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Abstract

Background: Keratinocyte growth factor receptor (KGFR) is a splice variant of the FGFR2 gene expressed in epithelial cells.
Activation of KGFR is a key factor in the regulation of physiological processes in epithelial cells such as proliferation,
differentiation and wound healing. Alterations of KGFR signaling have been linked to the pathogenesis of different epithelial
tumors. It has been also hypothesized that its specific ligand, KGF, might contribute to the development of resistance to 5-
fluorouracil (5-FU) in epithelial cancers and tamoxifen in estrogen-positive breast cancers.

Methodology/Principal Findings: Small interfering RNA was transfected into a human keratinocyte cell line (HaCaT), a
breast cancer derived cell line (MCF-7) and a keratinocyte primary culture (KCs) to induce selective downregulation of KGFR
expression. A strong and highly specific reduction of KGFR expression was observed at both RNA (reduction = 75.7%,
P = 0.009) and protein level. KGFR silenced cells showed a reduced responsiveness to KGF treatment as assessed by
measuring proliferation rate (14.2% versus 39.0% of the control cells, P,0.001) and cell migration (24.6% versus 96.4% of
the control cells, P = 0.009). In mock-transfected MCF-7 cells, KGF counteracts the capacity of 5-FU to inhibit cell
proliferation, whereas in KGFR silenced cells KGF weakly interferes with 5-FU antiproliferative effect (11.2% versus 28.4% of
the control cells, P = 0.002). The capacity of 5-FU to induce cell death is abrogated by co-treatment with KGF, whereas in
KGFR silenced cells 5-FU efficiently induces cell death even combined to KGF, as determined by evaluating cell viability.
Similarly, the capacity of tamoxifen to inhibit MCF-7 and KCs proliferation is highly reduced by KGF treatment and is
completely restored in KGFR silenced cells (12.3% versus 45.5% of the control cells, P,0.001).

Conclusions/Significance: These findings suggest that selective inhibition of the KGF/KGFR pathway may provide a useful
tool to ameliorate the efficacy of the therapeutic strategies for certain epithelial tumors.
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Introduction

Keratinocyte growth factor receptor (KGFR/FGFR2-IIIb) is a

tyrosine kinase protein that belongs to the family of the fibroblast

growth factor receptors (FGFRs). KGFR represents a splicing

transcript variant of FGFR2 gene and is expressed on epithelial

cells of different organs. The alternatively spliced isoform, known

as FGFR2-IIIc, is found in cells of mesenchymal lineages [1,2].

KGFR plays a key role in the control of epithelial growth and

differentiation, carrying out its biological effects in a paracrine way

[3] through high affinity binding to its specific ligands, namely

keratinocyte growth factor (KGF/FGF7), FGF10 and FGF22 [4].

Among them, KGF acts not only as a potent mitogen for primary

human keratinocytes, but also promoting their differentiation

program [5] and protecting them against apoptosis induction

[6,7]. Furthermore, KGF is involved in both experimental [8,9]

and in vivo [10] wound healing models, stimulating migration of

keratinocytes [11,12] and inducing reorganization of actin

cytoskeleton, therefore increasing epithelial cell motility [13].

Recently, there has been growing interest about the potential

role of alterations of KGF/KGFR signaling in epithelial

tumorigenesis. Increased KGFR mRNA expression has been

detected in a wide range of tumors of epithelial origin, such as

lung, colon, gastric, pancreas and prostate cancers. In some cases,

such increased expression seems to be associated with cell

transformation and, perhaps, malignant progression [14]. More-

over, KGF administration has been shown to increase cell motility

in estrogen receptor (ER)-positive breast tumor cells [15,16], to be

potentially involved in breast cancer progression and metastasis

[17] and to enhance the invasive potential of gastric carcinoma

derived cell lines overexpressing KGFR [18].

Other studies led to hypothesize that KGF may exert

antiapoptotic activity on certain cancer cells as well as inhibition

of apoptosis induced by the chemotherapeutic drug 5-fluorouracil
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(5-FU) [19–22]. The development by cancer cells of resistance to

traditional chemotherapeutic agents, such as 5-FU, is frequently

observed and remains a major obstacle to a successful treatment of

cancer and a prominent cause of tumor recurrence after

chemotherapy [23].

Furthermore, it has been suggested that alterations of the

pathways involving FGFs and cognate receptors might represent

one of the mechanisms of resistance to tamoxifen that finally

develops in many ER-positive breast cancers [24–27]. However,

this hypothesis is not completely ascertained and the specific role

played by the large family of the FGFs is far from being

understood.

The approach based on selective downregulation of proteins

involved in cellular processes correlated to tumor progression

represents a promising frontier for cancer treatment. Transfection

of specific small interfering RNAs (siRNAs) is a powerful tool to

achieve a gene-specific knockdown and represents a potent

therapeutic strategy for the treatment of several diseases, such as

viral infections, neurological disorders and cancers [28].

The exclusive target specificity of siRNA against disease-

relevant mRNAs is an essential prerequisite for utilization of this

technology. In this study, we selectively downregulated KGFR

mRNA and protein expression in three epithelial cell lines,

HaCaT keratinocytes, MCF-7 breast cancer cell and primary

cultured keratinocytes (KCs), by a new approach of siRNA design,

based on the utilization of DICER endonuclease substrate 27-mer

dsRNAs to trigger RNA interference (RNAi). This technique

provides enhanced efficacy and longer duration of RNAi as

compared to traditional 21-mer siRNAs, allowing usage of lower

concentrations of RNAi in target cells, which greatly reduces the

side effects. Furthermore, it allows the targeting of sites that are

refractory to suppression with 21-mer siRNAs [29].

