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Abstract: The purpose of this study was to develop a data-driven machine learning model to predict the
performance properties of polyhydroxyalkanoates (PHAs), a group of biosourced polyesters featuring
excellent performance, to guide future design and synthesis experiments. A deep neural network (DNN)
machine learning model was built for predicting the glass transition temperature, Tg, of PHA homo-
and copolymers. Molecular fingerprints were used to capture the structural and atomic information of
PHA monomers. The other input variables included the molecular weight, the polydispersity index,
and the percentage of each monomer in the homo- and copolymers. The results indicate that the DNN
model achieves high accuracy in estimation of the glass transition temperature of PHAs. In addition,
the symmetry of the DNN model is ensured by incorporating symmetry data in the training process.
The DNN model achieved better performance than the support vector machine (SVD), a nonlinear ML
model and least absolute shrinkage and selection operator (LASSO), a sparse linear regression model.
The relative importance of factors affecting the DNN model prediction were analyzed. Sensitivity of
the DNN model, including strategies to deal with missing data, were also investigated. Compared
with commonly used machine learning models incorporating quantitative structure–property (QSPR)
relationships, it does not require an explicit descriptor selection step but shows a comparable performance.
The machine learning model framework can be readily extended to predict other properties.

Keywords: molecular fingerprint; deep neural network; glass transition temperature; copolymers;
quantitative structure–property relationship (QSPR)

1. Introduction

With the rapid development of civilization, the demand for plastic products has increased
significantly. However, plastic waste has become a worldwide environmental issue because plastic
materials are durable and difficult to degrade [1–3]. As a result, bioplastics, which are made from
biological substances, have attracted significant interest as an alternative for conventional plastics made
from petroleum [4,5]. Polyhydroxyalkanoate (PHA) polymers are a type of green bioplastics that are
produced naturally by bacteria and utilized by the cells for energy and carbon storage [6]. PHAs have
been used commercially for a wide range of applications due to their excellent versatility, biocompatibility,
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and biodegradability Their application areas range from food packaging and agricultural films to
biomedical fields including use as drug carriers, tissue engineering scaffolds, etc. [7–9].

To fulfill the requirements for various applications, fabrication of PHAs with a variety of properties,
such as physical, thermal, and mechanical properties, becomes a new challenge. PHAs with different
properties are achieved by tuning the monomers and configurations [10–12]. It is known that
approximately 150 types of PHA monomers can be used to constitute different PHA copolymers [13].
These combinations of single monomers can provide PHA polymers with diverse and flexible properties.
In addition, the polymer properties can also be tuned by modifying chemical configurations, i.e., the size,
shape, and branching of polymers [14,15]. Therefore, the design and synthesis of novel PHAs typically
need trial and error experimentation to obtain the structure–property–performance relationships.
This traditional approach requires enormous lab and labor investments, and progress is typically slow.

As data science has rapidly developed in the last decade, machine learning (ML) became a
promising tool for data analytics and predictions. ML is part of data science and it is a technology for
processing a large amount of data. It learns from the existing data, finds data patterns, and provides
solutions [16]. It is faster, cheaper, and more flexible than experimentation. A neural network is an
algorithm of ML. Inspired by the neural network of the human brain, an artificial neural network can
learn from past data and generate a response [17]. The structure of a typical artificial neural network is
usually composed of three essential types of layers, i.e., the input layer, hidden layer(s), and output
layer. They are used for receiving, processing, and exporting information, respectively. Each neuron
is connected with an assigned weight and the weight sum is calculated by a transfer function [18].
Deep learning is a class of ML that allows multiple hidden layers for data processing [19]. A deep
neural network (DNN) combines an artificial neural network with deep learning and is capable of
providing a better solution to problems in cognitive learning such as speech and image recognition [20].
So far, DNN models have been successfully applied to learn and predict a range of properties of diverse
types of materials, including metals, ceramics, and macromolecular materials [21–23].

