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of malignancy in esophagus

Mengfei Liu,1,11 Hongrui Tian,1,11 Minmin Wang,1,2 Chuanhai Guo,1 Ruiping Xu,3 Fenglei Li,4 Anxiang Liu,5

Haijun Yang,6 Liping Duan,7 Lin Shen,8 Qi Wu,9 Zhen Liu,1 Ying Liu,1 Fangfang Liu,1 Yaqi Pan,1 Zhe Hu,1

Huanyu Chen,1 Hong Cai,1 Zhonghu He,10,12,* and Yang Ke10,*
SUMMARY

Using noninvasive biomarkers to identify high-risk individuals prior to endoscopic examination is crucial
for optimization of screening strategies for esophageal squamous cell carcinoma (ESCC). We conducted
a nested case-control study based on two community-based screening cohorts to evaluate the warning
value of serum metabolites for esophageal malignancy. The serum samples were collected at enrollment
when the cases had not been diagnosed.We identified 74 differential metabolites and two prominent per-
turbed metabolic pathways, and constructed Metabolic Risk Score (MRS) based on 22 selected metabolic
predictors. TheMRS generated an area under the receiver operating characteristics curve (AUC) of 0.815.
The model performed well for the within-1-year interval (AUC: 0.868) and 1-to-5-year interval (AUC:
0.845) from blood draw to diagnosis, but showed limited ability in predicting long-term cases (>5 years).
In summary, the MRS could serve as a potential early warning and risk stratification tool for establishing a
precision strategy of ESCC screening.

INTRODUCTION

Esophageal cancer (EC) is one of the most common and lethal cancers worldwide, with 604,100 new cases and 544,076 deaths in 2020.1 In

China, EC ranks as the sixth most frequent cancer and fifth leading cause of cancer death.2 Esophageal squamous cell carcinoma (ESCC)

is the predominant subtype. As the precursor lesions for ESCC, esophageal squamous dysplasia (mild/moderate/severe dysplasia) and car-

cinoma in situ (CIS) have been reported to have a significantly increased risk of progressing into invasive cancer.3 Since the main cause of EC

has not yet been determined, secondary prevention, which can also be referred to as screening, early diagnosis, and early treatment, serves as

the mainstay for ESCC prevention and control in China.

Currently, chromoendoscopy with iodine staining and indicative biopsy is recognized as the gold standard technique for the diag-

nosis of early ESCC and its precursor lesions. However, traditional screening strategies, which theoretically cover the entire population

of a given age group in an area, may impose a heavy economic burden on both individuals and government in view of the extensive

requirement for resources. Moreover, the majority of the participants would not benefit immediately from endoscopic screening due to

the relatively low detection rate of esophageal malignant lesions even in high-incidence areas.4 Because of the invasive nature of endo-

scopic examination, ESCC screening is also accompanied with non-negligible risk of perforation, bleeding, cardiopulmonary events,

and psychological harm.
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Figure 1. Flowchart of the study design and analysis
a Among the ten target villages (9208 enrolled residents) in the AECCS cohort, four villages where blood samples were collected only at the first round of

endoscopic screening were excluded, considering the potential influence of storage time of serum samples on metabolomics detection.
b For the AECCS cohort, cancer cases detected at the first round of endoscopic screening (n = 19) were excluded. Abbreviations: AECCS, Anyang Esophageal

Cancer Cohort Study; ESECC, Endoscopic Screening for Esophageal Cancer in China.
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Use of non-invasive early warning biomarkers to identify individuals at high-risk or in high-risk subgroups prior to endoscopic exami-

nation should be the main direction of ESCC screening projects. It has increasingly been recognized that cancer is a metabolic disease,

where the disturbance of cellular energy metabolism leads to dysregulated cellular proliferation.5 Metabolomics is a systematic approach

for characterizing hundreds to thousands of small molecule constituents of a biologic system (<1 kDa) in a high-throughput manner.

Several studies have been conducted to assess the diagnostic value of blood metabolites for ESCC (Table S1).6–14 However, the majority

of previous studies were hospital-based, and lacked representativeness due to selection bias both from cases (casesmainly at an advanced

stage) and controls (non-ESCC volunteers). Furthermore, these studies were unable to determine whether the alteration of metabolite

levels preceded the occurrence of ESCC. Hence, in contrast to a hospital-based study design which is more suitable for prognostic

research, prospective investigation with community-based screening cohorts is the optimal design for discovering metabolites with diag-

nostic and early warning value for ESCC.

Here, we conducted a nested case-control study based on two large-scale prospective screening cohorts in a region which is high-risk for

ESCC in rural China.We aim to provide compelling evidence for the early warning value of serummetabolites for esophageal malignancy and

to construct aMetabolic Risk Score (MRS) to identify high-risk individuals in real-world screening scenarios. The flowchart of the study design is

illustrated in Figure 1.
2 iScience 27, 109965, June 21, 2024



Table 1. Baseline characteristics of cases of esophageal malignancy and 1:1 matched controls

Variables Control n (%) Case n (%) p valuea

N 310 310 NA

Age at blood draw

Mean (SD) 61.8 (4.8) 61.8 (4.8) 0.625

Gender

Female 126 (40.7) 126 (40.7) NA

Male 184 (59.3) 184 (59.3)

Cohort

ESECC 263 (84.8) 263 (84.8) NA

AECCS 47 (15.2) 47 (15.2)

Stage

Severe dysplasia – 86 (27.8) NA

Carcinoma in situ – 59 (19.0)

Squamous cell carcinoma – 165 (53.2)

Duration of time between blood draw and analysis (year)

Mean (SD) 8.2 (1.7) 8.2 (1.7) 0.665

Family history of esophageal cancer

No 282 (91.0) 249 (80.3) <0.001

Yes 28 (9.0) 61 (19.7)

Body mass index

>22 kg/m2 258 (83.2) 233 (75.2) 0.013

%22 kg/m2 52 (16.8) 77 (24.8)

