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Link Prediction through Deep Generative Model

Xu-Wen Wang,1 Yize Chen,2 and Yang-Yu Liu1,3,*

SUMMARY

Inferring missing links based on the currently observed network is known as link
prediction, which has tremendous real-world applications in biomedicine, e-com-
merce, social media, and criminal intelligence. Numerous methods have been
proposed to solve the link prediction problem. Yet, many of these methods are
designed for undirected networks only and based on domain-specific heuristics.
Here we developed a new link prediction method based on deep generative
models, which does not rely on any domain-specific heuristic and works for gen-
eral undirected or directed complex networks. Our key idea is to represent the
adjacencymatrix of a network as an image and then learn hierarchical feature rep-
resentations of the image by training a deep generative model. Those features
correspond to structural patterns in the network at different scales, from small
subgraphs to mesoscopic communities. When applied to various real-world net-
works from different domains, our method shows overall superior performance
against existing methods.

INTRODUCTION

Networks have become an invaluable tool for describing the architecture of various complex systems, be

they technological, biological, or social in nature (Albert and Barabási, 2002; Newman, 2003; Boccaletti

et al., 2006; Scholtes et al., 2014). Mathematically, any real-world network can be represented by a graph,

G(V,E), where V={1, 2, /,N} is the node set and E4V3V is the link set. A link, denoted as a node pair (i,j)

with i,j˛V, represents certain interaction, association, or physical connection between nodes i and j,

which could be either directed or undirected, weighted or unweighted. For many systems (especially bio-

logical systems), the discovery and validation of links require significant experimental efforts. Conse-

quently, many real-world networks mapped so far are substantially incomplete (Von Mering et al.,

2002; Han et al., 2005). For example, a recent estimate indicates that in human cells the explored pro-

tein-protein interactions cover less than 20% of all potential protein-protein interactions (Sahni et al.,

2015). How to tease out the missing interactions based on the discovered ones? In network science

and machine learning, this is commonly known as the link prediction problem (Liben-Nowell and Klein-

berg, 2007; Clauset et al., 2008).

An accurate link prediction method will greatly reduce the experimental efforts required to establish the

network’s topology and/or accelerate mutually beneficial interactions that would have taken much longer

to form serendipitously. Consequently, link prediction has many real-world applications (Hulovatyy et al.,

2014; Martı́nez, Berzal and Cubero, 2016a). In biomedicine, link prediction can be used to infer protein-pro-

tein interactions or drug-target interactions (Zhang et al., 2005; Campillos et al., 2008; Luo et al., 2017). In e-

commerce, it can help build better recommender systems, e.g., Amazon’s ‘‘people who bought this also

bought’’ feature (Linden et al., 2003). On social media, it can help build potential connections such as

the ‘‘people you may know’’ feature on Facebook and LinkedIn (Blagus et al., 2012). In criminal intelligence

analysis, link prediction can assist in identifying hidden co-participation in illicit activities (Berlusconi et al.,

2016).

Numerous methods, such as similarity-based algorithms (Katz, 1953; Barabási and Albert, 1999; Friedman

et al., 1999; Sarukkai, 2000; Guimerà and Sales-Pardo, 2009; Lü and Zhou, 2011; Perozzi et al., 2014; Chen

et al., 2017; Kovács et al., 2019), maximum likelihood algorithms (Clauset et al., 2008; Guimerà and Sales-

Pardo, 2009; Pan et al., 2016), probabilistic models (Heckerman et al., 2007; Chaney et al., 2015), and deep

learning-based methods (Tavakoli et al., 2017; Chiu and Zhan, 2018), especially graph representation

learning-basedmethods (Niepert et al., 2016, Ahmed and Kutzkov, no date; van den Berg et al., 2017; Ham-

ilton et al., 2017; Schlichtkrull et al., 2017; Murphy et al., 2019; Srinivasan and Ribeiro, 2019) have been
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developed to solve the link prediction problem (see Supplementary Information Section 1 for brief descrip-

tions of those existing methods). Yet, many of these existing methods (such as similarity-based algorithms)

are designed for undirected networks. Moreover, most of these methods are based on domain-specific

heuristics (Sarukkai, 2000), and hence their performances differ greatly for networks from different domains.

A powerful link predictionmethod that does not rely on any domain-specific heuristic and works for general

complex networks has been lacking (Martı́nez, Berzal and Cubero, 2016b). Here, we fill the gap by devel-

oping a link prediction method based on deep generative models (DGMs) (see Figure 1 for a schematic

demonstration).

RESULTS

Key Idea

Our key idea is to treat the adjacency matrix of a network as the pixel matrix of a binary image. In other

words, present (or absent) links will be treated as pixels of value (0 or 1), respectively. By perturbing the

original input network (image) in many different ways through randomly removing a small fraction of pre-

sent links, we obtain a pool of perturbed networks (images). Those perturbed images will be fed into a

DGM to create fake images that look similar to the input ones (see Supplementary Information Section 3

for details of DGMs). Those fake images (networks) will be used to perform link prediction in the original

image (network). For the DGM, here we leverage one of the most popular ones, Generative Adversarial

Networks (GANs), that consist of two deep artificial neural networks (called generator and discriminator)

contesting with each other in a game theory framework (Goodfellow et al., 2014; Arjovsky et al., 2017).

The generator takes random noise from a known distribution as input and transforms them into fake images
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Figure 1. Demonstration of Our Link Prediction Method on a Directed Network

The adjacency matrix of this directed network (with 28 nodes and 118 links) looks like the binary image of letter E with 12 missing pixels. Note that 5 isolated

nodes are not shown in the network presentation. We perturb the original network (image) by removing 5 links at random inM different ways to obtain a pool

of perturbed networks (images) Ii (i = 1,.,M) (M = 5000 for this example). This input dataset will be fed into the generative adversarial networks (GANs) that

consist of two deep artificial neural networks: generator and discriminator. The generator takes the noise drawn from a uniform distribution (with 100

dimensions for this example) as input and produces fake images. The discriminator is a binary classifier that tells whether a given image is a real one from the

input dataset or a fake one produced by the generator. Over the course of training iterations, the generator can produce convincing fake images P from the

feedback offered by the discriminator. The pixel value Pij in the fake grayscale image P can be used to calculate the existent probability of a link between a

node pair: aij = 1�Pij. The final existent probability is calculated by averaging aij over S (S = 500) generated fake networks.
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through a deconvolutional neural network. The discriminator is a binary classifier (based on a convolutional

neural network), which determines whether a given image looks like a real one from the input dataset or like

a fake one artificially created by the generator. Over the course of training iterations, the discriminator

learns to tell real images from fake ones. At the same time, the generator uses feedback from the discrim-

inator to learn how to produce convincing fake images to fool the discriminator so that it cannot distinguish

from real ones (see Supplementary Information Section 3 for details). To better train the generator, one can

use theWasserstein distance to quantify the dissimilarity between fake and real images. During the training

process, through minimizing the Wasserstein distance, the generator learns to assign link probabilities be-

tween each node pair (including both observed and unobserved links) to fool the discriminator so that it

cannot distinguish real and fake images. Note that the assigned link probabilities to those observed links

will be quite close to one, whereas the link probabilities assigned to those unobserved links will be close to

zero but not exactly zero. (This process is also known as the smooth process [Yeh et al., 2017]). Hence the

generated fake images are grayscale, even though all the input images fed to GAN are binary. If the prob-

abilities assigned to missing links are much higher than that of nonexistent links, then the link prediction is

much better than random guess (see Figure S1 for an intuitive explanation).

Demonstration Using Synthetic Networks

To demonstrate our DGM-based link prediction, let us consider a toy example: a small directed network of

28 nodes and 118 links (Figure 1): 106 solid links form the training set, whereas 12 dashed links form the

probe set. Those nodes are labeled appropriately so that the adjacency matrix of this network looks like

a binary image of letter E with 12 missing pixels, corresponding to 12 removed or ‘‘missing’’ links. Note

that those probe links will never enter the learning process. First, we create M perturbed binary images

by randomly removing a fraction q of pixels of value 0 (i.e., those present links) from the original image

(network). Second, we use the M perturbed binary images as input to train GANs, which will eventually

generate S fake grayscale images that look similar to the input ones. In this example, we choose M =

5,000, q = 0.1, and S = 500. The existent likelihood of the link between nodes i and j, denoted as aij, in

the corresponding fake network is simply given by aij = 1�Pij, where Pij is the rescaled pixel value (ranging

from 0 to 1) in each fake grayscale image. Finally, we take the average value aij = 1�Pij over all the S fake

images to get the overall existent likelihood of the link (i,j). Note that in this toy example all the 12 missing

links display higher aij than that of nonexistent links, so they are all successfully recovered. Figure 1 may

remind us the classical image inpainting problem, where we need to reconstitute or retouch the missing

or damaged regions of an image to make it more legible and to restore its unity (Bertalmio et al., 2000).

We emphasize that the link prediction problem addressed here is fundamentally different from the image

inpainting problem. For image inpainting, we generally know the locations of the damaged regions of an

image, whereas for link prediction, we do not know which links are missing in a network. In fact, teasing

them out is exactly the task of link prediction.

At the first glance, our DGM-based link prediction method seems to heavily rely on the existing patterns

in the adjacency matrix of the original network. After all, we are treating a network as an image. But do

we have to sophisticatedly label the nodes in the network to ensure the success of our method? To

address this concern, we perform the following numerical experiment. We start from an original network

with an appropriate node labeling such that the adjacency matrix looks exactly as the binary image of

letter E without any missing pixels. (See Supplementary Information Figure S2 for a more complicated

synthetic network generated by the stochastic block model.) Then we relabel h fraction of the nodes

in the network so that the binary image associated with its adjacency matrix looks much more random

than the letter E (see insets of Figure 2A). Note that the network structure is fixed, while we just label

the nodes differently so that the resulting adjacency matrices (or binary images) look quite different.

We then randomly remove 10% links of those five networks as probe set to evaluate the performance

of our method at different h values, as well as the performance of two classical link prediction methods

for directed networks that do not depend on the node labeling at all. Hereafter, to quantify the perfor-

mance of any link prediction method, we employ the standard AUC statistic, i.e., the area under the

receiver operating characteristic curve (Clauset et al., 2008; Guimerà and Sales-Pardo, 2009). To calculate

the AUC, we first randomly split the link set ε into two parts (see Figures S3 and S4 for details): (1) a frac-

tion f of links as the test or probe set εP, which will be removed from the network; and (2) the remaining

fraction (1�f) of links as the training set εT, which will be used to recover the removed links. The AUC

statistic is defined to be the probability that a randomly chosen link in the probe set εP is given a higher

score by the link prediction method than that of a randomly chosen nonexistent link (see Supplementary
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Information Section 2 and Figure S5 for details). For each network, we performed 20 independent

random splittings unless otherwise stated. We find that, for this small directed network, the performance

of our method degrades only slightly even after we relabel 25% nodes (Figure 2A). When we relabel

more nodes, the performance is actually quite stable. Even if we relabel all the nodes, the AUC of our

method is still about 0.9, which is higher than that of other link prediction methods for directed networks,

such as the preferential attachment (PA) (Barabási and Albert, 1999)-based method (with AUC�0.85) and

the low-rank matrix completion (LRMC) (Pech et al., 2017) method (with AUC�0.7). In Supplementary In-

formation Figure S6, we further show that the AUC of our method is generally above 0.9 with different

completely random node labeling of this network. This is simply because even after completely random

node labeling, small-scale patterns (e.g., many short line segments in the relabeled image of E) can still

be readily leveraged by our method.