Due to the increasing demand for plastic materials and rising awareness of the plastic waste
crisis, PHAs have been intensively explored since their first discovery in 1926 [24]. With tremendous
historical experimental efforts focused on PHA synthesis and characterization, a large amount of data
is accessible from published sources. Therefore, this allows data to be extracted from the literature and
used to build a data-based ML model to investigate the connections between structures and properties
of PHAs and to extract design rules and useful chemical trends.

This study is a follow-up to [25], in which an ML model incorporating descriptors extracted
from the quantitative structure–property relationship (QSPR) for glass transition temperature (Tg)
prediction was used. It describes the development of a DNN-based model for Tg predictions of PHA
homo- and copolymers. We used Tg as the predicted property of this model because Tg is an important
thermal property for polymers turning from a rigid state to a rubbery state. Tg has been extensively
studied and its value depends on the structure of polymers, e.g., molecular weight and branching
network [26,27]. The database consists of 133 data points obtained from published experiments [25].
The DNN-based model was used to investigate the connections between the inputs, i.e., structure of
PHA polymers, and the output, i.e., Tg. The trained model can provide guidance for material design of
PHA polymers before conducting experiments, which can significantly reduce experimental trials,
and, therefore, save time and expense.

The novelty of this work is the prediction of the glass transition temperature using a DNN model
that is simple to implement and still achieves accurate results. Compared with prior ML model
approach (i.e., [25]), this model does not require the assistance of an expert to obtain the chemical
descriptors from QSPR; instead, it uses standard molecular fingerprints to convert the polymers into
machine-readable language. This is not only much easy to encode the copolymers but also avoids
possible cognitive bias in QSPR by different professionals. This ML model framework can also be
easily extended to a broader range of polymers beyond PHA copolymers.
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2. Materials and Methods

2.1. Data Preparation

The experimental measurements of Tg of a variety of polyhydroxyalkanoate-based homo- and
copolymers were obtained from the work of Pilania et al. by one of the coauthors [25]. The experimental
database of the PHA Tg values is cooling-rate-dependent and based on the metastable/dynamic
behavior of amorphous polymer systems. The experimental measurements were made using the
differential scanning calorimetry (DSC) technique with relatively slow cooling rates (~10–30 K/min).
The Tg data set is provided in the Supplementary Materials in Table S1. The database included
133 data points and each data source contained five variables, i.e., chemical identities of monomer
A and monomer B, the fractional composition of monomer A, the polymer molecular weight (MW)
with a unit of kg mol−1, and polydispersity index (PDI). They were set as the inputs of the DNN
model and the output was Tg. To convert the chemical expressions of monomer A and B into
machine-readable information, the monomer names were first transformed into two-dimensional
SMILES strings [28]. SMILES represents the simplified molecular input line entry system; it describes
the unique structure and chemical species of a chemical compound. The chemical identifier resolver
(https://cactus.nci.nih.gov) was used for the conversion. The second step was to transform the SMILES
strings into machine-readable data. Molecular fingerprinting is an approach to encode a chemical
into a binary digit vector, e.g., {0 0 1 . . . 1 1 0}, which represents molecules in digital representation
readable by a computer. The length of the vector is adjustable, which could significantly affect the
reliability of the DNN model. Therefore, a model optimization was conducted to select the best value
of the vector length as discussed in detail in the next subsection. In this work, the RDKit package
(http://www.rdkit.org) was used to convert SMILES into molecular fingerprints [29]. An example of a
monomer, i.e., 3-hydroxy-5-phenyl-pentanoate, is illustrated for this two-step conversion in Figure 1.
For a homopolymer, monomer B was set to an all zero array and the fractional composition of A in the
polymer was 100%. All the monomers were subjected to the encoding process as illustrated in Figure 1
to produce the corresponding digital representation via molecular fingerprints.
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2.2. DNN Model Construction