Cigarette smoking

No 215 (69.4) 214 (69.0) 0.922

Yes 95 (30.6) 96 (31.0)

Alcohol consumption

No 264 (85.2) 254 (81.9) 0.245

Yes 46 (14.8) 56 (18.1)

Abbreviations: AECCS, Anyang Esophageal Cancer Cohort Study; ESECC, Endoscopic Screening for Esophageal Cancer in China; NA, not applicable; SD, stan-

dard deviation.
ap values were derived using the McNemar test (categorical variables) or the Wilcoxon signed-rank test (continuous variables).
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RESULTS

Participant baseline characteristics

The participant baseline characteristics are shown in Table 1. Among the esophageal malignancy cases, 86 (27.8%) were diagnosed with

severe dysplasia, 59 (19.0%) with CIS, and 165 (53.2%) with squamous cell carcinoma. The distribution of age at blood draw, gender, source

cohort, and duration of time between blood draw and analysis (matching variables) were similar between 310 cases and 310 controls. As

compared with controls, cases were more likely to have a family history of EC (19.7% vs. 9.0%, p < 0.001) and lower body mass index (BMI)

(%22) (24.8% vs. 16.8%, p = 0.013). Among the 310 cases, 149 cases were diagnosed within the first year after blood draw (attributable to

baseline screening), 112 cases were diagnosed after one year and before five years, and 49 cases were diagnosed after five years

(Figure S1).

Identification of differential metabolites

A total of 74 differential metabolites were identified (false discovery rate (FDR) < 0.2 in univariate conditional logistic regression) and

these were sorted into the following metabolic classes: lipid (40, 54.1%), peptide (11, 14.9%), amino acid (10, 13.5%), carbohydrate (3,

4.1%), cofactors and vitamins (3, 4.1%), nucleotide (3, 4.1%), and other classes (4, 5.4%) (Tables 2 and S2). The differential metabolites

included 58 positive associations (odds ratios (ORs) ranged from 1.2 to 1.7) and 16 negative associations (ORs ranged from 0.7

to 0.8).

All 74metabolites weremapped based on the Kyoto Encyclopedia of Genes andGenomes (KEGG) database. At the FDR threshold of 0.05

for enrichment analysis and the pathway impact threshold of 0.1, two metabolic pathways were significantly associated with esophageal
iScience 27, 109965, June 21, 2024 3



Table 2. Associations of 74 differential serum metabolites with esophageal malignancy risk

Metabolite Class of metabolism OR per SD (95% CI) BH-FDR

5-oxoproline Amino Acid 1.5 (1.2,1.9) 0.019

glutamate Amino Acid 1.4 (1.1,1.8) 0.093

methionine sulfoxide Amino Acid 1.4 (1.1,1.8) 0.094

isovalerate (i5:0) Amino Acid 1.4 (1.1,1.7) 0.098

beta-citrylglutamate Amino Acid 1.3 (1.1,1.6) 0.120

N-methylproline Amino Acid 0.8 (0.7,0.9) 0.157

S-methylmethionine Amino Acid 0.8 (0.7,0.9) 0.164

2-oxoarginine Amino Acid 0.7 (0.6,0.9) 0.037

N-formylmethionine Amino Acid 0.7 (0.6,0.9) 0.114

4-methyl-2-oxopentanoate Amino Acid 0.7 (0.5,0.9) 0.171

ribose Carbohydrate 1.4 (1.1,1.7) 0.082

galactonate Carbohydrate 0.8 (0.7,0.9) 0.130

pyruvate Carbohydrate 0.8 (0.6,1.0) 0.190

4-oxo-retinoic acid Cofactors and Vitamins 1.3 (1.1,1.6) 0.086

bilirubin (E,E) Cofactors and Vitamins 0.8 (0.6,0.9) 0.164

alpha-tocopherol Cofactors and Vitamins 0.7 (0.6,0.9) 0.070

alpha-ketoglutarate Energy 0.8 (0.6,0.9) 0.179

4-cholesten-3-one Lipid 1.7 (1.4,2.2) 0.002

glycerophosphoethanolamine Lipid 1.7 (1.3,2.1) 0.002

heptanoate (7:0) Lipid 1.7 (1.4,2.2) 0.002

1-(1-enyl-palmitoyl)-GPE (P-16:0) Lipid 1.7 (1.3,2.1) 0.011

1-(1-enyl-stearoyl)-GPE (P-18:0) Lipid 1.6 (1.3,2.0) 0.011

2-hydroxyheptanoate Lipid 1.6 (1.3,2.1) 0.011

13-HODE + 9-HODE Lipid 1.6 (1.2,2.0) 0.016

caproate (6:0) Lipid 1.6 (1.2,2.0) 0.019

glycerophosphoinositol Lipid 1.5 (1.2,1.8) 0.016

1-oleoylglycerophosphate (18:1) Lipid 1.5 (1.2,2.0) 0.027

1-palmitoyl-GPA (16:0) Lipid 1.5 (1.2,1.9) 0.065

pelargonate (9:0) Lipid 1.4 (1.1,1.7) 0.049

1-stearoyl-GPI (18:0) Lipid 1.4 (1.1,1.7) 0.098

glycerophosphoserine Lipid 1.4 (1.1,1.7) 0.120

butyrate (4:0) Lipid 1.4 (1.1,1.7) 0.125

1-(1-enyl-oleoyl)-GPE (P-18:1) Lipid 1.4 (1.1,1.7) 0.130

1-stearoyl-2-oleoyl-GPS (18:0/18:1) Lipid 1.3 (1.1,1.6) 0.048

mead acid (20:3n9) Lipid 1.3 (1.1,1.5) 0.077

1,2-dipalmitoyl-GPC (16:0/16:0) Lipid 1.3 (1.1,1.5) 0.078

1-oleoyl-GPC (18:1) Lipid 1.3 (1.1,1.5) 0.098

chenodeoxycholate Lipid 1.3 (1.1,1.5) 0.098

ximenoylcarnitine (C26:1) Lipid 1.3 (1.1,1.6) 0.098

1-palmitoyl-2-oleoyl-GPC (16:0/18:1) Lipid 1.3 (1.1,1.5) 0.125

1-palmitoyl-GPE (16:0) Lipid 1.3 (1.1,1.5) 0.130

glycosyl-N-nervonoyl-sphingosine

(d18:1/24:1)