The results presented in Figure 2A indicate that, for those networks that have strong structural patterns, our

DGM-based link prediction does not heavily rely on the detailed node labeling. However, to optimize the

performance of our method, one should still label the nodes accordingly. This can be achieved by extract-

ing community structure in the network (Newman and Girvan, 2004; Radicchi et al., 2004), for example, us-

ing the classical Louvain method (Blondel et al., 2008). (Note that nodes within a community can be labeled

randomly and the test set should not be involved in the node labeling.) To test this simple idea, we consider

a directed modular network generated from the stochastic block model (Girvan and Newman, 2002), where

any two nodes within the same module are randomly connected with probability pin and any two nodes be-

tween different modules are randomly connected with probability pout (see Figure S7 for the performance
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Figure 2. Impact of Node Labeling on the Performance of Our DGM-Based Link Prediction Method

(A) A randomly selected fraction of h nodes are relabeled in a directed network whose original adjacency matrix looks

exactly as the binary image of letter (E) We randomly divide the links into two parts: a fraction of 10% links chosen as the

probe set and the remaining 90% links as the training set. We perform link prediction using three different methods: DGM

(deep generative model based), PA (preferential attachment based), and LRMC (low rank matrix completion). In this

example, we choose M = 1000 for our DGM-based method. Even after we relabel all the nodes so that the adjacency

matrix does not display prominent features, the median AUC of our DGM-based method is still around 0.9, whereas it is

0.85 for the PA method and 0.7 for the LRMC method. Inset: The adjacent matrices corresponding to different relabeling

fractions, where black pixels represent existing links.

(B–D) AUCs of DGM-based and other traditional methods in the link prediction of a directed modular network (N = 28)

generated by the stochastic block model (Girvan and Newman, 2002) with within-module connection probability pin = 0.5

and between-module connection probability pout = 0.05. The adjacent matrices before (or after node relabeling) is shown

in (B) (or C), respectively. Asterisks in (D) show whether the AUC of our DGM-based link prediction method is significantly

higher than that of the other three traditional algorithms (paired-sample t test).

Significance levels: p value <0.01(**), <0.001(***).
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of DGM with connection probability). We apply our method as well as various traditional methods to this

modular network (N = 28) with random node labeling (Figure 2B). We find that no link prediction method

performs significantly better than random guess for this directed network (Figure 2D). However, applying

the Louvain method first (here we treat the directed network as an undirected one) will capture some struc-

tural patterns in the network (i.e., the community structure in the adjacency matrix, see Figure 2C), which

will significantly improve the performance of our method (Figure 2D; paired-sample t test). This result sug-

gests that any structural patterns should be exploited for our DGM-based link prediction.

Demonstration Using a Real Network

Real-world complex networks certainly display more prominent structural patterns than ER random graphs.

Thanks to the deep neural networks in the DGM, our method can actually leverage structural patterns in a

real network at different scales all together, from small subgraphs to community structure (Girvan andNew-

man, 2002). To demonstrate this, we consider the character co-occurrence network of Victor Hugo’s Les

Misérables. As shown in Figure 3A, this network displays many interesting structural patterns, e.g., stars,

cliques, and communities. After node labeling using the Louvain method (Blondel et al., 2008), those struc-

tural patterns naturally emerge in the matrix (image) presentation. In particular, those stars show up as line

segments, cliques and communities appear as blocks in the image (Figure 3B). After training, deep neural

networks with many layers are able to extract the most important structural patterns of the network as the

key features of the corresponding image. Note that, at the same layer of the deep neural network, different

filters can actually learn different feature representations: some focus more on lower level features such as

line segments, whereas others focusmore on higher level features such as blocks (Figure 3C). Deeper layers

will typically capture higher level features or more global structural patterns (Figure 3D). Leveraging those

features at different levels or structural patterns learned at different scales, our DGM-based link prediction

performs very well (see Supplementary Information Section 4.2.2 and 4.2.3 for more details). Indeed, for this

particular network, with a fraction f = 0.1 of links as test set, we have AUC�0.95, much higher than that of

other link prediction methods, e.g., CN (with AUC�0.7) and SEAL (with AUC�0.85).

Systematic Benchmarking Using Real Networks

To systematically demonstrate the advantage of our DGM-based link prediction in real-world applications, we

compare the performance of our method with that of both classical and state-of-the-art link predictionmethods

for a wide range of real-world networks (LeBlanc et al., 1975; Baird et al., 1998; Christian and Luczkovich, 1999;

Krebs, 2002; Zhang et al., 2005), from social, economic, technological to biological networks (see Supplementary

Information Section 6 and Table S1 for brief descriptions of real networks analyzed in this work). For undirected

networks (Figure 4A), we find that generally global similarity indices (e.g., Katz, ACT) and SBM-based link pre-

diction methods perform better than local similarity indices (e.g., CN, PA, RA)-based methods. But the perfor-

mances of those heuristics-based methods vary a lot over different network domains. Some of them actually

perform even worse than random guess, especially when the training set is small (corresponding to large f).

By contrast, ourDGM-basedmethoddisplays very robust andhighperformance for various undirected networks

(see Figures S8 and S9 for comparing the performance with additional three methods). It also outperforms

several state-of-the-art link prediction methods based on non-negative matrix factorization (Chen et al.,

2017), network embedding (Perozzi et al., 2014), andgraphneural networks (ZhangandChen, 2018). For directed

networks (Figure 4B), most of the existing methods (especially those state-of-the-art methods) are actually not

applicable, except two classical methods: PA and LRMC (see Figure S10 for comparing the performance with

modified RA method). We compare the performance of our method with those of PA and LRMC. Again, we

find that our method displays more robust and better performance than PA and LRMC for various directed net-

works (see Figure S11 for detailed statistical test). We also use AUPRC (area under the precision-recall curve) as

the performance evaluation metrics (see Table S2, Figures S12 and S13).

We emphasize that, before applying our DGM-based link prediction to each of the real-world networks

tested in Figure 4, we performed node labeling (also known as matrix reordering in the literature) to get

the matrix (or image) presentation of the network. For the sake of simplicity, we just labeled nodes in a

network based on its community structure. In particular, for undirected networks, we apply the Louvain

method; for directed networks, we apply the method proposed in Arenas et al. (2008). We emphasize

that our approach does not rely on the presence of communities in a network. Any structural patterns

at different scales (from small subgraphs to communities, see Figure 3) can be and should be leveraged

all together. A reasonable node labeling can actually be achieved in many different ways other than just

community detection. We found that for real-world networks the performance of our DGM-based link
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prediction actually does not heavily depend on the specific node labeling algorithm (see Supplementary

Information Section 5). This is consistent with the results presented in Figure 2A, where we show that as

long as the network has strong structural patterns, then any reasonable node labeling will offer a plau-

sible matrix (or image) presentation of the network, which can be used for our DGM-based link

prediction.
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Figure 3. Deep Neural Networks in the DGM Are Able to Learn Different Structural Patterns of a Network at Different Scales

(A) The character co-occurrence network of Victor Hugo’s LesMisérables (with 77 nodes) contains several interesting structural patterns such as stars, cliques,

and community structure.

(B) The matrix (image) representation of the network, with node labeling based on the Louvain method. Those structural patterns are highlighted in different

colors.

(C) Learned feature maps from the first convolutional layer with trained filters. There are in total 64 feature maps. Each of them is of size 40 3 40.

(D) Learned featuremaps from the second convolutional layer with trained filters. There are in total 128 feature maps. Each of them is of size 203 20. For each

feature map, higher (or lower) values are shown in redder (or yellower) color.
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Parallelization Based on Image Splitting

Since our method essentially treats a network as an image, it can be easily parallelized by splitting a large

network (image) into several small subnetworks (subimages) and then performing link prediction for each

subnetwork (subimage) in parallel (Figure 5A). Note that node labeling is the first step of our approach.

In this step, we always treat the whole network as an image (by any reasonable node labeling algorithm),
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Figure 4. Our DGM-Based Link Prediction Displays Very Robust and High Performance for Both Undirected and

Directed Real-World Networks

DGM, deep generative model based link prediction; CN, common neighbors; PA, preferential attachment; RA, resource

allocation; JC, Jaccard index; KATZ, Katz index; ACT, average commute time; SBM, stochastic block model; LRMC, low

rank matrix completion; DW, deep-walk embedding method; NMF, non-negative matrix factorization; SEAL, learning

from Subgraphs, Embeddings, and Attributes for Link prediction; SPM, structural perturbation method (see

Supplementary Information Section 1 for details of each algorithm).

(A) Undirected networks. Top: Terrorist association network, Zachary karate club, Protein-protein interaction (PPI)

network (a subnetwork of PPIs in S. cerevisiae). Bottom: Medieval river trade network in Russia, Internet topology (at the

PoP level), Contiguous states in the United States.

(B) Directed networks. Top: Consulting (a social network of a consulting company), cat cortex (the connection network of

cat cortical areas), cattle (a network of dominance behaviors of cattle). Bottom: Seagrass food web, St. Martin food web,

Sioux Falls traffic network. AUC of our DGM-based method is the average AUC over the last 20 epochs of the total 150

epochs for all of networks. Here an epoch is one full training cycle on the training set. For all the undirected real networks,

we apply the Louvain method first to label the nodes appropriately. Directed networks are labeled by the method

proposed in Arenas et al., (2008). Error bar represents the standard error of the mean.
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regardless of the network size. Training the DGM is the second step of our approach. In this step, if the

network/image is small, we train the DGM and hence perform link prediction for the whole image. Only if

the network/image is too large, for which the DGM cannot be easily trained, we need to split the image

into subimages, train DGM, and perform link prediction for different subimages in parallel. This splitting

typically does not decrease the overall link prediction performance, compared with the result of treating

the large network as a whole (Figure 5B). For each subnetwork, when only the information of the subnetwork

is provided, our method outperforms other methods (Figure 5B). In fact, even if other methods (e.g., PA and

LRMC) use the information of the whole network to perform link prediction for a subnetwork, our method

that only relies on the information of the subnetwork still displays better performance (Figure 5B).