A DNN model was built to learn and predict the relationship between the input variables and an
output. Five input variables included the molecular fingerprints of monomer A and B, the fractional
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composition of monomer A, molecular weight, and PDI. The output was Tg. Figure 2 shows the
schematic structure of the DNN model. The monomers A and B were converted to molecular
fingerprints before being entered into the model. The optimal length of the molecular fingerprints was
determined using a Bayesian optimization scheme. After conversion to the molecular fingerprints,
monomers A and B are each represented by a vector that is fed into the corresponding number of
neurons, i.e., as the number of neurons to accept the molecular fingerprint inputs is equal to the
length of the molecular fingerprint employed. Each of the other three numerical inputs, i.e., fractional
composition of monomer A, molecular weight, and PDI, occupied one neuron. Therefore, the total
number of neurons in the input layer equals the 2*N+3, where N is the length of the molecular
fingerprints. Rectified linear unit (ReLU) was used as a nonlinear transfer function and the loss function
used was the mean square error (MSE) of the measured glass transition temperature Tg. The learning
rate was chosen to be a cosine annealing learning rate, which reduces the learning rate according to a
half cosine curve. The optimization function used was Adam [30]. The dropout technique was also
used to avoid overfitting of the training data.
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To obtain a reliable DNN model structure, the hyperparameters of the model (i.e., the number of
neurons and the number of layers) were optimized with a Bayesian optimization scheme. Bayesian
optimization works by constructing a posterior distribution of functions, i.e., a Gaussian process,
that best describes the target function. With the increase in the number of hyperparameter combinations
observed, the posterior distribution is improved, and the algorithm becomes more certain of which
hyperparameter combination should be picked for the next observation. This process is designed to
minimize the number of steps required to find a combination of hyperparameters that are close to the
optimal combination [31]. From these, the length of the molecular fingerprints of the two monomers
and the structure of the hidden layer, i.e., the number of layers and neurons in each layer, and dropout
rate, i.e., the percentage of neurons to be ignored during training, were determined. To start the
hyperparameter optimization process, the ranges of the hyperparameters were first defined. It was
then subjected to the Bayesian optimization process that automatically identifies the optimal set of
hyperparameters. The hyperparameters of the DNN are optimized after this process. The resultant
optimal hyperparameters lead to the length of the molecular fingerprints as 128, the number of hidden
layers set as 7, the number of neurons in each hidden layer set as 512, and the dropout rate set as 0.2.

To augment the limited data set, the DNN model was trained and tested via a fivefold
cross-validation method. This method first randomly partitioned the data into five nearly equal-sized
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subgroups. Of the five subgroups, a single subgroup was retained for testing, and the remaining
four subgroups were used for training. This process was then repeated five times, with each of the
subgroups used exactly once for model testing. Such a process effectively augmented the data by
five times. The prediction results of each testing subgroup were obtained, and the overall accuracy
was calculated by averaging the sum of the evaluating scores. The training epoch was set as 500 to
ensure convergence.

3. Results and Discussion

3.1. Performance of the DNN Model

The scatter plot of the predicted vs. experimental Tg data is shown in Figure 3. The homopolymers
are labeled in orange and the copolymers are labeled in blue. The accuracy and reliability of the DNN
model was evaluated by the coefficient of determination (R2), mean absolute error (MAE), and root
mean square error (RMSE). The R2, MAE, and RMSE of each subgroup and their averaged scores
using the fivefold cross-validation method are listed in Table 1. From Table 1, it is seen that the R2,
MAE, and RMSE values are close among each cross-validation subgroup, which indicates that the
performance of the DNN model is reliable and robust against small fluctuations in the training data.
The overall DNN model had an R2 of 0.869, MAE of 4.010, and RMSE of 5.339 K. The performance
of the DNN model is comparable to the results of the ML model based on QSPR by Pilania et al.,
which achieved an RMSE of 4.8K using the same data set [25]. A major advantage of this DNN
model developed in this study is its simplicity. In the previous study, the initial features of PHAs
were first described by a set of QSPR-based features, and then this feature set was further analyzed,
compacted, and trained by a random forest ML model. This process requires professional experience
and significant domain knowledge in the polymer chemistry. Comparatively, the DNN learning
model developed here, which combines the binary fingerprinting with the DNN model, is much more
straightforward, easier to implement, and requires minimal expert judgement and therefore is free
from preference. In addition, the model can also be easily extended to a broader range of polymers
beyond PHA copolymers.
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Table 1. The R2, MAE, and RMSE of the cross-validated subgroups and their averaged scores.