Lipid 1.3 (1.1,1.5) 0.130

undecanoate (11:0) Lipid 1.3 (1.1,1.5) 0.130

1-(1-enyl-palmitoyl)-GPC (P-16:0) Lipid 1.3 (1.1,1.7) 0.145

(Continued on next page)
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Table 2. Continued

Metabolite Class of metabolism OR per SD (95% CI) BH-FDR

malonate Lipid 1.3 (1.0,1.6) 0.188

3-hydroxystearate Lipid 1.2 (1.0,1.5) 0.164

glycosyl-N-behenoyl-sphingadienine

(d18:2/22:0)

Lipid 1.2 (1.0,1.5) 0.169

2-oleoylglycerol (18:1) Lipid 1.2 (1.0,1.4) 0.183

glycosyl ceramide (d18:1/20:0, d16:1/22:0) Lipid 1.2 (1.0,1.5) 0.183

palmitoyl dihydrosphingomyelin (d18:0/16:0) Lipid 1.2 (1.0,1.5) 0.188

1-stearoyl-GPE (18:0) Lipid 1.2 (1.0,1.5) 0.191

palmitoyl sphingomyelin (d18:1/16:0) Lipid 1.2 (1.0,1.4) 0.191

glycerophosphorylcholine (GPC) Lipid 1.2 (1.0,1.5) 0.199

palmitoyl-sphingosine-phosphoethanolamine

(d18:1/16:0)

Lipid 1.2 (1.0,1.5) 0.199

sebacate (C10-DC) Lipid 0.8 (0.6,0.9) 0.098

azelate (C9-DC) Lipid 0.8 (0.6,0.9) 0.125

linoleoyl-linolenoyl-glycerol (18:2/18:3) [2] Lipid 0.8 (0.7,1.0) 0.171

N6-methyladenosine Nucleotide 1.4 (1.2,1.7) 0.016

20-O-methyluridine Nucleotide 1.3 (1.1,1.6) 0.125

dihydroorotate Nucleotide 0.8 (0.6,0.9) 0.094

pentose acid Partially Characterized Molecules 0.8 (0.7,0.9) 0.100

gamma-glutamylglutamate Peptide 1.6 (1.2,1.9) 0.012

gamma-glutamyl-epsilon-lysine Peptide 1.5 (1.2,1.9) 0.014

leucylglycine Peptide 1.5 (1.2,1.8) 0.016

gamma-glutamylleucine Peptide 1.4 (1.1,1.7) 0.086

gamma-glutamylisoleucine Peptide 1.4 (1.1,1.7) 0.094

gamma-glutamylphenylalanine Peptide 1.4 (1.1,1.7) 0.098

leucylglutamine Peptide 1.3 (1.1,1.6) 0.060

histidylalanine Peptide 1.3 (1.1,1.6) 0.130

gamma-glutamyl-alpha-lysine Peptide 1.3 (1.1,1.6) 0.169

HWESASXX Peptide 1.3 (1.1,1.7) 0.183

gamma-glutamylthreonine Peptide 1.3 (1.1,1.6) 0.183

histidine betaine (hercynine) Xenobiotics 1.3 (1.1,1.6) 0.184

ergothioneine Xenobiotics 0.7 (0.6,0.9) 0.125

Abbreviations: BH-FDR, Benjamini-Hochberg false discovery rate; CI, confidence interval; OR, odds ratio; SD, standard deviation.

Note: Differential metabolites were determined using univariable conditional logistic regression with BH-FDR <0.2.
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malignancy, namely, glycerophospholipid metabolism (FDR = 0.002, pathway impact = 0.25) and D-glutamine and D-glutamate metabolism

(FDR = 0.046, pathway impact = 0.50) (Figure 2).

Construction of MRS

Among the 74 differential metabolites, 22 metabolites were further selected as independent predictors based on least absolute shrinkage

and selection operator (LASSO) regression using the largest value of lambda (0.03170988) where binomial deviance was within one stan-

dard error of theminimum (Figure S2), and were sorted into the followingmetabolic classes: lipid (14, 63.6%), carbohydrate (2, 9.1%), nucle-

otide (2, 9.1%), amino acid (1, 4.5%), cofactors and vitamins (1, 4.5%), partially characterized molecules (1, 4.5%), and peptide (1, 4.5%). A

subset of the 74 differential metabolites exhibited relatively high correlations (Spearman correlation coefficient:R0.6 or%�0.6); however,

the subsequent selection through LASSO regression ensured that there were no high correlations among the 22 metabolic predictors

(Figure S3).

Following the algorithm described in the STAR Methods section, MRS was established based on the 22 independent metabolites (Fig-

ure 3). The distribution of MRS for esophageal malignancy cases was significantly distinct from that for healthy controls (Student’s t test
iScience 27, 109965, June 21, 2024 5



-lo
g1

0(
p)