The image representation of complex networks also allows us to focus on any specific subnetwork of inter-

est and just predict the missing links in that subnetwork. For example, we perform link prediction for 200

subnetworks of size 60 randomly selected from two large real networks: Facebook wall posts (Viswanath et

al., 2009) (with 46,952 nodes and 87,6993 links) and Google+ (Leskovec andMcauley, 2012) (with 23,628 no-

des and 39,242 links). To get each subnetwork, we randomly select a subimage of size 60 3 60 from the

whole image (i.e., the adjacency matrix A=(aij) of the network) by choosing rows (i+1) to (i+60) and columns

(j+1) to (j+60). Then we convert this subimage into a small network with adjacency matrix As=(apq
s), where

apq
s = 1 if ai+p�1,j+q�1 = 1. We find that our method shows much higher AUC than other methods (Figures

5C and 5D). All these results suggest that our method holds great promise in link prediction for large-scale

real-world networks. To directly demonstrate the performance of our method in analyzing large-scale net-

works, we consider an undirected network: Facebook-NIPS (withN = 2,888 nodes), and a directed network:

US airports (with N = 1,574 nodes). We randomly remove a fraction (f = 0.1) of links as test set. To facilitate

the training process of DGM and speed up the link prediction, we still split each large network (image) into

several small subnetworks (subimages) and then perform link prediction for each subnetwork. But, in the

end, to have a fair comparison with other methods (that always treat the large network as a whole), we

calculate the AUC of our method from the whole network (constructed by merging subnetworks/subim-

ages generated by the DGM). We find that clearly for both large-scale real networks (Facebook-NIPS

and US airports) our method outperforms other existing methods (Figures 5E and 5F). See Supplementary

Information Figure S14 for results of large-scale model networks.

DISCUSSION

In summary, our DGM-based link prediction shows superior performance against existing methods for

various types of networks, be they technological, biological, or social in nature. Since our method treats

the adjacency matrix of a network as an image, it can be naturally extended to solve the link prediction

problem for bipartite graphs, multi-layer networks, and multiplex networks, where the adjacency matrices

have certain inherent structure. With small modification, it can also be used to perform link prediction in

weighted graphs (see Supplementary Information Figure S15). To achieve that, we need to normalize

the link weights so that they can be treated as existent probabilities of the corresponding links. In principle,

any DGM can be utilized in our method. But we find that, for the link prediction purpose, GANs perform

much better than other DGMs, e.g., variational autoencoder (Sohn et al., 2015) (see Supplementary Infor-

mation Figure S16). There are several hyperparameters in training the GANs (see Supplementary Informa-

tion Section 4 for details). In this work, we use the same set of hyperparameters for all the networks to show

a conservative AUC estimation of our method. The performance of our method can certainly be further

improved by carefully tuning those hyperparameters for a specific network of interest (see Figure S17).

We feel this is beyond the scope of the current work and hence leave it as a future one.

Figure 5. The DGM-Based Link Prediction Method Can Infer Missing Links of Large Networks and Arbitrarily Selected Subnetworks within Large

Networks

(A) The adjacency matrix of a real network: The Little Rock food web. The network (image) is split into 9 subnetworks (subimages).

(B) AUC of DGM, PA, and LRMC on the original network and AUC of DGM, PA, and LRMC on each subnetwork (DGM-S, PA-S, LRMC-S). Error bar represents

the standard error of the mean.

(C and D) We perform link prediction for 200 randomly selected subnetworks (of size 60) chosen from two large-scale real networks: (E) Facebook wall posts

(with 46,952 nodes and 87,6993 links) and (F) Google+ (with 23,628 nodes and 39,242 links), respectively. We randomly divide the links of the relabeled

networks into two parts: a fraction of 10% links are chosen as probe set and the remaining 90% fraction of links as training set (here, each subnetwork contains

15 links at least). Asterisks at the top of each panel shows whether the AUC of our DGM-based link prediction model is significantly higher than that of the

other two traditional algorithms (paired-sample t test). Significance levels: p value <0.001(***).

(E and F) AUC of DGM and other scalable link prediction methods in two large-scale networks: (E) Facebook-NIPS (withN = 2,888 nodes and 2,981 links), and

(F) US airports (with N = 1,574 nodes and 28,236 links).
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Limitations of the Study

We should admit that, although our DGM-based link prediction displays superior performance in various

real-world networks, it has several limitations. First, its time complexity is higher than traditional heuristic-

based methods (e.g., Common Neighbors [Zhou et al., 2010], Preferential Attachment [Barabási and Al-

bert, 1999]) and embedding-based methods (e.g., DeepWalk [Perozzi et al., 2014], node2vec [Grover

and Leskovec, 2016, p. 2]). (See Supplementary Information Section 4.2.4 for detailed analysis of its time

complexity.) Such a speed-accuracy trade-off deserves a very careful consideration in real-world applica-

tions. For certain link prediction applications, such as recommendation system in e-commerce or online

social media with daunting network sizes, speed is the major concern, hence traditional link prediction

methods still have big advantages. For applications in biomedicine (e.g., inferring protein-protein interac-

tions or drug-target interactions) or criminal intelligence analysis (e.g., identifying hidden accomplice in

criminal activity), those networks are much smaller than social media networks, and accuracy is way more

important than speed. In those cases, we anticipate that our DGM-based link prediction should have an

unparalleled advantage. Furthermore, we suggest that one should definitely exploit graphics process

unit parallelism to train the GANs (Im et al., 2016), which will certainly speed up our method. Finally, we

emphasize that, in real-world applications of link prediction, any additional side information, such as

node attributes, can be incorporated into our method to further improve the link prediction. Second, we

should admit that, since we treat the adjacency matrix of a network as a binary image, our method is by

definition not permutation invariant. Recently, the notion of permutation-invariance has been discussed

a lot in the deep learning literature (Wood and Shawe-Taylor, 1996; Kondor and Trivedi, 2018; Maron et

al., 2018, 2019; Bloem-Reddy and Teh, 2019; Behrisch et al., 2016). A network method is called permuta-

tion-invariant if it produces the same output regardless of the node labeling used to encode the adjacency

matrix of the network. Although our method is not permutation invariant in theory, we emphasize that it is

approximately permutation invariant in practice. As shown in Figure S18, node labeling does not signifi-

cantly affect the performance of our link predictionmethod, as long as the node labelingmethod leverages

existing structure features in the network.
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Part I

Transparent Methods

I. EXISTING LINK PREDICTION ALGORITHMS

A real-world network can be mathematically represented by a graph G(V, E), where V = {1, 2, . . . , N} is the node
set and E⊆ V×V is the link set. A link is a node pair (i, j) with i, j ∈ V, representing certain interaction, association
or physical connection between nodes i and j. Link prediction aims to infer the missing links or predict future links
between currently unconnected nodes based on the observed links Barzel and Barabási (2013); Liben-Nowell and
Kleinberg (2007); Lichtenwalter et al. (2010). Many algorithms have been developed to solve the link prediction
problem Al Hasan et al. (2006); Liu and Lü (2010); Lü et al. (2009); Sarukkai (2000). Here we briefly describe some
classical link prediction algorithms.

A. Similarity-based algorithms

For similarity-based algorithms, each non-observed node pair (i, j) is assigned a similarity score sij . Higher
score is assumed to represent higher link existence probability. The similarity score can be defined in many different
ways.

(1) Common Neighbors. The common neighbors algorithm quantifies the overlap or similarity of two nodes as
follows Zhou et al. (2010):

sij = |Γ(i) ∩ Γ(j)|, (S1)

where Γ(i) denotes the set of neighbors of node i, ∩ denotes the intersection of two sets and |X| denotes the
cardinality or size of set X.
(2) Jaccard Index. The Jaccard index measures the overlap of two nodes with normalization Jaccard (1901):

sij =
|Γ(i) ∩ Γ(j)|
|Γ(i) ∪ Γ(j)|

, (S2)

where ∪ denotes the union of two sets.
(3) Preferential Attachment Index. This index assumes that the existent likelihood of a link between two nodes is
proportional to the product of their degrees Barabási and Albert (1999):

sij = ki × kj , (S3)

where ki is the degree of node i.
(4) Resource Allocation Index. This index is based on a resource allocation process between pair of nodes Ou
et al. (2007); Zhou et al. (2009). Consider a node pair (i, j), the similarity between i and j is defined as the amount
of resource j received from i through their common neighbors:

sij =
∑

m∈Γ(i)∩Γ(j)

1

km
. (S4)

Here we assume each common neighbor has a unit of resource and will equally distribute among all its neighbors.
(5) Katz Index. The Katz index is based on a weighted sum over the collection of all paths connecting nodes i and
j:

sij =

∞∑
l=1

βl(Al)ij , (S5)
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where β is a damping factor that gives the shorter paths more weights, and A is the adjacency matrix of the network.
The N ×N similarity matrix S = (sij) can be written in a compact form Katz (1953):

S = (I − βA)−1 − I, (S6)

where I is the identity matrix. The damping factor β is a free parameter and should be lower than the reciprocal of
the absolute value of the largest eigenvalue |λmax| of A (in our calculations, we choose β = 0.5/|λmax|).
(6) Average Commute Time. The average commute time index is motivated by a random walk process on the
network Liu and Lü (2010):

sij =
1

l+ii + l+jj − 2l+ij
, (S7)

where l+ij is the entry of pseudoinverse of the Laplacian matrix L ≡ D − A, where D = diag{k1, k2, · · · , kN} is the
degree matrix and A is the adjacency matrix.
(7) Node embedding. Node embedding aims to represent each node i ∈ V into a low-dimensional space Rd by
using the proximity between nodes Roweis and Saul (2000). After embedding the nodes in the network into a low-
dimensional space, we can directly calculate the distance between any two nodes in the transformed space, which
can then be used in many downstream analysis, such as multi-label classification, networks reconstruction as well as
link prediction. There are many existing node embedding methods, such as Structural Deep Networks Embedding
(SDNE) Wang et al. (2016), LINE Tang et al. (2015), DeepWalk Perozzi et al. (2014), GraRep Cao et al. (2015),
and LE Belkin and Niyogi (2003). Though node embedding methods can efficiently perform link prediction for large-
scale networks, the embedding process itself will cause information loss, which might affect the performance of link
prediction. In addition, for sparse network, embedding methods cannot provide the representations of isolate nodes
since no attribute is available. We choose DeepWalk to compare with our method and the code is downloaded from
github: https://github.com/phanein/deepwalk.
(8) Non-negative matrix factorization. Suppose the adjacency matrix A of a network is also non-negative where
each node is represented by the corresponding column. Then non-negative matrix factorization (NMF) is aiming to
find two non-negative matrices UN×k and Vk×N so that Duan et al. (2017); Long et al. (2005):

A = UV, (S8)

where N is the network size and k < N is the dimension of latent space. Then, similar to the network embedding
methods, we can calculate the distance (similarity) between any two nodes in the latent space and realize the task
of link prediction Chen et al. (2017).
(9) Structural perturbation method. Given an undirected network, its adjacency matrix A can be written as
A = AR + ∆A, where ∆A and AR represent the symmetric perturbation matrix and the residual matrix after ran-
domly removing ER links, respectively. AR can be diagonalized as: AR =

∑N
k=1 λkxkx

>
k , where λk and xk are the

eigenvalue and the corresponding eigenvector of AR, respectively. After perturbation, the eigenvalue change can be
approximated as ∆λk ≈ x>

k ∆Axk
x>
k xk

. Then, the perturbed matrix can be expressed as: Ã =
∑N
k=1(λk + ∆λk)xkx

>
k . The

entry of Ã can be used to quantify the similarity of any node pair. Note that the random removal of links in SPM is
similar to the removal of pixels in the binary images to get a pool of perturbed images in our method.