Subgroup Subgroup 1 Subgroup 2 Subgroup 3 Subgroup 4 Subgroup 5 Average

R2 0.799 0.883 0.857 0.824 0.914 0.869

MAE 3.792 3.970 4.976 3.745 3.541 4.010

RMSE 5.147 5.356 6.522 4.775 4.643 5.339

As there is no preference in labeling one of monomers as A and another as B, i.e., the model
should contain symmetry, which is not captured in the data set used in the DNN model training shown
in Figure 2. For example, regarding monomer A (3H5PhP), monomer B (3H7PhHp) with fractional
composition of A at 23% is equivalent to monomer A (3H7PhHp), with monomer B (3H5PhP) having a
fractional composition of A at 100% − 23% = 77%. In principle, the machine learning model should
capture such symmetry. To evaluate whether the DNN model can capture the symmetry in input data,
a new symmetry data set is generated from the original data set by exchanging the monomer A and B
and updating the fractional composition of A by 100% fraction composition of A. The molecule weight,
PDI, and glass transition temperature remain the same. From physics, the symmetry data set contains
the same information of the original data set.

The comparison of predicted Tg by the DNN model versus the measured Tg on the symmetric
data set is shown in Figure 4. Compared with the results shown in Figure 3, the prediction results are
much worse. This indicates that the trained DNN model did not capture the symmetry and therefore
is sensitive to the order of monomers. This will lead to prediction bias in its application that needs to
be improved.
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To solve this issue, we retrained the model with a combined initial training data set and symmetry
data set, using the same five-fold cross-validation method. The overall retrained DNN model had an
R2 of 0.897, MAE of 3.474, and RMSE of 4.748 K. Compared with the initial DNN model, the retrained
DNN model achieved higher prediction accuracy. This shows that training the DNN model with a
symmetry data set can further improve the model performance. The scatter plots of the predicted Tg

under different data sets are shown in Figure 5. The retrained model achieved similar performance on
the initial training data set and the symmetry data set, which proves that incorporating the symmetry
data set into the training data set can enable the model to describe the symmetry and be insensitive to
the order of monomer A and B designation. Meanwhile, compared with Figure 4, the performance of
the retrained DNN model with additional symmetry data set is much better than that trained only
with the initial model.
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3.2. Importance Factors of the Input Variables on Tg Prediction

The interpretability of the DNN model was also studied, since understanding why a model
makes a certain prediction can be as crucial as the prediction’s accuracy for chemical applications.
The DNN model belongs to the category of black-box models. For the interpretability of the DNN
model, the SHapley Additive exPlanations (SHAP) method was used to measure the importance
of input features to the DNN model. SHAP is a unified framework for interpreting predictions,
especially for complex black-box models. It assigns to each feature an importance value for a particular
prediction indicating how much a model relies on each of the features—in other words, how much
each feature contributes to the prediction. This helps us to understand the impact of input variables on
the prediction of Tg [32]. Figure 6 shows the importance factors of the five variables. It shows that
the monomer A and B both had high importance values and that they were of similar importance.
This is reasonable since the types of monomer are the most crucial in determining the Tg; in addition,
they are interchangeable as input symmetry as discussed earlier. The importance factors of monomer
A and B were much higher than the other three variables. This indicates that the chemistry of the two
monomers has the predominant effect in determining the Tg of the PHA polymers. The next one in the
importance factor is the fractional composition of A. The relatively low SHAP values of molecular
weight and PDI imply that the polymer chain size and dispersity have relatively less influence on Tg of
the PHA polymers as compared to the chemistry of the monomers and the fractional composition of
the polymer.
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3.3. Comparison with DNN Model with Other ML Methods