0.0 0.1 0.2 0.3 

Pathway Impact

0.4 0.5

1
2

3
4

5

Glycerophospholipid 
metabolism

D-Glutamine and 
D-glutamate 
metabolism

Figure 2. Pathway analysis of differential serum metabolites for esophageal malignancy based on the Kyoto Encyclopedia of Genes and Genomes

pathway database

Note: Glycerophospholipid metabolism and D-glutamine and D-glutamate metabolism were identified as significant metabolic pathways associated with

esophageal malignancy, at the false discovery rate threshold of 0.05 for enrichment analysis and a pathway impact threshold of 0.1.
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p value = 1.38E-19), reflecting the discriminative ability of theMRS-based risk assessment tool (Figure S4). TheMRS was then categorized into

tertiles: ‘‘low-MRS group’’ (60 cases and 146 controls), ‘‘intermediate-MRS group’’ (100 cases and 107 controls), and ‘‘high-MRS group’’ (150

cases and 57 controls). Notably, 48.4% of the cases were classified as having a high MRS, while only 18.4% of the healthy controls fell into the

high-MRS category (Table 3). The risk of esophageal malignancy for the intermediate-MRS group and the risk for the high-MRS group were

three times (OR: 3.1 (95% confidence interval (CI): 1.9–5.0)) and 12 times (OR: 12.1 (95% CI: 6.6–22.3)) as high as that for the low-MRS group,

respectively.
MRS = 0.267 × ximenoylcarnitine (C26:1) –  

  0.264 × sebacate (C10-DC) –  

0.270 × azelate (C9-DC) +  

0.228 × glycosyl-N-nervonoyl-sphingosine (d18:1/24:1) + 

0.257 × mead acid (20:3n9) +  

0.252 × 1-oleoyl-GPC (18:1) +  

0.554 × heptanoate (7:0) +  

0.233 × undecanoate (11:0) +  

0.263 × 1,2-dipalmitoyl-GPC (16:0/16:0) +  

0.289 × 1-stearoyl-2-oleoyl-GPS (18:0/18:1) +  

0.398 × glycerophosphoinositol +  

0.317 × glycerophosphoserine +  

0.237 × chenodeoxycholate +  

0.559 × 4-cholesten-3-one –  

0.224 × galactonate +  

0.320 × ribose +  

0.361 × N6-methyladenosine –  

0.271 × dihydroorotate –  

0.236 × N-methylproline +  

0.288 × 4-oxo-retinoic acid –  

0.242 × pentose acid +  

0.300 × leucylglutamine 

Figure 3. The formula of Metabolic Risk Score for esophageal malignancy based on 22

independent metabolic predictors

Abbreviations: MRS, Metabolic Risk Score. Note: The MRS was constructed by summation of

the metabolite level of each independent predictor multiplied by the respective effect size

(b-coefficient in univariate conditional logistic regression).
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Table 3. The distribution of the MRS for cases of esophageal malignancy and controls

Group MRS Controls

Cases

Screening-detected cases Follow-up cases Total

Low MRS % �1.0936490 146 (47.1%) 23 (14.4%) 37 (24.7%) 60 (19.4%)

Intermediate MRS (-1.0936490, 0.8867129] 107 (34.5%) 44 (27.5%) 56 (37.3%) 100 (32.3%)

High MRS >0.8867129 57 (18.4%) 93 (58.1%) 57 (38.0%) 150 (48.4%)

Abbreviations: MRS, Metabolic Risk Score.

Note: The cutoff values of MRS groups were determined based on the tertiles of the MRS.
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As shown in Figure 4A, the MRS model generated an area under the receiver operating characteristics curve (AUC) of 0.815 (95% CI:

0.782–0.848). Leave-one-out cross-validation yielded an AUC of 0.813 (95% CI: 0.779–0.846) (Figure 4B). The performance of the MRS

model was superior to that of the questionnaire-based model (AUC: 0.648 (95% CI: 0.606–0.690)), with Delong test p = 3.12E-10 and a

net reclassification improvement (NRI) of 0.329 (p = 3.44E-10). The integrated model combining MRS with questionnaire-based risk factors

generated an AUC of 0.830 (95% CI: 0.798–0.861), significantly improving the performance of the questionnaire-based model (Delong test

p = 5.39E-17; NRI: 0.329 (p = 9.42E-12)).
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Figure 4. ROC curves of the MRS model (including leave-one-out cross-validation), the questionnaire-based model, and the integrated model

(A) ROC curves of MRS model, questionnaire-based model, and integrated model.

(B) ROC curve of leave-one-out cross-validation for MRS model.

Abbreviations: AUC, area under the receiver operating characteristics curve; CI, confidence interval; MRS, Metabolic Risk Score; ROC, receiver operating

characteristics. Note: The MRS model contained MRS only; the questionnaire-based model contained risk factors for esophageal cancer which are well-

recognized including body mass index, family history of esophageal cancer, cigarette smoking, and alcohol consumption; the integrated model contained

MRS and aforementioned risk factors.
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Figure 5. ROC curves of the MRS model in subgroups

(A) ROC curves by gender.

(B) ROC curves by age at blood draw.

(C) ROC curves by source cohort.

(D) ROC curves by BMI.

(E) ROC curves by pathologic diagnosis.

(F) ROC curves by time interval from blood draw to the diagnosis of esophageal malignancy.

Abbreviations: AECCS, Anyang Esophageal Cancer Cohort Study; AUC, area under the receiver operating characteristics curve; BMI, body mass index; CI,

confidence interval; ESCC, esophageal squamous cell carcinoma; ESECC, Endoscopic Screening for Esophageal Cancer in China; MRS, Metabolic Risk

Score; ROC, receiver operating characteristics.
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Subgroup evaluation of the MRS model

As shown in Figure 5, no statistically significant differences were detected among the subgroups of female and male (AUC: 0.774 vs. 0.842,

Delong test p = 0.058) (Figure 5A), >60-year and%60-year age groups (AUC: 0.829 vs. 0.787, Delong test p = 0.287) (Figure 5B), Endoscopic

Screening for Esophageal Cancer in China (ESECC) and Anyang Esophageal Cancer Cohort Study (AECCS) cohorts (AUC: 0.828 vs. 0.737,

Delong test p = 0.100) (Figure 5C), BMI >22 and BMI %22 groups (AUC: 0.816 vs. 0.810, Delong test p = 0.877) (Figure 5D), and severe

dysplasia, CIS, and ESCC (AUC: 0.847 vs. 0.840 vs. 0.789, Delong test p = 0.265) (Figure 5E). Stratified by the time interval from blood

draw to diagnosis, the MRS model generated similar AUCs for the within-1-year interval (AUC: 0.868 (95% CI: 0.828–0.909)) and 1-to-5-

year interval (AUC: 0.845 (95% CI: 0.794–0.896)). However, the performance decreased when the time interval was over five years (AUC:

0.586 (95% CI: 0.473–0.699)) (Delong test p = 2.41E-05) (Figure 5F).
8 iScience 27, 109965, June 21, 2024
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Additionally, stratified by the storage time from serum collection to metabolomics analysis, the discriminative ability of MRS in ‘‘storage

time%8.2 years’’ group (AUC: 0.808) was similar to that in ‘‘storage time >8.2 years’’ group (AUC: 0.819) (Delong test p = 0.735), supporting

the robustness of the MRS performance across serum samples with different storage times (Figure S5).