Other similarity-based algorithms, such as SimRank Jeh and Widom (2002), Random Walks Pearson (1905),
Random Walks with Restart Tong et al. (2006), Negated Shortest Path Liben-Nowell (2005), Network Paths of Length
Three (L3) Kovács et al. (2019) can also be used for link prediction (see Fig. S8 for the performance of L3 in the link
prediction of 6 undirected networks). Note that some similarity-based methods can be modified to be applicable for
directed networks. For example, a modified Resource Allocation (RA) index Chen et al. (2018); Zhou et al. (2009):

sRA
ij =

∑
z∈Γ(i)∩Γ(j)

1

kin
z · kout

z

(S9)

can be used for the link prediction of directed networks. Here, z represents the common neighbors between nodes
i and j, and kin

z (kout
z ) is the in- (out-) degree of node z. We compared the performance of this RA-based method

with that of our DGM-based link prediction in 6 real-world directed networks. We found that our method significantly
outperforms the RA-based method in 4 of the 6 networks (p-value < 10−5, paired t-test, see Fig. S10).
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B. Maximum likelihood algorithms

The maximum likelihood algorithms assume that real networks have some structure, i.e., hierarchical or community
structure. The goal of these algorithms is to select model parameters that can maximize the likelihood of the observed
structure.
(10) Stochastic Block Model. As one of the most general network models, the stochastic block model (SBM)
assumes that nodes are partitioned into groups and the probability of two nodes are connected depends solely on
the groups they belong to Holland et al. (1983); White et al. (1976). The SBM assumes that a link with higher
reliability has higher existent probability, and the reliability of a link is defined as Guimerà and Sales-Pardo (2009):

RLij =
1

Z

∑
P∈P

(
lOσiσj + 1

rσiσj + 2

)
exp[−H(P )], (S10)

where P represents the partition space of all possible partitions, σi is the group that node i belongs to the partition
P , lOσiσj is the number of links between groups σi and σj in the observed network, rσiσj is the maximum possible

number of links between them, the function H(P ) ≡
∑
α≤β [ln(rαβ + 1) + ln

(
rαβ
lOαβ

)
], and Z ≡

∑
P∈P exp[−H(P )]. In

practice, we can use the Metropolis algorithms to sample relevant partitions that significantly contribute to the sum
over the partition space P. This allows us to calculate the link reliability efficiently.
(11) Hierarchical Structure Model. Many real networks have hierarchical structure, which can be represented by
a dendrogram D. One can assign a probability pr to each internal node r of D. Then the connecting probability
of a pair of leaves is given by pr′ , where r′ is the lowest common ancestor of these two leaves. Denote Er as the
number of edges in the network whose endpoints have r as their lowest common ancestor in the dendrogram D. Let
Lr and Rr be the number of leaves in the left and right subtrees rooted at r, respectively. Then the likelihood of D
associated with a set of probabilities {pr} is given by Clauset et al. (2008):

L(D, {pr}) =
∏
r∈D

pErr (1− pr)LrRr−Er . (S11)

For a specific D, the probabilities {pr} that maximize L(D, {pr}) are edges between the two subtrees of r that are
present in the network:

{pr} =
Er
LrRr

. (S12)

Evaluating the likelihood L(D, {pr}) at this maximum yields

L(D) =
∏
r∈D

[
p̄p̄rr (1− p̄r)1−p̄r

]LrRr
. (S13)

One can use the Markov chain Monte Carlo (MCMC) method to sample a large number of dendrorgams D with
probability proportional to their likelihood L(D). For each pair of unconnected leaves i and j, we calculate the
connection probability pij for each D, and then calculate the average 〈pij〉 over all the sampled dendrograms. The
〈pij〉 value yields the existent probability of the link between nodes i and j. For each nonexistent link or node pair
(i, j), we calculate the average connecting probability 〈pij〉 over all sampled dendrograms and the node pairs with
highest 〈pij〉 are missing links.

Since the SBM-based link prediction method introduced in Ref Guimerà and Sales-Pardo (2009) has demonstrated
better performance than this hierarchical structure model, in this work we chose the former as a representative
maximum likelihood algorithm to compare with our DGM-based link prediction method.

C. Other algorithms

a. (12) Low-Rank Matrix Completion. The goal of matrix completion is to recover a low-rank matrix L from a
large matrix A, which can be used to infer the missing links of a network. The matrix L can be calculated by solving
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the convex optimization problem Pech et al. (2017):

min
L,S
‖L‖∗ + λ|S|1, s.t. A = L+ S. (S14)

Here, S is a sparse matrix. ‖ · ‖ denotes the nuclear norm of a matrix, and | · | represents the sum of the absolute
values of each matrix element and λ is a positive parameter. The matrix S is defined as follows: if two nodes (i, j)
are connected in the observed network, then the score sij = Aij ; otherwise, sij = Lij .

b. (13) Graph neural networks. Recently, the notion of graph neural networks (GNNs) has gained increas-
ing popularity in graph representation learning. GNNs are a type of neural networks that operate directly on the
graph structure. Here, we introduce three state-of-the-art GNN-based methods: GraphSAGE (SAmple and aggre-
GatE) Hamilton et al. (n.d.), SEAL (learning from Subgraphs, Embeddings, and Attributes for Link prediction) Zhang
and Chen (2018), and CGNN (Colliding Graph Neural Networks) Srinivasan and Ribeiro (n.d.).

GraphSAGE is a popular graph representation learning method that uses node feature information to efficiently
generate node embeddings for previously unseen data. Unlike most of embedding methods that require all nodes
in the graph are present, GraphSAGE trains individual embeddings for each node through learning a function that
generates embeddings by sampling and aggregating features from a node’s local neighborhood. The GraphSAGE
code can be downloaded from github: https://github.com/williamleif/GraphSAGE.

SEAL is a representative GCN-based link prediction method, which combines graph structure features, latent
features, and explicit features into a single GCN. In particular, the input to GCN is a local subgraph around each target
link. Those local subgraphs capture graph structure feature related to link existence. The latent and explicit features
can be naturally combined in GCN by concatenating node embedding and node attributes in the node information
matrix for each subgraph. The SEAL code can be downloaded from github: https://github.com/muhanzhang/SEAL.

CGNN uses a novel variational auto-encoder procedure to obtain node embeddings using neural networks. The
observed variable A, evidence feature X and the latent variable Z are connected by the joint distribution representing
the probability of A and X with given Z. The neural network is used to learn the joint probability via MCMC (Markov
chain Monte Carlo) through supervised learning. The CGNN code can be downloaded from github:
https://github.com/PurdueMINDS/Equivalence.

Note that among those three methods, SEAL was designed to solve the link prediction problem, while GraphSAGE
and CGNN are general graph representation learning methods. In the main text (Fig.4), we compared our DGM-
based link prediction with SEAL, finding that our method outperforms SEAL in almost all the real-world networks
analyzed in this work. In Fig. S9, we compared our method with GraphSAGE and CGNN, finding that our method
significantly outperforms those two method in all the real-world networks analyzed in this work.

There are also many probabilistic model based link prediction methods (which typically have high time complex-
ity Martı́nez et al. (2017)), such as Probabilistic Relational Model Friedman et al. (1999), Probabilistic Entity Rela-
tionship Model Heckerman et al. (2007), and Stochastic Relational Model Yu et al. (2007), as well as many other
methods, such as Structural Perturbation Method Lü et al. (2015), etc. For a more complete list of existing link
prediction methods, please see the review articles Hulovatyy et al. (2014); Martı́nez et al. (2017). In this work,
we compare our DGM-based link prediction method with representative link prediction methods that have either
relatively higher performance or lower time complexity. Among the methods mentioned above, PA, RA, LRMC and
our DMG-base link prediction methods can be used in directed networks.
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II. PERFORMANCE METRICS OF LINK PREDICTION METHODS

The two most commonly used metrics to quantify the performance of link prediction methods are AUC and Precision.
To calculate those two metrics, we first split the total link set E into two parts: (i) a fraction of links as the test or
probe set EP, which will be removed from the network; and (ii) the remaining fraction of links as the training set ET,
which will be used to recover the removed links.

If we shuffle all the existing links and randomly select an f fraction of links from the total link set E as the probe
set, then those links originating from hubs (i.e., high-degree nodes) will be more likely to be selected (especially for
networks with strong degree heterogeneity), while those links originating from low-degree nodes will be less likely
to be selected. To avoid any bias introduced by this edge-based splitting method, we employ a node-based splitting
method. See Algorithm 1 for details and Fig. S3 for a demonstration of its fairness.

Algorithm 1 Node-based splitting method
Input:

The network, defined by G(V, E), where Vdenotes the node set and Edenotes the link set.
Output:

The probe set EP with a fraction of f links, and training set ET with a fraction of (1− f) links. EP ∪ ET = E

1: Set n = 0
2: while n < df × Ee do
3: Randomly select one node i from V

4: if node i has at least one link (not an isolate node) then
5: Randomly select one of link (i, j) of node i
6: if rand() < p1 then
7: Select link (i, j) as one of probe links, and remove it from the network
8: n = n+ 1
9: end if

10: end if
11: end while

A. AUC

The AUC statistic Clauset et al. (2008) is defined to be the probability that a randomly chosen link in the probe set
is given a higher score by the link prediction method than that of a randomly chosen nonexistent link. If we denote
n as the total number of independent comparisons, and n′ denotes the times that the score of a randomly selected
link in the probe set is higher than that of the nonexistent link, then:

AUC =
n′

n
. (S15)

Remark 1. In literature Zhou et al. (2009), a slightly different definition of AUC was used:

AUC =
n′ + 0.5n′′

n
, (S16)

where n′′ is the times that the score of a randomly selected link in the probe set is equal to that of a randomly
chosen nonexistent link. We emphasize that with this definition of AUC, our DGM-based link prediction method still
displays very robust and superior performance for both undirected and directed real-world networks (see Fig. S5).
However, for some similarity-based link prediction methods, this definition of AUC sometimes leads to misleading
results. For instance, in Fig. S5, we find that for some similarity-based link prediction methods, the AUC with larger

2 Note: de represents the rounds towards the nearest integer. rand denotes a random number from uniform distribution. Probability p does not
affect the fairness of algorithm and we chose p = 0.01 for all of networks.
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training set (or equivalently, smaller probe set, say f = 0.1) is even lower than that with smaller training set (or
larger probe set, say f = 0.9). This spurious performance enhancement with larger probe set is due to the term n′′

in Eq. (S16). Consider a specific similarity-based link prediction method such as the preferential attachment (PA)
method, where the similarity score of a node pair is defined as the degree product of the two nodes. As shown in
Fig. S4(b), (d), with a larger probe set, the degrees of nodes in the remaining network display very few possible val-
ues (non-negative integers), and most of the nodes have degree zero. Consequently, it is very likely that the score of
a randomly selected link in the probe set will be equal to that of a randomly chosen nonexistent link. In other words,
as f → 1, n′ → 0 and n′′/n → 1, rendering AUC = (n′ + 0.5n′′)/n → 0.5. Note that the AUC definition in Eq. (S15)
does not include the contribution of n′′, hence in the case f → 1, we will have n′ → 0, and naturally AUC = n′/n→ 0.