The performance of the DNN ML model is compared with other nonlinear ML method such as
the support vector machine (SVM) and LASSO, a sparse linear regression model. The results of SVM
and LASSO methods on the Tg prediction have been compared. Fivefold cross-validation was used for
all the models. The results are shown in the Table 2 and Figure 7. The Table 2 concludes the R2, MAE,
and RMSE of three methods, i.e., SVM, LASSO, and the DNN model. The DNN model achieved the
best performance among these ML models.

Table 2. Comparison of the results by the support vector machine (SVM), least absolute shrinkage and
selection operator (LASSO) model, and DNN model.

Model Subgroup Subgroup 1 Subgroup 2 Subgroup 3 Subgroup 4 Subgroup 5 Average

SVM
R2 0.684 0.828 0.766 0.791 0.778 0.783

MAE 3.981 4.075 6.285 3.937 4.436 4.548

RMSE 6.403 6.488 8.361 5.206 7.449 6.871

LASSO
R2 0.607 0.802 0.768 0.648 0.610 0.714

MAE 4.820 4.258 5.988 4.986 6.270 5.259

RMSE 7.142 6.963 8.322 6.763 9.879 7.892

DNN
R2 0.799 0.883 0.857 0.824 0.914 0.869

MAE 3.792 3.970 4.976 3.745 3.541 4.010

RMSE 5.147 5.356 6.522 4.775 4.643 5.339
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3.4. DNN Model Prediction Performance with Inaccurate or Missing Information

Although extensive efforts have been devoted to the fabrication of PHA polymers and there are
Tg data on numerous polymers exhibiting a diverse set of chemistries in the literature, some polymer
information may be missing or inconsistent for a certain type of PHA. For example, the measurements
of molecular weight and PDI are complicated and are prone to error. It is of interest to see how such
inaccuracy or missing information would affect the performance of the DNN model prediction and
develop proper countermeasures to improve the robustness and accuracy of the DNN model under
such circumstances. To evaluate the performance of the developed DNN model to missing values,
we assumed one or two inputs were missing for the DNN model, e.g., fractional composition of A
only, molecular weight only, PDI only, and molecular weight and PDI both ignored. The performance
of different approaches, i.e., directly removing input nodes of the missing values, and replacing the
missing data with the mean, maximum, and minimum values, were evaluated on how they affect the
model performance.
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3.4.1. The Effects of Removing Input Nodes Corresponding to the Missing Values

The direct method to deal with a variable with missing data is to remove the corresponding input
nodes to the DNN model. Four sets of DNN models with some input node removed (i.e., without
fractional composition of A, without molecular weight, without PDI, and without both the molecular
weight and PDI in the feature set) were trained. The prediction results are shown in Figure 8 and the
evaluation scores of model accuracy are listed in Table 3. For the case without fractional composition of
A, the R2 of the model dramatically decreased to about 0.5, which indicates that fractional composition
of A is a significant factor for Tg prediction. Indeed, this observation is quite intuitive and can be
understood on a physical basis. As the fractional composition determines the chemical composition of
the copolymer chemistry, in the absence of this critical feature, all copolymer chemistries formed by
combining any two given homopolymers in different compositions essentially become indistinguishable
to the model and, as a result, the predictive performance degrades drastically.

1 
 

 

 

Figure 8 

 

 

Figure 10 

Figure 8. The scatter plot of the predicted vs. experimental Tg after different inputs were removed
from the DNN model. (a) Fractional composition of A; (b) molecular weight; (c) polydispersity index
(PDI); (d) both molecular weight and PDI.

Table 3. The R2, MAE, and RMSE with different ignored inputs.

