaluate the
predictive value of the ardently contested ALSFRS-R alongside
other in-clinic metrics, such as MRC muscle scores, clinical
respiratory measures, and patient characteristics.

Below we summarize our major findings and their clinical
significance. We close by discussing how future advances
should focus on the identification of independent metrics of
ALS progression that acknowledge its underlying dimensional
complexity.

Time Variables Dominate ALS Survival
Prediction
The time variables (patient age, time since onset, time
since diagnosis, time since baseline visit, disease duration)
are the dominant predictors, particularly for extended
survival classification (beyond 1 year). Time variables
consistently ranked highly in every model scenario, and
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FIGURE 6 | Prediction of mortality as a binary outcome across mortality thresholds. For each visit, the time until death was converted to a binary outcome for
thresholds of at 30, 90, and 180 days and 1, 2, 3, 4, and 5 years. For each threshold, random forest classification models were built with ten repetitions of 10-fold
cross validation for various levels of mtry (see section “Materials and Methods”). (A) The mean ± SD of the ROC across the cross-validation procedure for the value
of mtry with maximal mean cross-validation. (B) The out-of-bag prediction for the optimal model for each threshold was used to generate receiver-operating-
characteristic (ROC) results across prediction cutoffs. In each case, mortality sooner than the threshold time was considered to be a positive outcome for the
purposes of computing performance metrics. The variable importance was assessed for the models at (C) 30 days, (D) 1 year, and (E) 5 years.

the clustered variable experiment (Figure 5) showed that
they are the single most-important variable group needed
to accurately predict survival; that is, time variables provide
information that cannot be ascertained from other metrics.
As shown in previous work (Fournier and Glass, 2015),
time since baseline visit was the most consistent of the time
predictors.

Dominant Clinical Predictors Change
With Progression
The best predictors change over time and disease progression
(Figure 6). For example, functional muscle degeneration
(ADL sub-score of the ALSFRS-R, MRC muscle scores)
correlates with early disease progression whereas quantifiable
respiratory losses (namely % predict FVC but also NIF, O2
sat, etc.) correlate better with survival. Height and weight
do not factor in to survival classification early on, but are
more influential for predicting survival beyond 2 years.
Patient age is not important for survival classification at
30 days, but is important at 1 year and beyond. In summary,
considering temporal changes in variable importance is
key for developing accurate predictions at each disease
stage or survival classification. Finally, changes of variable
importance with time or disease progression could explain
discourse in the field over the importance of specific
predictors.

ALSFRS-R Is Not Necessarily the “Gold
Standard”
Revised ALS Functional Rating Scale is typically quite significant
in linear models that do not consider complex interactions
(Figure 4D), which is how its impact has been previously assessed
by those citing its veracity (Cedarbaum et al., 1999; Kimura et al.,
2006; Kollewe et al., 2008). However, others (Voustianiouk et al.,
2008; Franchignoni et al., 2013, 2015; Mandrioli et al., 2015) have
acknowledged the concerns of ALSFRS-R validity as a primary
outcome metric or as stand-in for survival.

The ALSFRS-R is not highly ranked in any of the random
forest models with the exception of the random forest for
survival classification at 30 days (Figure 6C). Our results
reveal that the ALSFRS-total is more discriminatory for
patients near death, and its clinical significance is very much
tied to the slope of decline in individual patients versus a
population-level effect. As such, ALSFRS-R should not be used
as the primary or solo outcome metric for population-level
models.

Notably, there are complex incongruences in the ALSFRS-
total, and especially the ALSFRS-R respiratory sub-score, which
is consistently lower ranking or insignificant (Figures 4, 6
despite clear, consistent significance in the % predict FVC.
Our findings corroborate the inability of the ALSFRS-
R total score (Franchignoni et al., 2013, 2015; Mandrioli
et al., 2015), and even the ALSFRS-R respiratory sub-score
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(Pinto and de Carvalho, 2015) to represent true progression due
to multidimensionality (Franchignoni et al., 2013, 2015) and
heterogeneity (Voustianiouk et al., 2008; Mandrioli et al., 2015).
Re-evaluation of how sub-scores or ALSFRS-R questions are
combined could increase the significance of this universal ALS
clinical metric.

Respiratory, Upper and Lower Muscle
Function Losses Are Independent
The raw clinical correlations and the results of all models
clearly reveal that upper motor and lower motor losses occur
independently, a result that had been theorized (Ravits et al.,
2007) but not yet fully embraced by the field. Moreover,
the decline in respiratory function occurs predominantly
independently from the upper and lower functional muscle
degeneration. As noted above, survival prediction is tied more
strongly to respiratory metrics, especially % predict FVC, whereas
early disease progression is tied more closely to functional muscle
degeneration. Respiratory decline has received nearly unanimous
support by the field as key survival predictor (Magnus et al., 2002;
Fournier and Glass, 2015; Küffner et al., 2015; Mandrioli et al.,
2015).