In addition, one can show that the calculation of AUC using Eq. (S16) is actually equivalent to the AUC calculated
directly from the whole receiver operating characteristic (ROC) curve. For example, as shown in Fig. ??, we plotted
the whole ROC curves for 12 link prediction algorithms for the 12 real-world networks analyzed in the main text
(with test set fraction f = 0.1). The AUC values are shown in Fig. ??, which are consistent with what we show
in Fig. S5. Since we want to systematically demonstrate the performance of various link prediction methods with
different fractions of training set, showing the whole ROC curves will make the presentation very complicated. Hence
in the main text, we did not use the ROC curves to present our results.

Remark 2. Based on definition of Eq. (S15), for some networks, most similarity-based link prediction methods yield
AUC ∼ 0 as shown in the main text (Fig.4). This is simply because the scores of almost all links are 0, and hence
scores of missing links tend to be equal to that of nonexistent links, rendering n′ ∼ 0 and hence AUC ∼ 0. Note
that this doesn’t mean that we can get AUC ∼ 1 by simply reversing the ranks. Only if scores of missing links are
strictly lower than that of nonexistent links (which also leads to n′ ∼ 0 and AUC ∼ 0) can we simply invert the
prediction to provide a better-than-random result. With the definition of Eq. (S16), we have shown that the AUCs of
most similarity-based methods are close to 0.5 (especially for large fraction of probe set, see Fig. S5). This clearly
implies that we cannot simply invert the prediction to provide a better-than-random result.

B. Precision

To calculate the Precision of a link prediction method, we first sort the non-observed links in descending order
according to their scores assigned by the link prediction method. We take the top-L non-observed links as the
predicted ones, and count how many of the L links belong to the probe set, denoted as Lp. Then the Precision is
defined as Lü and Zhou (2011):

Precision =
Lp

L
. (S17)

In the main text, we choose AUC rather than Precision as the metric to quantify the performance of various link
prediction methods. The reason is that the Precision metric is quite sensitive to L and the total link set E. For
example, if we compare the Precisions of L being 10% and 20% of total links as predicted ones respectively, one
can find that the Precision corresponding to L = d0.1Ee is smaller than that of L = d0.2Ee. This would be rather
counterintuitive, since with L = d0.2Ee, we have chosen more links as the probe set, and the training set is smaller,
which means that the link prediction performance should degrade. Therefore, the spurious high Precision is generally
caused by the increase of L, rather than the enhancement of link prediction method Pech et al. (2017). If we just
calculate the Precision according to Eq. (S17), with an f = 0.3 fraction of probe links, and we take the top-L
(L = d0.3Ee) non-observed links as predicted ones. Note that if we use Precision as the performance metric, our
method still outperforms other methods in 8 of the 12 real networks studied in this work. None of the other methods
can achieve this level of robust performance across different real networks (see Table. ??).

Remark 3. We also used two other evaluation metrics: AUPRC — the area under the precision-recall curve; and
P (100) — the precision of top-100 predicted links to evaluate the performance of each link prediction method. We
found our methods still shows superior performance in most of real networks (Table. ??, Table. ??, Fig. S13). Note
that our method does not perform well for two particular networks: Consulting and Cat cortex. It is likely due to
the fact that those two networks are very dense (with mean degree 32.5 and 31.5, respectively). For such dense
networks, node labeling based on community detection might not be very effective in detecting structural patterns in
the networks. We emphasize that, though our method does not always display the best performance over all those
networks, none of the other methods displays as robust performance as our method.
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III. DEEP GENERATIVE MODELS

As a class of models for unsupervised learning, generative models take a training set that consists of samples drawn
from some unknown distribution pdata(x), learn a distribution pmodel(x) that we can sample from, such that pmodel(x)
is as similar as possible to pdata(x). Generative models learn pmodel(x) either explicitly or implicitly Goodfellow et al.
(2016). In the former case, we explicitly define and solve for pmodel(x). In the latter case, we learn a model pmodel(x)
that we can sample from it but without explicitly defining it. Deep generative models (DGMs) define distributions over
a set of variables organized in multiple layers Hu et al. (2017). In this section, we describe two of the most commonly
used DGMs: Variational Autoencoders (VAE) and Generative Adversarial Networks (GANs).

A. Variational Autoencoder.

Consider a dataset consisting of N samples of some continuous or discrete variable x. VAE contains a
specific probability model of data x and latent variable z. We can write the joint probability distribution as
pθθθ(x, z) = pθθθ(x|z)pθθθ(z), where θθθ represents neural network model parameters. VAE assumes that the data are
generated as follows: (i) draw a latent variable z(i) from some prior distribution pθθθ(z); (ii) then draw the datapoint x(i)

from the likelihood pθθθ(x|z).

Note that the integral of the marginal likelihood pθθθ(x) =
∫
pθθθ(x|z)pθθθ(z)dz is generally intractable, since one has

to evaluate over all configurations of the latent variable z. Consequently, the posterior density pθθθ(z|x) = pθθθ(x|z)pθθθ(z)
pθθθ(x)

is also intractable.

VAE approximates the intractable true posterior density pθθθ(z|x) by a recognition model qφφφ(z|x). Since the latent
variable z is unobserved, it can be interpreted as a code. Similarly, the recognition model qφφφ(z|x) is called an
encoder. For a given datapoint x, the encoder qφφφ(z|x) will produce a distribution over the possible values of the code
z from which the datapoint x could have been generated. And the likelihood pθθθ(x|z) will be referred to as decoder,
because for a given code z, it will produce a distribution over the possible corresponding values of x.

To quantify the difference between the encoder qφφφ(z|x) and the true posterior density pθθθ(z|x), we use the Kullback-
Leibler divergence that measures the information loss when using the encoder to approximate the true posterior (in
units of nats):

DKL (qφφφ(z|x)||pθθθ(z|x)) ≡
∫
qφφφ(z|x) log

qφφφ(z|x)

pθθθ(z|x)
dz

= Ez∼qφφφ(z|x) [log qφφφ(z|x)− log pθθθ(x, z)] + log pθθθ(x). (S18)

Hence we have

log pθθθ(x) = DKL (qφφφ(z|x)||pθθθ(z|x))− Ez∼qφφφ(z|x) [log qφφφ(z|x)− log pθθθ(x, z)]

= DKL (qφφφ(z|x)||pθθθ(z|x)) + L(θθθ,φφφ;x)

≥ L(θθθ,φφφ;x). (S19)

In the last step, we have used the fact that the KL-divergence is non-negative. The above inequality (S19)
suggests that: (i) L(θθθ,φφφ;x) is the (variational) lower bound of the log marginal likelihood; (ii) we can minimize
DKL (qφφφ(z|x)||pθθθ(z|x)) by maximizing L(θθθ,φφφ;x). Note that (ii) is the key idea of VAE, since DKL (qφφφ(z|x)||pθθθ(z|x)) is
simply intractable (due to the intractable posterior density pθθθ(z|x)), while L(θθθ,φφφ;x) is tractable.

Here

L(θθθ,φφφ;x) ≡ Ez∼qφφφ(z|x) [log pθθθ(x, z)− log qφφφ(z|x)]

= Ez∼qφφφ(z|x) [log pθθθ(x|z)]−DKL (qφφφ(z|x)||pθθθ(z)) . (S20)

Note that the first term in Eq. (S20) is the expected log-likelihood of the datapoint x. The expectation is taken with
respect to the encoder’s distribution qφφφ(z|x) over the latent variable z. This term encourages the decoder pθθθ(x|z) to
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learn to reconstruct the data. The second term is the Kullback-Leibler divergence between the encoder’s distribution
qφφφ(z|x) and the prior distribution pθθθ(z). This term encourages small error when using qφφφ(z|x) to approximate pθθθ(z).

B. Generative Adversarial Networks.

GANs are based on a game theory setup, where two players (the generator and the discriminator) compete with
each other Goodfellow et al. (2014). Each player can be represented by a function that is differentiable with respect
to both its inputs and its parameters. The generator directly produces fake samples x = G(z;θθθ(g)) with z the input
noise variable and θθθ(g) the parameters. Its adversary, the discriminator, attempts to distinguish between real samples
drawn from the training data and fake samples generated by the generator. The discriminator takes x as input and
uses θθθ(d) as parameters. It outputs a single scalar D(x;θθθ(d)), indicating the probability of x belonging to the real
samples.

Within the GANs framework, the discriminator is trying to minimize the cost function

J (d)(θθθ(d), θθθ(g)) = −1

2
Ex∼Pdata(x) logD(x, θθθ(d))− 1

2
Ez∼Pz(z) log

[
1−D(G(z, θθθ(g));θθθ(d))

]
, (S21)

which is the cross-entropy cost when training a standard binary classifier with a sigmoid input Goodfellow (2016).

For the generator, we can specify its cost function in many different ways. The simpliest way is a zero-sum game,
i.e.,

J (g)(θθθ(d), θθθ(g)) = −J (d)(θθθ(d), θθθ(g)). (S22)

Since J (g) is directly tied to J (d), we can summarize the entire game with a value function

V (θθθ(d), θθθ(g)) = −J (d)(θθθ(d), θθθ(g)). (S23)

During the learning, each player attempts to maximize its own payoff, and at convergence

θθθ(g)∗ = arg min
θθθ(g)

max
θθθ(d)

V (θθθ(d), θθθ(g)). (S24)

Unfortunately, the cost function used for the generator G in the above zero-sum game is only useful for theoret-
ical analysis. In practice, it does not perform very well, because it may not provide sufficient gradient for G to learn
well. Indeed, in the beginning of the learning process, G performs poorly and generates fake samples that can
be easily rejected by D with very high confidence. In this case, log

[
1−D(G(z, θθθ(g));θθθ(d))

]
saturates, rendering

the generator’s gradient vanish. Instead of training G to minimize log
[
1−D(G(z, θθθ(g));θθθ(d))

]
, we can train G to

maximize logD(G(z, θθθ(g));θθθ(d)). In other words, G aims to maximize the log-probability that D makes a mistake,
rather than aiming to minimize the log-probability that D makes the correct prediction. The cost of the generator is
then re-defined as

J (g)(θθθ(d), θθθ(g)) = −1

2
Ez∼Pz(z) logD(G(z, θθθ(g));θθθ(d)). (S25)

However, even this modified cost function can misbehave in case the discriminator is really good Arjovsky and
Bottou (2017). Such training difficulty of GANs might be due to the divergences between GANs’ training objective
and generator’s parameters θθθ(g) updating direction Arjovsky et al. (2017). To address this issue, the Earth-Mover
(also called Wasserstein-1) distance W (Q,P) was proposed Arjovsky et al. (2017). Informally, W (Q,P) defines the
minimum cost of transporting mass in order to transform the distribution Q into the distribution P (where the cost
is mass times transport distance). Under mild assumptions, W (Q,P) is continuous everywhere and differentiable
almost everywhere. Unlike the original GANs cost function, the Wasserstein GANs (or WGANs) is more likely to
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provide gradients that are useful for updating the generator. Yet, the cost function in the WGANs relies on the
discriminator being a k-Lipschitz continuous function Arjovsky et al. (2017); Gulrajani et al. (2017). Following the
setup in Arjovsky et al. (2017), the cost functions of the generator and the discriminator are:

J (g)(θθθ(d), θθθ(g)) = −Ez∼Pz(z)[D(G(z, θθθ(g));θθθ(d))] (S26a)

J (d)(θθθ(d), θθθ(g)) = −Ex∼Pdata
[D(x, θθθ(d))] + Ez∼Pz(z)[D(G(z, θθθ(g));θθθ(d))]. (S26b)

The entire game with a value function V (θθθ(g), θθθ(d)) is given by:

min
θθθ(g)

max
θθθ(d)

V (θθθ(g), θθθ(d)) = Ex∼Pdata(x)[D(x,θθθ(d))]− Ez∼Pz(z)[D(G(z,θθθ(g));θθθ(d))]. (S27)
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IV. DGM-BASED LINK PREDICTION

The key idea of our DGM-based link prediction method is to treat the adjacency matrix of a network as the pixel
matrix of an image. By perturbing the original input image in M different ways, we obtain a pool of perturbed images.
Those perturbed images will be fed into a DGM to create S fake images that look similar to the input ones. The exis-
tent likelihood of the link between nodes i and j, denoted as αij , in a fake network is simply given by αij = 1 − Pij ,
where Pij is the rescaled pixel value (ranging from 0 to 1) in its corresponding fake grayscale image. Finally, we take
the average value 〈αij〉 = 1 − 〈Pij〉 over all the S fake images to get the overall existent likelihood of the node pair
(i, j). In the following, we describe the details of two DGMs, i.e., VAE and GANs in solving the link prediction problem.

A. VAE-based link prediction

We employed the Tensorflow implementation of Convolutional Variational Autoenconders Convolutional Variational
Autoencoder – Jason Ramapuram (2016). In our calculation, we chose the following parameters: number of latent
variables is 20, Mini-batch size for data subsampling is 128. We test the VAE-based link prediction for a directed
network with 28 nodes and 118 links, whose adjacency matrix looks like the letter E. We randomly remove 5% links
from the total links to be the probe set, and the remaining links form the training set. Then, we perturb the network
by randomly removing 5 links in M different ways to acquire M(M = 1000) networks as the training input to VAE.
The AUC of VAE-based link prediction is shown in Fig. S16(B), which is much lower than that of GANs-based link
prediction in Fig. S16(C). Moreover, the fake images generated by VAE (Fig. S16(D)) are generally more blurry than
those generated by GANs (Fig. S16(E)). This partially explains why the performance of VAE-based link prediction is
worse than that of the GANs-based link prediction Goodfellow (2016). (See Sec. IV B 2 for more detailed explana-
tions.)

B. GANs-based link prediction

We implemented the Wasserstein GAN using Python 2.7 with deep learning open-source package Tensor-
Flow Abadi et al. (2016). The stride size for both generator and discriminator is 2 × 2. The number of convolutional
and deconvolutional kernels are 128 and 64 for generator and discriminator, respectively. Being affected by convolu-
tional (deconvolutional) layer as well as the stride of filters, the network size should be divisible by 4, hence we add
some isolate nodes (at most 3) to each network, while those nodes are excluded in the calculating of AUC. We use
Mini-batch gradient descent with mini-batch size of 32 to perform optimization. The learning rate (used to control the
speed in adjusting the weights of neural network of loss gradient) is set to be η = 0.0002, clipping parameter (used
to clip the value of weights) c = 10−7. In order to achieve stability, the discriminator is trained two steps and then
alternatively training the generator for one step (see Algorithm 2 for training process of WGAN in link prediction).

1. Selection of hyperparameters

Note that the AUC of GANs-based link prediction can be affected by the following hyperparameters: (1) total
epochs T (one epoch in stochastic gradient descent is defined as a single pass of training data through neural
networks); (2) size of the input pool M ; (3) perturbation strategy, including randomly adding or removing links; (4)
fraction of perturbed links (adding a links or removing r links); and (5) final epoch window (T −∆T , T ) selected to
calculate the average AUC.

For all of the networks (if not specified), we chose T = 150, M = 1000, ∆T = 20. We systematically exam-
ined these hyperparameters in the link prediction of a directed network whose adjacency matrix looks similar to the
letter E. We found that: (i) the larger input pool can render the AUC converge to maximum value faster, while the
average AUC over final ∆T epochs is lower (Fig. S17(a), (d)); (ii) randomly removing a few links facilities the AUC
of links prediction (Fig. S17(b), (e)), while randomly adding links is always inducing lower AUC (Fig. S17(c), (f)).
Interestingly, for r = 0 (i.e., without introducing any perturbation to the network), the AUC is still very high. But we
do see larger fluctuations than that of r = 5 in the final epoch window. Fig. S17(g)-(l) shows similar results for an
undirected network (random graph).
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In total, the results presented in Fig. 4 and Fig. 5 of main text are conservative estimation of the performance
of our GANs-based link prediction, because we didn’t fine tune hyperparameters for each network to achieve the
best performance.

Remark 4. We emphasize that the framework of our GANs-based method in link prediction is significantly different
from that in computer vision, where GANs are trained to produce fake images by learning input images’ distributions.
Such learning scheme may lead to a potential issue of GANs unable to learn the distribution of real data indeed Arora
and Zhang (2017). Here, we infer the missing pixels (links) from the generated fake images (networks) with a single
input image and its various random perturbations.

Algorithm 2 WGANs for Link Prediction
Input: Learning rate η, clipping parameter c, batch size m, Number of iterations for discriminator per generator iteration ndiscri
Input: Initial weights θθθ(d) for discriminator and θθθ(g) for generator

while θθθ(d) has not converged do
for t = 0, ..., ndiscri do

# Update parameter for Discriminator
Sample batch from historical data:
{x(i)}mi=1 from Pdata
Sample batch from Gaussian distribution:
{z(i)}mi=1 from PZ
Update discriminator nets using gradient descent:
gθθθ(d) ← ∇θθθθθθθθθ(d) [−

1
m

∑m
i=1D(x(i))+ 1

m

∑m
i=1D(G(z(i)))]

θθθ(d) ← θθθ(d) − η ·RMSProp3(θθθ(d), gθθθ(g))

θθθ(d) ← clip3(θ(d), c, 1− c)
end for
# Update parameter for Generator
Update generator nets using gradient descent:
gθθθ(g) ← ∇θθθ(g)

1
m

∑m
i=1D(G(z(i)))

θθθ(g) ← θθθ(g) − η ·RMSProp(θθθ(g), gθθθ(g))
end while

2. A heuristic explanation from deep learning perspective

Here, we briefly explain why our GANs-based link prediction works.

Denote the N × N adjacency matrix of the input network to GANs as Y . Here, Yij = 1 if there is a link from
node j to node i; otherwise Yij = 0. Denote G(z) as the fake network generated by the generator G, where each
element G(z)ij represents the existent probability of corresponding node pair (i, j) in the fake network. Then, the
weighted adjacency matrix of the reconstructed network, denoted as W , is given by:

W ≈ G(z). (S28)

Denote the ground truth of the targeted network as R, then the probe set and non-existent link set are given by:

Ep : Rij = 1, Yij = 0,

Ene : Rij = 0, Yij = 0.
(S29)

The AUC of our GANs-based link prediction is given by:

AUC = P (Wij > Wi′j′),where(i, j) ∈ Ep, (i
′, j′) ∈ Ene. (S30)

We denote Γij as the neighbor set of entry (i, j). Then, a link (i, j) belongs to one of the following cases according
to the existent probability of its neighbors and itself within the input network: (i) Yij = YΓij . For these links, the

4 Note: RMSProp denotes Root Mean Square Propagation Tieleman and Hinton (2012) and clip is the operation to clip tensor values to a
specified min and max.
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generated existent probabilities in reconstructed networks satisfy Wij ≈ WΓij ∼ 0, if Yij = 0; and Wij ≈ WΓij ∼ 1,
if Yij = 1. (ii) Yij = 0, YΓij = 1. Following the training process described in Section. III B, the generator G of GANs
is trained to optimize its neurons’ weights θ(g) such that the produced fake networks are sufficiently similar to input
(real) ones. Therefore, the predicted (missing) pixels tend to have similar intensities with their surrounding pixels Yeh
et al. (2016). Equivalently, the predicted existent probabilities of missing links tend to be consistent with existent
probabilities of surrounding links, which can be expressed as:

Wij = argmin
θ(g)

∑
Γij

[Wij −WΓij ]
2. (S31)

Since WΓij ≈ YΓij ∼ 1, to minimize Eq. (S31), Wij will exceed 0, which means this unobserved link in the original
network has higher existent probability in the generated fake networks and hence be one of predicted links. In other
words, if the existent probabilities WΓij of link (i, j)’s neighbors have higher values, then the existent probability Wij

of link (i, j) also tends to be higher in the generated networks. That is, if an unconnected nodes pair is surrounded
by connected nodes pairs, then it has higher existent probability and vice versa (see Fig. S1 for two examples).

Remark 5. We have introduced a notation Γij in Eq. (S31) to represent the neighboring pixels (or surrounding links)
of pixel (link) (i, j). The shape of the neighborhood of pixel (i, j) is determined by the dimension of filters in the
convolutional layer. Hence, our GANs-based link prediction method can also generate various fake networks to
represent different scales of neighborhood interactions. Such adoption of filters can be applied in the link prediction
by tuning the dimension of filters.

3. A heuristic explanation from network perspective

One of the big advantages of deep neural networks is that they can extract the features within the input data. Here,
our key idea of DGM-based link prediction is to treat the adjacency matrix of a network as the pixel matrix of an
image. Therefore, given a network, expressed by an adjacency matrix, or equivalently the pixel matrix, GANs can
extract the features, denoting as a small m × n matrix, of the input pixel matrix by filters. Taking a feature example
with m = 2, n = 4 at the i-th row and j-th column in the adjacency matrix:

a11 a12 a13 . . . a1j a1,j+1 a1,j+2 a1,j+3 . . . a1N

a21 a22 a23 . . . a2j a2,j+1 a2,j+2 a2,j+3 . . . a2N

...
...

...
. . .

...
...

...
...

. . .
...

ai1 ai2 ai3 . . . 1 1 0 1 . . . aiN
ai+1,1 ai+1,2 ai+1,3 . . . 1 1 1 1 . . . ai+1,N

...
...

...
. . .

...
...

...
...