Ignored
Features

Complete
Inputs

Fractional
Composition of A MW PDI MW and PDI

R2 0.897 0.578 0.861 0.859 0.846

MAE 3.592 7.269 4.086 4.206 4.520

RMSE 4.812 9.586 5.511 5.543 5.800

Deleting the input node of molecular weight or PDI alone did not significantly compromise the
model performance compared with the full-input model. Even when further deleting both molecular
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weight and PDI, the R2 was still comparable to the full-input model. These findings indicate that
molecular weight and PDI have limited contributions to the final prediction and they are much
less important than the chemistry of the monomers and the fractional compositions of monomer A.
These are consistent with the results of importance factors of each input.

3.4.2. The Effects of Replacing the Missing Values with the Mean, Minimum, or Maximum Values

An alternative approach to deal with missing data is to replace the missing values with the statistics
of training data such as the mean value, the minimum value, or the maximum value. In this way,
the models are not required to be retrained; instead, the missing data are replaced with the estimated
values obtained from the training data. Figure 9 shows the statistical distribution of the input data.
The descriptive statistics of the input data are listed in Table 4.
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Table 4. The descriptive statistics of the input data.

Statistics Mean SD* Max Min Median

Fractional composition of A 67.1 31.5 100 0 74.5
MW 1159.8 1313.86 5240.4 47 505
PDI 2.6 1.1 6.9 1.1 2.5

SD* is the acronym standard deviation.

A common method to deal with missing data is to replace the missing values with the mean
value. Table 5 shows the DNN model prediction performance using this strategy for missing four
types of input data, i.e., the fractional composition of A, the molecular weight, the PDI, and both
molecular weight and PDI. The scatter plots of the predictions are shown in Figure 10. Compared
with the DNN model prediction with full original inputs, replacing the individual inputs with the
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corresponding mean input for the molecular weight, or PDI, or both, exhibited nearly the same model
performance, with the differences of R2 less than 0.6%. However, an exception is observed for the
fractional composition of A, where the DNN model performance with mean value replacing the missing
value is worse than simply deleting the input node for the fractional composition A. The observations
further validated that the most significant factors for Tg prediction were the chemistry of the monomers
and their fractional compositions in the copolymers. The DNN model still achieved a high degree
of accuracy in Tg prediction without information on the measurement of molecular weight, or PDI,
or both of molecular weight and PDI. Such missing information could be estimated with the mean
values typical of such data and still achieve decent accuracy.

Table 5. The R2, MAE, and RMSE of the DNN model prediction when different input variables are
estimated with their corresponding mean values.

Input Features Complete Inputs Fractional
Composition of A MW PDI MW and PDI

R2 0.897 0.423 0.866 0.865 0.864

MAE 3.592 8.819 4.055 4.086 4.083

RMSE 4.812 11.215 5.410 5.416 5.448
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Figure 10 Figure 10. The scatter plot of the DNN model predicted vs. experimental Tg with different input
factors estimated with the mean value. (a) Fractional composition of A; (b) molecular weight; (c) PDI;
(d) molecular weight and PDI.

To further investigate the sensitivity of the DNN model to the estimation of missing input values,
we also analyzed its performance when the missing values are estimated with the minimum or
maximum values of the corresponding type of data from the data set. Compared with estimating the
missing data with the mean values, estimating the input with the minimum or maximum values can also
give a sense of how the model performance is affected by the data quality, since errors might inevitably
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occur during measurement. Tables 6 and 7 summarize the model prediction performances when
the corresponding input variable is replaced with its minimum or maximum values. Four different
conditions were analyzed, i.e., the fractional composition of A, the molecular weight, PDI, and both
molecular weight and PDI. The scatter plots of the predictions are shown in Figures 11 and 12.

Table 6. The R2, MAE, and RMSE with DNN model prediction when different input variables are
estimated with their minimum values.