Sensitivity analyses

For theMRSmodel, sensitivity analysis was carried out by changing the coding forms ofmetabolite levels (tertiles, quartiles, and quintiles) and

the methods for selecting independent metabolic predictors (conditional logistic regression). The AUCs of the re-established MRS models

ranged from 0.713 to 0.819 (Figure S6).

DISCUSSION

Universal screening for ESCC, which covers the entire population of certain age groups in a given area, has been adopted in China and used

worldwide for decades. Previous studies have shown that the majority of subjects would not immediately benefit from endoscopic examina-

tion due to low detection rate, high cost, and collateral harm of universal screening, emphasizing the necessity of identifying high-risk sub-

groups in advance, using low-invasive and efficient risk assessment tools. Early-warning biomarkers play an increasingly important role in risk

stratification of ESCC,15 and serum metabolomics has great potential due to low invasiveness and convenience of collection, transportation,

and conservation. However, previous metabolomics research on ESCC mainly employed traditional case-control designs based on samples

from clinical settings, where a considerable proportion of the cases were already at an advanced stage. Moreover, there might be heteroge-

neity between the selected controls and the general population. To overcome these limitations and provide a more robust evaluation of the

early-warning value of serum metabolites for ESCC, we conducted this nested case-control study based on large community-based ESCC

screening cohorts. We constructed a Metabolic Risk Score (MRS) with 22 selected serum metabolites and demonstrated their good perfor-

mance in diagnosing prevalent and short-term malignancy of the esophagus, thus providing a promising tool for distinguishing high-risk in-

dividuals for ESCC screening.

In the first step of analysis, we identified 74 differential serummetabolites, and themajority of these belonged to lipid metabolism (54.1%),

peptidemetabolism (14.9%), and amino acidmetabolism (13.5%). Dysregulation of some of our differential metabolites detected in this study

were in line with other ESCC research. For instance, increasing levels of glutamate and malonate, and decreasing of alpha-tocopherol and

pyruvate had been observed in patients with esophageal malignancy.7,13,16 But we also found inverse associations of differential metabolites

(such as ribose17 and 2-oxoarginine18) and ESCC as compared to other studies. The discrepancy of these findings might be explained by hos-

pital-based sampling methods adopted in prior studies. Due to absence of special symptoms (for example dysphagia) for early-stage malig-

nant lesions in the esophagus, ESCCpatients clinically diagnosed in hospitals are usually at an advanced stage. Such individualsmay have had

abnormal dietary habits for long periods of time. Thus, the possibility that alteration in metabolism was influenced by the disease per se

cannot be excluded when exploring differential metabolites using a hospital-based design.

We further observed two significant metabolic pathways associated with the risk of esophageal malignancy, including glycerophospho-

lipid metabolism and D-glutamine and D-glutamate metabolism. For energy metabolism in normal nonproliferating cells, glucose is

metabolized to pyruvate through glycolysis, and pyruvate then tends to enter the process of oxidative phosphorylation in the mitochondria

in the presence of oxygen, or is completely converted to lactate in the absence of oxygen (anaerobic glycolysis). Instead, the energy meta-

bolism of cancer cells is characterized as aerobic glycolysis or ‘‘Warburg effect’’, where the majority of glucose is converted to lactate

regardless of whether oxygen is sufficient. Emerging evidence has shown that to meet cellular requirements for synthesis of new biomass

(phospholipids, nucleotides, amino acids, and so on), cancer cells preferentially utilize glycolysis to generate a series of metabolic inter-

mediates. As depicted in Figure S7, dihydroxyacetone phosphate is synthesized during the process of glycolysis, and sustains the forma-

tion of glycerol-3-phosphate, which can be utilized in the synthesis of various glycerophospholipids (structural components of cellular

membranes).19 In addition, since glucose is mostly converted to lactate, cancer cells rely heavily on glutamine which serves as an alternative

source of energy generation. Glutamine is converted by glutaminase into glutamate, which is further converted by glutamate dehydroge-

nase into a-ketoglutarate, replenishing the tricarboxylic acid cycle so that growing demand for energy can be met. Perturbation in glyc-

erophospholipid metabolism and D-glutamine and D-glutamate metabolism have also been reported in previous ESCC-related

studies.13,20 Furthermore, Lugol’s chromoendoscopy in ESCC screening is based on the reaction of iodine and intracellular glycogen,

the latter of which is diminished or absent in the dysplastic tissues with rapidly dividing cells. Thus, the evidence noted above implies

that the occurrence of esophageal malignancy may be related to abnormal energy metabolism. Moreover, this study has revealed over

half of the differential serum metabolites belong to lipid metabolic pathways, and consistent with this finding, our team has also previously

observed that dyslipidemia is associated with malignant esophageal lesions.4,21 Further basic research is warranted to comprehensively

explore the biologic mechanism of lipid metabolism and ESCC.