. . .
...

aN1 aN2 aN3 . . . aNj aN,j+1 aN,j+2 aN,j+3 . . . aNN


. (S32)

We can define the similarity between two nodes (u, v) by only considering the topological information within the
feature (highlighted as a red submatrix in Eq. (S32)):

suv = |Γ(u) ∩ Γ(v)|. (S33)

We take the node pair (i, i+ 1) as an example, then within the red feature submatrix we have Γ(i) = {j, j + 1, j + 3}
and Γ(i + 1) = {j, j + 1, j + 2, j + 3}, then we have si,i+1 = 3, i.e., node i and node i + 1 have three common
neighbors (within the feature submatrix). Here, we conclude that node i is similar to node i+1, indicating that if there
is a link from node j + 2 to node i+ 1, then with high probability there exists a link from node j + 2 to i. Note that for
a traditional similarity-based method, i.e., common neighbors (CN), it will conclude that with high probability there is
a link from node i to i+ 1, quite different from what will be predicted from our method.
Note that our method does not perform well for two particular networks: Consulting and Cat cortex. This could be
due to the following facts: (1) those two networks are very dense (with mean degree 32.5 and 31.5, respectively); (2)
there are unstructured long-range connections in those networks that cannot be leveraged by our DGM-based link
prediction.
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4. Time complexity of GANs-based link prediction

For the DGM, we leverage Generative Adversarial Networks (GANs) that consist of two deep artificial neural
networks: generator and discriminator. Both are convolutional neural networks. According to the Ref He and Sun
(2015), the total time complexity of all convolutional layers is:

O(

d∑
i=1

nl−1 · sl2 · nl ·m2
l ), (S34)

where l is the index of a convolutional layer, d is the number of convolutional layers. nl is the number of filters in the
i-th layer and nl−1 is the number of input channels of the l-th layer. sl is the spatial size of the filter and ml is the
spatial size of the output feature map. For all of networks, we choose the parameters as: d = 2, n1 = 128, n2 = 64,
s1,2 = 5, m1 ≈ N/2 and m1 ≈ N/4, where N is the network size (the number of nodes). We only have 1 channel,
so the number of input channels for all of layers is always 1. Then the time complexity to train the GANs of a give
network is proportional to N2.
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V. NODE RELABELING ALGORITHM

Apparent, Our DGM-based link prediction relies on the visual patterns within the network. As shown in Fig. S7 for
synthetic networks generated by stochastic block model (SBM), with a fixed density of between-cluster, the perfor-
mance of our DGM method gradually improves with increasing in-cluster density and stronger modular structure. By
contrast, with a fixed in-cluster density, the performance of our DGM method deteriorates with increasing between-
cluster density and weaker modular structure. To reach the optimal performance of our DGM-based link prediction,
one should leverage any existing structural features in the network and label the nodes accordingly. After node
labeling, those structural patterns naturally emerge in the matrix (image) presentation. Then, DGM is able to extract
the most important structural patterns of the network as the key features of the corresponding image. Node labeling
can be achieved in different ways.

A. Node relabeling algorithm based on Louvain community detection

Community detection aims to partition a network into communities of densely connected nodes, while nodes
belonging to different communities are connected sparsely. For undirected networks, the quality of the partition can
be measured by modularity Blondel et al. (2008); Newman (2006):

Q =
1

2w

∑
i,j

[wij −
wiwj
2w

]δ(ci, cj), (S35)

where wij is the weighted adjacency matrix of the network, wi =
∑
j wij is the sum of the edge weights connected

to node i, ci is the community index to which node i is assigned, δ(m,n) = 1 if m = n otherwise δ(m,n) = 0 and
m = 1

2

∑
ij wij .

Ref Blondel et al. (2008) introduced an algorithm to find the partition with high modularity. This is often called
the Louvain algorithm, which consists of two iterative phases. (i) Each node is assigned into different communities
initially, then calculate the corresponding gain of modularity by removing node i from its community and place it in
the community of its neighbor j. Place i in the community with maximum gain (i will stay in its original community
if the gain is negative). Repeat this process for all nodes until no further improvement can be achieved; (ii) Build a
new network within which the nodes are the communities obtained in the first phase. The links between nodes with
the same community are self-loops in the new network, while the link weight between new nodes is the sum weight
of links between nodes in the corresponding two communities. Reapply the procedure in phase (i) to the weighted
network obtained from phase (ii). Iterate the process until reaching the maximum modularity. In this work, we employ
the Louvain algorithm implemented in Python package NetworkX 1.10 Hagberg et al. (2008). For each undirected
network, this algorithm assigns each node into a community, then we relabel the nodes within the same community
with similar labels.

B. Other node relabeling algorithms

Besides node labeling methods based on community detection or consensus, we can also leverage various matrix
reordering algorithms to reveal structural patterns in the adjacency matrix of a network, such as block pattern, off-
diagonal block pattern, line/star pattern, bands pattern, noise anti-pattern and bandwidth anti-pattern. In fact, matrix
reordering has many applications, such as in archaeology and anthropology; cartography, graphics, and information
visualization; sociology and sociometry; psychology and psychometry; ecology; biology and bioinformatics; cellular
manufacturing; and operations research Behrisch et al. (2016); Liiv (2010). Consequently, there exist many ma-
trix reordering algorithms, such as Robinsonian Kendall (1963); Robinson (1951), Spectral Friendly (2002); Sternin
(1965), Dimension Reduction Elmqvist et al. (2008); Harel and Koren (2002), Heuristic Approaches Deutsch and
Martin (1971); Wilkinson (2006), Graph Theoretic Sloan (1986, 1989), Biclustering Hartigan (1972) , Interactive
User-Controlled Perin et al. (2014), Cuthill-McKee algorithm Cuthill and McKee (1969), and Barycenter based per-
mutation Mäkinen and Siirtola (2005). We also compared the performance our DGM-based method on a real social
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network (Zachary karate club) labeled by the Cuthill-McKee algorithm, the Louvain method and our own consensus-
based method. We found that all node labeling methods yield very similar performance (see Fig. S18).
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VI. DESCRIPTION OF REAL DATASET

(1) Zachary karate club. The social network of a karate club. Each node represents an individual and each
link represents that two individuals are friends outside the club activities. The network is downloaded from: https:
//icon.colorado.edu/#!/networks.

(2) Terrorist association. The terrorist communication network from the attacks on the United States on Septem-
ber 11, 2001. Nodes represent the terrorists and links represent the communication between them. The network is
downloaded from: http://www.orgnet.com/hijackers.html.

(3) Medieval river trade. The network of medieval trade and communication along the rivers of Russia. Each node
represents a route or place, and each link represents the trading between two routes. The network is downloaded
from: https://icon.colorado.edu/#!/networks.

(4) Contiguous states. A network of contiguous states and the District of Columbia of the USA. Nodes represent
states and a link means that the two states share a land-based geographic border. The network is downloaded from:
http://konect.uni-koblenz.de/networks/contiguous-usa.

(5) Internet topology (PoP level). Internet at the Point of Presence (PoP) level. Nodes represent routers and links
mean that the message can transmit along them. The network is downloaded from: http://www.topology-zoo.
org/dataset.html.

(6) Protein-protein interactions (PPI). A sub-network of S. cerevisiae protein-protein interaction network, induced
by proteins annotated with the function ‘Cellular Communication’ of the Gene Ontology (GO) database. The network
is downloaded from: http://math.bu.edu/people/kolaczyk/datasets.html.

(7) Cat cortex. The brain network of cat cortex, where a node represents a cortical area and a link represents
large cortical tracts or functional associations. The network is downloaded from: https://sites.google.com/site/
bctnet/datasets.

(8) Consulting. A social network of consulting company. Each node represents a employee and each link repre-
sents the frequency of information or advice requests. The network is downloaded from: https://toreopsahl.com/
datasets/#Cross_Parker.

(9) St. Martin. A network of carbon-flow among species in St. Marks National Wildlife Refuge. Each node
represents a species and each link denotes a carbon flow from one species to another. The network is downloaded
from: http://cosinproject.eu/extra/data/foodwebs/WEB.html.

(10) Seagrass. The food web that represents the predatory interactions among species in a seagrass ecosystem.
Each node represents a species and each link represents a predatory interaction. The network is downloaded from:
http://cosinproject.eu/extra/data/foodwebs/WEB.html.

(11) Sioux Falls traffic. A network of traffic flow between intersections. Nodes represent intersections and a
link represents the traffic flow between two intersections. The network is downloaded from: https://github.com/
bstabler/TransportationNetworks.

(12) Cattle. The network of dominance behaviors observed between dairy cattles at the Iberia Livestock Experi-
ment Station in Jenerette, Louisiana. Each node represents a cattle and a link represents dominance of the left cattle
over the right cattle. The network is downloaded from: http://konect.uni-koblenz.de/networks/moreno_cattle.

(13) Little rock. The food web of the Little Rock Lake. Each node represents a species and each link rep-
resents a predatory interaction. The network is downloaded from: http://konect.uni-koblenz.de/networks/
maayan-foodweb.

(14) Facebook wall posts. A network of subset of posts to other user’s wall on Facebook. Each node represents
a Facebook user and each link represents a wall-post interaction. The network is downloaded from:
http://konect.uni-koblenz.de/networks/facebook-wosn-wall.

(15) Google+. The social network of Google+ users. Each node represents a user and a link means that one
user has the other user in his or her circle. The network is downloaded from: http://konect.uni-koblenz.de/
networks/ego-gplus.

(16) Facebook-NIPS. The user-user friendship network. Each node represents a user and a link indicates that
the node is a friend of another. The network is downloaded from: http://konect.uni-koblenz.de/networks/
ego-facebook.

(17) US airports. The network of flights between US airports in 2010. Each node represents an airport and
each link represents a connection from one airport to another. The network is downloaded from: http://konect.
uni-koblenz.de/networks/opsahl-usairport.

https://icon.colorado.edu/#!/networks
https://icon.colorado.edu/#!/networks
http://www.orgnet.com/hijackers.html
https://icon.colorado.edu/#!/networks
http://konect.uni-koblenz.de/networks/contiguous-usa
http://www.topology-zoo.org/dataset.html
http://www.topology-zoo.org/dataset.html
http://math.bu.edu/people/kolaczyk/datasets.html
https://sites.google.com/site/bctnet/datasets
https://sites.google.com/site/bctnet/datasets
https://toreopsahl.com/datasets/#Cross_Parker
https://toreopsahl.com/datasets/#Cross_Parker
http://cosinproject.eu/extra/data/foodwebs/WEB.html
http://cosinproject.eu/extra/data/foodwebs/WEB.html
https://github.com/bstabler/TransportationNetworks
https://github.com/bstabler/TransportationNetworks
http://konect.uni-koblenz.de/networks/moreno_cattle
http://konect.uni-koblenz.de/networks/maayan-foodweb
http://konect.uni-koblenz.de/networks/maayan-foodweb
http://konect.uni-koblenz.de/networks/facebook-wosn-wall
http://konect.uni-koblenz.de/networks/ego-gplus
http://konect.uni-koblenz.de/networks/ego-gplus
http://konect.uni-koblenz.de/networks/ego-facebook
http://konect.uni-koblenz.de/networks/ego-facebook
http://konect.uni-koblenz.de/networks/opsahl-usairport
http://konect.uni-koblenz.de/networks/opsahl-usairport
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Part III

Supplemental Figures
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Images generated by VAE