Input Features Complete Inputs Fractional
Composition of A MW PDI MW and PDI

R2 0.897 −1.488 0.857 0.835 0.807

MAE 3.592 20.146 4.302 4.590 5.204

RMSE 4.812 23.290 5.575 5.994 6.494

Table 7. The R2, MAE, and RMSE with DNN model prediction when different input variables are
estimated with their maximum values.

Input Features Complete Inputs Fractional
Composition of A MW PDI MW and PDI

R2 0.897 0.053 0.711 0.688 0.210
MAE 3.592 10.512 6.383 6.937 11.474
RMSE 4.812 14.370 7.942 8.247 13.123
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Figure 12 

Figure 11. Scatter plots of predicted vs. experimental Tg with different input factors estimated via their
minimal values. (a) Fractional composition of A; (b) molecular weight; (c) PDI; (d) molecular weight
and PDI.

Compared with the method of replacing the input variable with the mean value, estimating
the input variables with its minimum or maximum values showed a reduced prediction accuracy.
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In general, the use of minimum values as the estimation led to predictions shifting toward the left of
the diagonals or resulted in lower predicted Tg than measured Tg, while the use of maximum values
showed the opposite effect (Figure 12). In terms of the polymer fractional composition of A, as shown
in Figure 9a, the minimum value is far away from where the rest of the data are concentrated, compared
with the maximum value. This caused the model prediction with the minimal value to be worse than
that with the maximum value. In contrast, for MW and PDI, as shown in Figure 9b,c, the maximum
value is far away from where the rest of the data are concentrated compared with the minimum value,
causing the model prediction with the maximum value to be worse than that with the minimum
value. The prediction accuracy by filling missing data with minimal values is only slightly lower
than with the mean values for input variables, including the molecular weight, PDI, and molecular
weight and PDI, whereas the prediction accuracy by filling missing data with the maximum values
drops dramatically. This is possibly due to the fact that the data values follow a skewed statistical
distribution (i.e., Figure 9). In such cases, the mean is larger than the median and the maximum value
is further away from the mode than the minimum value. Therefore, estimating the missing data with
its maximum value leads to a worse prediction than estimating with its minimum value. The results
show that the features of missing data are important to proper estimation of missing values to ensure
DNN model prediction accuracy.

 

2 
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Figure 12 Figure 12. Scatter plots of the predicted vs. experimental Tg with different input factors estimated with
their maximum values. (a) Fractional composition of A; (b) molecular weight; (c) PDI; (d) molecular
weight and PDI.

4. Conclusions

A DNN model was developed for the prediction of Tg of PHA-based homo- and copolymers.
The information of monomers is encoded by its digital fingerprints and subsequently inputs to the
DNN model together with other factors affecting the Tg. The hyperparameters of the DNN model are
optimized with Bayesian optimization schema. The results indicate that the Tg values predicted by the
DNN model are in good agreement with experimental results. The symmetry of the DNN model is
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achieved by incorporating the symmetry data set into the training data set, which further improves the
model prediction performance. The interpretability analyses based on the importance factors revealed
that the types of the two monomers are most important in determining the Tg values of the copolymers,
while the size and dispersity of the polymers did not significantly affect the Tg values. Furthermore,
different strategies to cope with missing data were evaluated, including removal of the input node,
as well as estimation of the missing data with the mean, minimum, or maximum values of the data set.
The results indicate that the DNN model is robust in achieving high accuracy even with missing data.
Understanding the characteristics of the data distribution is important to making sound estimations of
the missing data to ensure high performance of the DNN model. Compared with a commonly used
ML model incorporating QSPR, the DNN model does not require an explicit descriptor selection step
but shows a comparable performance. It is also noted that while the Tg is the targeted property in
this study, the DNN model can be readily adapted to predict other properties of PHA homopolymers
and copolymers.

Supplementary Materials: Available Statement: The following are available online at http://www.mdpi.com/1996-
1944/13/24/5701/s1, Table S1: the polymer training dataset employed for the Tg prediction model development.
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