Based on these 74 differential metabolites, 22 independent metabolic predictors of esophageal malignancy were carefully selected and

integrated as an MRS. Compared with the low-MRS group, the risk of esophageal malignancy for intermediate- and high-MRS groups

increased two times and 11 times respectively, reflecting the strong capacity of theMRS for risk stratification. Overall, theMRSmodel showed

a goodperformance in distinguishing cases of esophagealmalignancy fromhealthy controls (AUC: 0.815), which is significantly superior to the

performance of the questionnaire-based model. We further employed multiple strategies for validation of the MRS model. Similar perfor-

mance was observed in leave-one-out cross-validation (AUC: 0.813) as well as among different genders, age groups, source cohorts, BMI,

and pathologic diagnoses, suggesting the robustness of our MRS model.
iScience 27, 109965, June 21, 2024 9



ll
OPEN ACCESS

iScience
Article
Further stratified analysis showed that the MRSmodel can efficiently identify prevalent cases and the individuals at high risk of being diag-

nosed within five years. In contrast, we observed poor performance of the MRSmodel for distinguishing long-term risk, i.e., being diagnosed

with ESCC>5 years later. Theremay be two assumptions explaining the observed time-sensitive associations. First, metabolic alterationsmay

precede esophageal malignancy within a relatively short time window from exposure tomalignancy onset. Second, metabolic alterationsmay

arise as consequences of esophageal malignancy, presenting along with the carcinogenic process of esophageal squamous epithelium. In

this case, metabolic alteration is a tumor burden indicator, thus not able to predict long-term risk of developing esophageal malignancy.

Further molecular epidemiologic studies and laboratory studies are needed to reveal the underlying mechanism. All in all, the MRS model

demonstrates its suitability for identifying prevalent esophageal malignancy cases as a diagnostic tool and for predicting future cases that

may occur within five years after screening.

Our previous studies have demonstrated that Lugol-unstained lesions (LULs) of larger size are predictive of higher risk of progression to

esophageal malignancy.22 To confirm that the metabolic perturbations observed in this study were originated from the malignant lesions in

the esophagus, we further evaluated the association of the MRS and the size of LULs in severe dysplasia and above (SDA) cases from the

screening arm of the ESECC trial (size was determined by the smaller one between diameter and length of a LUL). MRS was found to be signif-

icantly higher in cases with large LULs (>10mm) with an OR of 1.2 (95% CI: 1.0–1.4, p = 0.035), supporting the concept that alteration of serum

metabolites can be derived from lesions in the esophagus.

In terms of application, we recommended the MRS as an initial risk-stratification tool to identify high-risk individuals prior to endoscopic

screening. Given the complexity of metabolomic profiling, we suggest that blood samples be collected at community health centers and sub-

sequently sent to high-quality central laboratories equipped with metabolomics platforms for further analysis and estimation of MRS. In set-

tings where resources are abundant and increasing the proportion of detected cancer cases among all the cases (sensitivity) is the priority, we

would recommend referring individuals with highMRS or even intermediateMRS to endoscopic examination, achieving a sensitivity of 80.6%

(MRS cutoff value: �1.0936490). Whereas in settings where resources available for screening are limited, detecting as many malignancies as

possible becomes the priority. In such scenarios, we recommend endoscopic examinations only for individuals with high MRS (MRS cutoff

value: 0.8867129). Even if no malignant lesions are found during the endoscopy, those individuals are still recommended to undergo regular

endoscopic surveillance over the next five years to identify any incident cases arising in the short-term future. For individuals not reaching the

MRS cutoff value, we recommend consultation with professional physicians to make informed decisions regarding the necessity of undergo-

ing endoscopic examinations. Besides, given the observed 5-year time window of predictive ability of the MRS model, continuous risk moni-

toring is also encouraged through repeated MRS assessments every five years, which allows for timely detection of any changes in metabolic

profiles that might indicate an increased risk of esophageal malignancy.

Considering the importance of metabolite concentration stability, in this study, we have taken relevant measures in multiple aspects.

Firstly, the collection, processing, and storage of all blood samples followed a unified implementation plan. Secondly, to ensure the compa-

rability of serummetabolites between the case group and the control group, we took the baseline blood collection date as one of the match-

ing variables when selecting controls. Thirdly, for metabolomics analysis, rigorous quality control measures were implemented, and the re-

sults indicated that the instrument had met the stability requirements (the median relative standard deviation of the internal standard

compounds was lower than the allowable upper limit). Fourthly, in the data pre-processing stage, normalization was used to eliminate the

influence of detection batch effects on the comparability of metabolite concentrations between samples. In addition, to further provide sup-

porting evidence on analyte stability, we tested the association between smoking habit and tobacco-related metabolites (cotinine and hy-

droxycotinine) (Figure S8). We observed significantly higher levels of both cotinine (ORper standard deviation = 11.4, p = 1.98E-31) and hydrox-

ycotinine (ORper standard deviation = 10.6, p = 7.08E-45) in the smoking group compared to the non-smoking group. Further, no significant

heterogeneity of the association was detected between subgroups stratified by the median time interval from blood draw to metabolomics

analysis (8 years) (cotinine: pinteraction = 0.533; hydroxycotinine: pinteraction = 0.189). These results also indicated the stability of the metabolite

levels in our serum samples used in this study.

This study has the following strengths: 1) serum samples were collected before the onset of a symptomatic clinically diagnosed tumor,

ensuring that the identified metabolic biomarkers could be used for early detection and early warning of esophageal malignancy as a pre-

endoscopy test; 2) both cases and controls were recruited from the community general population, ensuring ideal population representative-

ness and generalizability of our results (external validity); 3) through incidence density sampling from the same cohort, cases and controls were

meticulously matched based on a series of factors, which guaranteed comparability between cases and controls (internal validity).