Figure S1: Intuitive explanation of DGM-based link prediction methods, related to Figure 1. a, An missing link
(1, 3) is surrounded by several observed links in the original network. b, The snapshot of the recovered network at
Epoch = 50 by GANs. The existent probability of this missing pixel (link) generated by GANs tends to be consistent
with its surrounded pixels (links). c, The snapshot of the recovered network at Epoch = 50 by VAE. d, An observed
link (1, 3) is surrounded by several missing links in the original network. e, The snapshot of the recovered network
at Epoch = 50 by GANs. The existent probabilities of several missing pixels (links) tend to be consistent with this

observed pixel (link). f, The recovered images at Epoch = 50 by VAE.
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Figure S2: Performance of our DGM-based link prediction on a network generated by the stochastic block
model, related to Figure 2. The network has N = 48 nodes, and two communities (with 24 nodes for each

community). The between-cluster connection probability is set to be zero and within-cluster connection probability is
0.83. A randomly selected fraction of f(0.25, 0.5, 0.75, 1.0) nodes are relabeled, rendering different ”visual patterns”.
Boxplots of AUC are calculated from 10 different realizations. For each realization, we randomly divide the links into

two parts: a fraction of 10% links chosen as the probe set and the remaining 90% links as the training set.
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Figure S3: Edge-based splitting tends to select links originating from hub nodes to be part of the probe set,
related to Figures 2, 4 and 5. a, Consider a simple network consisted of two separated subnetworks: (i) A complete

graph with N1 = 20 nodes; (ii) A cycle with N2 = 20 nodes. The degree of each node is ki = N1 − 1 in the first
subnetwork and k′i = 2 in the second subnetwork. For the node-based splitting, the probability of selecting

s(s ≤ N2 − 1) probe links belonging to the second subnetwork is: fn
b = N2

N1+N2
. For the edge-based splitting, the

probability of selecting s probe links that belong to the second subnetwork is: f e
b = E2

E1+E2
, where E1 = N1(N1−1)

2

and E2 = N2 − 1 are the number of total links in the first and the second subnetwork, respectively. When
N1 = N2 = n, we have fn

b = 0.5, indicating the node-based splitting is perfectly fair; whereas, f e
b = 2

n+2 → 0 for
large n, indicating that the probability of selecting probe links originating from low-degree nodes is extremely low. b,

The probability fb of selecting a fraction of f links as probe set that belong to the second subnetwork, using the
edge-based splitting (circles) or node-based splitting (squares).
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Figure S4: The spurious enhancement of AUC (Eq. (S16)) with larger probe set for some link prediction
methods is induced by the term n′′, related to Figures 2, 4 and 5. An undirected network (Medieval river trade in

(a), (b)) and a directed network (Sioux Falls traffic in (c), (d)) are chosen to illustrate this point. The total links of
each network are split into two parts: a fraction of f as the probe set and the remaining 1− f as the training set.
Here, we show the degree distributions of nodes in the remaining network for f = 10% (left panel) and f = 90%

(right panel), respectively. For a small probe set, the possible degrees of nodes in the remaining network are very
diverse ((a), (c)). Consequently, it is very unlikely that the score of a randomly selected link in the probe set will be
equal to that of a randomly chosen nonexistent link. In other words, the term n′′ in Eq. (S16) is negligible and will
not affect AUC. However, for a large probe set , the degrees of nodes in the remaining network display very few

possible values ((b), (d)), and most of the nodes have degree zero. Then it is very likely that the score of a
randomly selected link in the probe set and that of a randomly chosen nonexistent link are both zero, rendering a

large n′′ in Eq. (S16) and hence a spuriously large AUC.
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Figure S5: The DGM-based link prediction method displays very robust and superior performance for both
undirected and directed real-world networks, related to Figure 4. Here an alternative definition of AUC

(Eq. (S16)) is used. DGM: deep generative model based link prediction; CN: common neighbors; PA: preferential
attachment; RA: resource allocation; JC: Jaccard index; KATZ: Katz index; ACT: average commute time; SBM:

stochastic block model; LRMC: low rank matrix completion; DW: deepwalk embedding method; NMF: non-negative
matrix factorization); SEAL: learning from Subgraphs, Embeddings, and Attributes for Link prediction (see Section. I

for details of each algorithm). a, Undirected networks. Top: Terrorist association network, Zachary karate club,
Protein-protein interaction (PPI) network (a subnetwork of protein-protein interactions in S. cerevisiae). Bottom:

Medieval river trade network in Russia, Internet topology (at the PoP level), Contiguous states in USA. b, Directed
networks. Top: Consulting (a social network of a consulting company), cat cortex (the connection network of cat
cortical areas), cattle (a network of dominance behaviors of cattles). Bottom: Seagrass food web, St. Martin food

web, Sioux Falls traffic network. AUC of our DGM-based method is the average AUC over the last 20 epochs of the
total epochs for all of networks.
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Figure S6: Performance of our DGM-based link prediction with different random node labelings, related to
Figure 2. We randomly label the nodes in a toy network (as shown in main text Fig.2a) in 10 different ways to obtain
10 different adjacency matrices (binary images shown in inset). Then we show the performance of our method for

each adjacency matrix (labelled network) in 10 realizations using boxplots of AUC. For each realization, we
randomly divide the links into two parts: a fraction of 10% links chosen as the probe set and the remaining 90% links

as the training set. We chose M = 1, 000 and S = 500 for our DGM-based method.
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Figure S7: Performance of our DGM-based link prediction on synthetic networks generated by stochastic
block models with varying within-cluster connection probability pin or between-cluster connection

probability pout, related to Figure 2. The networks consist of 3 clusters/communities and each cluster has 16
nodes. Boxplots of AUC are calculated from 10 different realizations. For each realization, we randomly divide the
links into two parts: a fraction of 10% links chosen as the probe set and the remaining 90% links as the training set.

a, AUC as a function of pin, with fixed pout = 0.05. b, AUC as a function of pout, with fixed pin = 0.5.
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Figure S8: Comparing the performance of our DGM-based link prediction and the Network Paths of Length
Three (L3) for 6 real-world undirected networks, related to Figure 4. a, Terrorist association. b, Zachary karate

club. c, PPI. d, Medieval river trade. e, Internet. f, Contiguous states. Boxplots of AUC are calculated from 20
different realizations. For each realization, we randomly divide the links into two parts: a fraction of 10% links

chosen as the probe set and the remaining 90% links as the training set.
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Figure S9: AUCs of two GCN-based link prediction methods and our method in various real-world networks
(see SI for the details of each network), related to Figure 4. We randomly divide the links into two parts: a fraction
of f = 0.1 links chosen as the probe set and the remaining 1− f as training set. Significance levels (paired-sample

t-test): p-value<0.05(*), <0.01(**), <0.001(***), not significant (NS).
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Figure S10: Comparing the performance of our DGM-based link prediction and the Resource-Allocation
(RA) index-based link prediction for 6 real-world directed networks, related to Figure 4. a, Consulting. b, Cat
cortex. c, Cattle. d, Seagrass. e, St. Martin. f, Sioux Falls traffic. Boxplots of AUC are calculated from 20 different
realizations. For each realization, we randomly divide the links into two parts: a fraction of 10% links chosen as the

probe set and the remaining 90% links as the training set.
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Figure S11: Significance level of the performance of our DGM-based link prediction compared with other
methods, related to Figure 4. We calculated the p-value using paired t-test for the AUCs of our DGM-based method
and other methods in a, 6 undirected networks; b, 6 directed networks. We calculated the p-value using paired t-test
for the AUPRCs of our DGM-based method and other methods in c, 6 undirected networks; d, 6 directed networks.
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Figure S12: ROC curves of different link prediction methods in various real-world networks, related to Figure
4. We randomly divide the links into two parts: a fraction of 10% links chosen as the probe set and the remaining

90% as training set.
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Figure S13: Precision-Recall curves of different link prediction methods in various real-world networks (see
SI for the details of each network), related to Figure 4. We randomly divide the links into two parts: a fraction of

f = 0.1 links chosen as the probe set and the remaining 1− f as training set.
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Figure S14: Performance of DGM-based link prediction and other scalable link prediction methods on
modeled networks, related to Figure 5. a, A synthetic stochastic block model network with 1056 nodes (with 12
clusters and 88 nodes for each, the connection probability of within cluster is pin = 0.5 and between clusters is

pout = 0.05). b, random graph with connection probability p = 0.01 and c, random graph with connection probability
p = 0.001. The network size is N = 440. We randomly divide the links into two parts: a fraction of 10% links chosen

as the probe set and the remaining 90% links as the training set.
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Figure S15: DGM in link prediction of weighted networks, related to Figures 1 and 2. a1, The toy model of letter
E and there have four link weights: 0.25, 0.5, 0.75, 1.0. a2, The network by randomly relabeling the node in (a1).

a3, A stochastic block model with link weights drawn from normal distribution with mean 0.5 and derivation 0.01. a4,
A stochastic block model with link weights drawn from normal distribution with mean 0.5 and derivation 0.1. b1-b4,
AUC of DGM in 10 different realization for the networks in (a1)-(a4). We randomly divide the links into two parts: a

fraction of 10% links chosen as the probe set and the remaining 90% links as the training set.
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Figure S16: The VAE-based based link prediction generally does not perform as well as the GANs-based link
prediction, related to Figure 1. As in Fig. 1 of the main text, we are testing the link prediction for a directed network

whose adjacency matrix has the shape of letter E (with some missing pixels). We divide the links of this network
(with 28 nodes and 118 links) into two parts: 5% be the probe set and the remaining 95% be the training set. We find
that the AUC of VAE-based link prediction (b) is considerably lower than that of GANs-based link prediction (c). a,

Original network. b, AUC of VAE-based link prediction as a function of epoch. c, AUC of GANs-based link prediction
as a function of epoch. d, Recovered network by VAE-LP. e, Recovered network by GANs-based link prediction.
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Figure S17: Effect of hyperparameters in GANs on the performance of link prediction, related to Figure 1. To
illustrate the effect of hyperparameters on the AUC, we perform GANs-based link prediction for on two networks.

We divide the links of each network into two parts: 10% be the probe set and the remaining 90% be the training set.
We perturb the training set by removing r (or adding a) links at random in M different ways to obtain the input
dataset, which will be fed into the GANs. a-f, A directed network (of 28 nodes and 118 links) whose adjacency

matrix looks like the image of letter E (with some missing pixels). AUC as a function of epoch for different input size
S (a), number of removed links r (b), number of added links (c). AUC of the last 20 epochs for different input size S
d,, number of removed links r (e), number of added links (f). g-l, An undirected random network (of 48 nodes and 40

links). AUC as a function of epoch for different input size M (g), number of removed links r (h), number of added
links (i). AUC of the last 20 epochs for different input size S (j), number of removed links r (k), number of added

links (l).
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Figure S18: Performance of our DGM-based link prediction on an example network (Zachary karate club)
labeled by three different methods: Cuthill-McKee algorithm, Louvain method, and our own

consensus-based method, related to Figure 4. Insets show the adjacency matrices reordered by the three
methods. Boxplots of AUC are calculated from 10 different realizations. For each realization, we randomly divide the
links into two parts: a fraction of 10% links chosen as the probe set and the remaining 90% links as the training set.
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