It was of particular interest to assess the predictive value of
the MRC muscle scores, as they were not recorded in the PRO-
ACT (Atassi et al., 2014) or prior analyses (Kent-Braun et al.,
1998; Magnus et al., 2002). Our cumulative findings suggest that
no single muscle or group or muscles is independently predictive
of survival. However, the independent segregation of the upper
and lower muscle scores, as well as the correlation of muscle
degeneration to onset, means that individual or aggregate muscle
scores could still be valuable for the development of early-stage
ALS progression assessments.

Interestingly, a recent meta-analysis of SOD1-G93A ALS
mouse data showed that while some treatments, like those
targeting oxidative stress, could decrease functional decline by an
average of 59.6%, only a 10% average difference in survival was
noted; this also suggests that muscle function, while important
to quality of life and a key target of ALS disease, is likely not the
primary, direct contributor to survival (Bond et al., 2018).

Onset Type and Gender Are Not
Independent Predictors of Survival
Qualitative observations suggest bulbar patients and/or males
have shorter disease duration (Magnus et al., 2002; Testa et al.,
2004; Mandrioli et al., 2006; Küffner et al., 2015). However, the
raw data and all model scenarios reveal that onset type and gender
are not independent predictors of survival. Like the DREAM
models (Küffner et al., 2015), onset type and gender always
rank near the bottom in variable importance. Onset type closely
aligns with the information provided by age (shown in Figure 3);
given bulbar onset ALS patients tend to be older, this finding is
intuitive (Coan and Mitchell, 2015). Similarly, females tend to
have a longer lifespan than males even in the general [non-ALS]
population (Mitchell et al., 2015b); thus, studies citing gender
differences (McCombe and Henderson, 2010) are likely tied to

either age and/or gender-biased treatment etiology (Pfohl et al.,
2015), rather than independent gender effects.

Height and Weight Have Varying
Significance
Height and weight have varying effects, which could explain
contested literature (Paganoni et al., 2011; Reich-Slotky et al.,
2013; Küffner et al., 2015). Height and weight are, unsurprisingly,
intertwined and appear to be especially helpful for extended
survival classification, such as at 5 years (Figure 6E). In the
presented population-level survival prediction models, height
appears to be important and thus, could either be a stand-
alone population-level predictor (e.g., perhaps due to its co-
correlation with motoneuron length) or, in contrast, height
could simply a stand-in proxy for weight. Weight, itself, has
little predictive value in the illustrated analysis. However, in
the present analysis, weight was based upon independent visit
records without historical context from a specific patient (e.g.,
slope of weight decline). Other studies have stated that the slope
of weight decline with ALS disease progression is likely more
important (Küffner et al., 2015; Hollinger et al., 2016) in terms
of predictive power. The impact of weight is complicated by the
fact that obesity is tied to earlier ALS onset age (Hollinger et al.,
2016).

Complexity Is the Key to Unlock ALS
A viewpoint change is needed to acknowledge, based on
increasing evidence, that ALS is a multi-faceted, inherently
complex and system-level disease that has no one single root
cause (Coan and Mitchell, 2015; Irvin et al., 2015; Kim et al.,
2015; Hollinger et al., 2016). A complex system cannot necessarily
be represented by the sum of its individual parts. We illustrated
that the ALSFRS-R score, itself, is a low-level example of a
metric flawed by the multidimensional asymmetric sum of its
parts (Franchignoni et al., 2013, 2015). The identification of a
complete set of independent predictors that fully explain ALS
“system” variance is paramount. Other variables shown to have
quantifiable commonalities among ALS sub-populations, such
as antecedent disease (Hollinger et al., 2016), genetic make-up
(Hrastelj and Robertson, 2016), blood chemistry (Küffner et al.,
2015), physical activity (Gallo et al., 2016), environmental factors
(McCombe and Henderson, 2010), and the prognostic value
of imaging as identified by recent studies (Baldaranov et al.,
2017; Grolez et al., 2018; Menke et al., 2018) could account for
remaining variance.

We are still far from developing a mechanistic representation
of the complex system of multi-factorial pathophysiological
processes (Kim et al., 2015) involved in the progression of
ALS, although dynamics and regulatory instability (Irvin
et al., 2015; Hollinger et al., 2016) have been hypothesized
to be key to treatment prediction (Mitchell and Lee, 2012).
A complete disease model is inherently hierarchical (Selinger
et al., 2003) and typical observational clinical measures
exist as emergent properties at the highest level of that
hierarchy with no clear explanatory relationship to the
complex underlying pathology. For the practical purposes
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of personalized clinical prediction of ALS, full specification
of all aspects of that complete hierarchical system may
not be essential, as recently shown with a personalized
prediction model (Westeneng et al., 2018). However, any
model built solely off observational clinical measures may be
fundamentally deficient in fully explaining the heterogeneity
in ALS progression, regardless of modeling strategy. Future
work must link lower-level mechanisms to higher-level
emergent predictors. Such linking will require identification
of common system-level relationships and instabilities (Irvin
et al., 2015; Hollinger et al., 2016) that are present in the
disease regardless of ALS genotype, phenotype, or initiating
mechanism.
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