In summary, this study has revealed a series of serum metabolites associated with esophageal malignancy, and has constructed an MRS

which can efficiently predict the risk of current and short-term esophageal cancer. TheMRS proposed in this study could be an ideal risk-strat-

ification tool used prior to invasive endoscopic examination, which is essential for establishing new precision strategies for both organized

and opportunistic screening for ESCC in China and worldwide.
Limitations of the study

The limitation of this study should also be noted. Despite adopting nested case-control design on the basis of two prospective community-

based cohorts with relatively large sample sizes (>600 individuals), this is nevertheless a single-center investigation carried out in a high-risk

region for ESCC.Multicenter studies are warranted to validate the performance of theMRS in different populations with various ESCCdisease

burden, further enhancing the robustness and applicability of our findings.
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Data and code availability

� The rawmetabolomic data have been deposited in the OMIX, China National Center for Bioinformation/Beijing Institute of Genomics,

ChineseAcademyof Sciences (https://ngdc.cncb.ac.cn/omix, OMIXdatabase:OMIX004101) and are publicly available as of the date of

publication. Accession numbers are listed in the key resources table.
� This paper does not report the original code.
� Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Study participants and sample collection

This case-control study is nested in two independent prospective community-based cohorts, namely the Endoscopic Screening for Esoph-

ageal Cancer in China (ESECC, ClinicalTrials.gov identifier: NCT01688908) and the Anyang Esophageal Cancer Cohort Study (AECCS), in

the Taihang Mountain area, which is a region of risk for ESCC in China.24 These two cohorts employed different methods for target village

selection and eligibility criteria for participation.4,25 Briefly, for the ESECC cohort, in 2012–2016 a total of 668 villages with population sizes of

500–3000 fromHua County in rural Anyang were randomly selected and allocated at 1:1 to the screening arm or the non-screening arm based

on blocked randomization. 33,948 residents aged 45–69 were enrolled (sampling proportion: �20%). For the AECCS cohort, in 2007–2014

9208 residents aged 25–65were enrolled from ten target villages in rural Anyang (sampling proportion:�70%), whichwere selected according

to location, population size, administrative capabilities, etc., and underwent three rounds of endoscopic examination (2007-2009, 2009-2011,

and 2012-2014). Among the ten target villages in the AECCS cohort, four villageswhere blood samples were collected only at the first round of
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endoscopic screening were excluded in this study, considering the potential influence of storage time of serum samples on metabolomics

detection.

For the screening arm of the ESECC trial and the AECCS cohort, standard upper gastrointestinal endoscopy with iodine staining was per-

formed by experienced physicians. Biopsies were taken if focal lesions were observed and were fixed in 10% formaldehyde, embedded in

paraffin, sectioned at 5 mm, and stained with hematoxylin and eosin. The biopsy specimens were reviewed by two experienced pathologists

without knowledge of endoscopic findings, and discrepancies in histologic diagnoses were adjudicated by consultation.

At baseline recruitment of both these cohorts, blood sample collection, physical examination and a questionnaire interviewwere conduct-

ed for each participant by well-trained investigators prior to endoscopic examination. Each participant provided a fasting blood sample.

These blood samples were placed overnight in a 4�C refrigerator and, on the following day, centrifuged to extract serum. The collected serum

was promptly transferred and temporarily stored at �20�C, and later stored at �80�C when it was transported to Beijing.

The occurrence of esophageal malignancy among the participants was either detected through endoscopic screening (including re-ex-

amination) or captured by using annual follow-up, which involved active door-to-door interview and passive linkage with claims data from

medical insurance system.24
Case definition and control selection

Esophageal malignancy in this study was defined as lesions of severe dysplasia and above (SDA) (severe dysplasia, CIS, and ESCC) detected

through endoscopic screening or follow-up, and these cases were further categorized into prevalent cases and incident cases. Prevalent cases

in this study referred to both esophageal malignancies detected at baseline screening and interval cancers diagnosed within one year after

the initial screening, in order to capture cases that might have been ‘‘overlooked’’ during endoscopic examination.26,27 Incident cases in this

study included esophageal malignancies diagnosed at least one year after the initial screening in both the ESECC screening arm and AECCS

cohort, as well as all the clinically diagnosed ESCC cases in the ESECC non-screening arm.

Up to November 15th, 2020 (the longest follow-up timewas 9.0 years for the ESECC cohort and 13.1 years for the AECCS cohort), a total of

353 SDA cases from ESECC (279 cases, including 134 screening-detected cases and 145 follow-up cases) and AECCS (74 cases, including 45

screening-detected cases and 29 follow-up cases) cohorts were detected. For the AECCS cohort, considering the potential impact of rela-

tively long serum storage time on metabolomics analysis, cancer cases detected at the first round of endoscopic screening (n = 19) were

excluded. Besides, those cases without serum samples (n = 8), complete questionnaire information (n = 15), or any matched healthy control

(n = 1) were also excluded. Finally, a total of 310 cases of esophageal malignancy (ESECC cohort: 263 cases; AECCS cohort: 47 cases) were

included in this study.

For each case, one control was randomly selected through incidence density sampling, with the matching variables including source

cohort, allocated arm (for ESECC trial only), gender, age at blood draw (G1 year), and date at blood draw (G30 days). Given the nested

case-control study design and the utilization of 1:1 incidence density sampling, two cases of esophageal malignancy were also selected as

matched controls, before their diagnosis, for two other cases. Thus, a total of 618 blood samples at enrollment for both cases and controls

were used in this study.

The study participants were all Han Chinese. Themean age at blood draw was 61.8 years and 40.7%were female. This study was approved

by the Institutional Review Board of the Peking University School of Oncology, China (Approval number: 2011101110, 2006020). All partici-

pants provided written informed consent.
METHOD DETAILS

Metabolomic profiling

Untargeted ultra-high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was used to detect and characterize

metabolomic profiles from the de-identified serum samples (Waters ACQUITY 2D UPLC system; Thermo Fisher Scientific Q-Exactive (QE)

high-resolution/accuratemass orbitrap spectrometer). The metabolite identification process strictly adhered to theMetabolomics Standards

Initiative (MSI) tier 1 standard. More detailed information regarding sample preparation, UPLC and MS methods, compound identification,

and quality control are as follows.

Sample preparation was carried out on the automated MicroLabSTAR� system (Hamilton). Metabolites were extracted by precipitating

protein with methanol and centrifugation after vigorous shaking for two minutes (GenoGrinder). To guarantee the quantity and reliability of

metabolite detection, the extract was divided into four fractions for analysis: three were used for UPLC methods using reverse phase liquid

chromatography based on C18 columns (UPLC BEH C18-2.1 3 100 mm, 1.7 mm; Waters) (Method A and Method B with positive ion mode

electrospray ionization (ESI), and Method C with negative ion mode ESI), and one was used for UPLC method using a hydrophilic interaction

liquid chromatography column (UPLCBEHAmide 2.13 150mm, 1.7 mm;Waters) formetaboliteswith strong polarity (MethodDwith negative

ionmode ESI). Themobile solutions used for gradient elution were as follows: (1) water, methanol, 0.05% perfluoropentanoic acid (PFPA), and

0.1% formic acid (FA) (Method A); (2) methanol, acetonitrile, water, 0.05% PFPA, and 0.01% FA (Method B); (3) methanol and water in 6.5 mM

ammonium bicarbonate at pH 8 (Method C); (4) water and acetonitrile with 10 mM ammonium formate at pH 10.8 (Method D). All the four

fractions were dried using nitrogen gas (removing the organic solvent) and were later re-dissolved in compatible reconstitution solvents.

The QEmass spectrometer analysis was alternated betweenMS and data-dependent MS2 scans using dynamic exclusion at 35,000 mass res-

olution, and the scan range was 70–1,000 m/z.
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Data acquired from the mass spectrometer were converted to be processed using proprietary in-house software. Raw data pre-process-

ing, peak finding/alignment, and peak annotation were orderly performed, and metabolites were identified by searching the in-house library

(more than 3300 purified standard compounds had been registered). Identification of metabolites was based on three criteria: (1) narrow win-

dow retention index; (2) accurate mass match to the library with variation <5 ppm; (3) MS/MS spectra with high forward and reverse scores

(comparing the ions in the experimental spectrum to that in the library spectrum entries).

Quality control (QC) samples were generated by taking a small volume of each serum sample, and these samples were spaced evenly

among the randomized experimental samples. Internal standards, which were carefully selected and did not interfere with the measurement

of metabolites, were added into each sample to aid chromatographic peak alignment and instrument stability monitoring. The stability of the

equipment was evaluated by calculating themedian relative standard deviation (RSD) for the standards among the QC samples. In this study,

median RSD was reported as 4.3% which was below the limit (5%), denoting a stable LC-MS system performance during the metabolomics

assay (Figure S9).
Pre-processing of metabolomics data

To balance batch variability, the level of eachmetabolite was divided by themedian value in a given batch to obtain normalized data. Natural

log transformation was applied to improve the normality of distribution. To facilitate comparison of metabolites, a scaling method (standard-

ization) was also used according to the mean and standard deviation (SD) of all serum samples. Missing values were imputed with the min-

imum non-missing value, and only those metabolites with missingness less than 20% were retained. Finally, a total of 817 metabolites were

included in the analysis.
QUANTIFICATION AND STATISTICAL ANALYSIS

Baseline characteristics of the study participants were presented as means (SDs) for continuous variables and numbers (percentages) for cat-

egorical variables. Differences between cases and matched controls were tested using the Wilcoxon signed-rank test (for continuous vari-

ables) and the McNemar test (for categorical variables). Univariate conditional logistic regression was used to calculate odds ratio (OR)

per one SD increase in metabolite concentrations. The Benjamini-Hochberg procedure was applied for multiple testing correction using false

discovery rate (FDR), and those metabolites with FDR <0.2 were identified as differential metabolites. Pathway analysis was then performed

using MetaboAnalyst 5.0 online software (www.metaboanalyst.ca) based on these differential metabolites and the Kyoto Encyclopedia of

Genes and Genomes (KEGG) pathway database.23 Pathway impact value was calculated from pathway topology analysis. In consideration

of multiple testing of pathways, we used FDR to adjust the p value calculated from the enrichment analysis. Based on the differential metab-

olites, least absolute shrinkage and selection operator (LASSO) with a 10-fold cross-validation was performed to select the optimal combi-

nation of independent metabolic predictors. Specifically, metabolites that could independently predict outcomes were initially identified

based on the value of lambda that gave aminimummean cross-validated error (binomial deviance), and then a simpler model with the largest

value of lambda where error was within one standard error of the minimum was finally retained.

AMetabolic Risk Score (MRS) for esophageal malignancy was constructed by summation of the metabolite level of each independent pre-

dictor multiplied by the respective effect size (b-coefficient in univariate conditional logistic regression). We constructed the following pre-

diction models using conditional logistic regression for comparison: (1) MRS model: containing MRS only; (2) questionnaire-based model:

containing traditional risk factors including body mass index (BMI), family history of EC, cigarette smoking, and alcohol consumption; (3) in-

tegratedmodel: containing bothMRS and aforementioned risk factors.We evaluated the performance of the predictionmodel by calculating

the area under the receiver operating characteristics curve (AUC), and compared the ability for discrimination among these models using the

Delong test and net reclassification improvement (NRI).

Multiplemethods were used for validation of the robustness of theMRSmodel. First, leave-one-out cross-validation was performed based

on the predicted probabilities of eachmatched pair generated frommodels built on all the remaining pairs. Then, theMRSmodel was further

validated within each of the subgroups by gender, age at blood draw, source cohort, BMI, pathologic diagnosis, and time interval from blood

draw to diagnosis of esophageal malignancy.

Sensitivity analysis for the performance of the MRS model was also performed using the following strategies: (1) metabolite levels were

grouped into tertiles, quartiles, and quintiles; (2) independent metabolic predictors were selected using a conditional logistic regression.

Statistical analysis was conducted using STATA version 15.0 and R version 4.1.3 (‘‘glmnet’’ package). All tests were 2-sided and had a sig-

nificance level of 0.05 unless otherwise specified.
ADDITIONAL RESOURCES

84.8% of the samples in this study were derived from ESECC, which is a clinical trial (NCT01688908): https://classic.clinicaltrials.gov/ct2/show/

NCT01688908?term=01688908&draw=2&rank=1.
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