We analyzed the effects of KGFR siRNA on characteristics bio-

parameters such as cell viability, proliferation, apoptosis and

migration of the tested cell lines. Finally, we evaluated whether the

downregulation of KGFR expression is able to inhibit 5-FU and

tamoxifen resistance induced by KGF in cell cultures.

Results

Inhibition of KGFR mRNA expression by siRNAs
There are no clear rules governing siRNA target site selection for

specific mRNA sequences. However, within a single mRNA

sequence different siRNA molecules show a dramatic variability

in terms of efficacy and specificity of gene silencing. Here we used

laboratory- and web-based programs, according to the previously

described criteria (http://www.rockefeller.edu/labheads/tuschl/

sirna.html), to select three siRNAs sequences directed against the

FGFR2 gene. It is known that the same gene codes for two

alternative transcripts, designated as KGFR/FGFR2-IIIb and

FGFR2-IIIc, that differ for a divergent stretch of 49 amino acids

in their extracellular domain and display different ligand-binding

characteristics. Thus, to realize a specific knockdown of the KGFR

transcript, we selected siRNAs sequences targeted within the exon 8

of FGFR2 gene, which is spliced only in the KGFR isoform

(Fig. 1A). All the siRNAs sequences were entered into a BLAST

search to ensure that there was no significant homology with other

genes. As concerning the relative expression of the two FGFR2

isoforms in our experimental models, HaCaT cells have been

previously shown to express the FGFR2-IIIc variant of FGFR2 in

two orders of magnitude lesser amount than the FGFR2-IIIb splice

variant [30]; in MCF-7 cells, previously shown to express both

isoforms [31], we demonstrated that the FGFR2-IIIb expression is

greatly higher than that of FGFR2-IIIc (11 fold increase) (Fig. 1B).

The ability of each designed siRNA and of a pooled set of the three

duplexes to specifically reduce the levels of KGFR mRNA, without

affecting the expression of the FGFR2-IIIc isoform, was assayed in

MCF-7 and HaCaT cells. Transient transfections were used to

deliver each siRNA and cells incubated with the liposomal vector

alone (mock transfection) were used as control. The optimal

concentration for siRNA transfection was experimentally deter-

mined to be 5 nM (data not shown), in keeping with recent

observations that indicated toxic mechanisms, off-target effects and

stimulation of immune response induced by high doses of synthetic

RNAi in vitro and in vivo [32]. The ability of the various siRNAs to

reduce the amount of KGFR mRNA was estimated by Q-RT-PCR.

In MCF-7 cells we also evaluated the specificity of the designed

siRNAs. KGFR and FGFR2-IIIc mRNA levels were normalized to

the b-actin mRNA levels. 48 h after transfection, MCF-7 cells

transfected with the pooled set of siRNA-1, -2 and -3 expressed a

statistically significant reduced amount of KGFR mRNA compared

to the mock-transfected cells (0.243 fold, reduction = 75.7%,

P = 0.009) (Fig. 2A). A less evident effect was obtained by

transfection with the individual duplexes: siRNA-1 (0.613 fold,

reduction = 38.7%, P = 0.168), siRNA-2 (0.405 fold, reduc-

tion = 59.5%, P = 0.068) and siRNA-3 (0.406 fold, reduc-

tion = 59.4%, P = 0.061) (Fig. 2A). Conversely, neither individual

siRNAs nor the siRNA-pool showed any inhibitory effect on

FGFR2-IIIc mRNA levels (siRNA-1: 0.902 fold, reduction = 9.8%,

P = 0.71; siRNA-3: 0.914 fold, reduction = 8.6%, P = 0.36; si-RNA-

3: 0.943 fold, reduction = 5.7%, P = 0.52; siRNA-pool: 1.028 fold,

difference = 2.8%, P = 0.85) (Fig. 2B).

Therefore, all the subsequent experiments were carried out by

transfecting the siRNA-pool, which matches the commonly

adopted criteria of siRNA efficiency (.70% reduction in target

mRNA). Furthermore, since the pool shows a high specificity for

KGFR isoform, it will be referred as siKGFR in the rest of the

manuscript.

Time course of siRNA-mediated KGFR silencing
To evaluate the duration and efficacy of KGFR silencing, we

performed time course experiments on HaCaT cells transfected

with siKGFR, determining the amount of KGFR mRNA by Q-

RT-PCR at 6, 24, 48, 72 and 96 h after transfection (Fig. 3A). A

reduction of KGFR mRNA expression was observed 24 h after

transfection, as compared to mock-transfected cells (1.127 versus

2.730 fold, difference = 58.7%, P,0.001), while full efficacy was

achieved at 48 and 72 h (1.127 versus 4.779 fold, differ-

ence = 76.4%, P,0.001 and 1.079 versus 4.463 fold, differ-

ence = 75.8%, P,0.001, respectively) from transfection. 96 h after

transfection, a strong decrease in KGFR expression was observed

also in the control. However, in transfected cells, downregulation

of KGFR expression was still significant (1.215 versus 1.963 fold,

difference = 38.1%, P = 0.017). On the bases of the time course

results and according to previous reports showing that the peak of

KGFR protein expression is reached at 72 h after starvation [30]

we decided to perform all the subsequent experiments at 72 h

following siKGFR transfection.

Downregulation of KGFR mRNA and protein expression
by siRNA in KGF-treated HaCaT cells

It is known that treatment of epithelial cells with KGF induces

several events such as cell proliferation and differentiation through

binding to KGFR and internalization of the receptor coupled to

reduction of the level of KGFR mRNA expression. Thus, we

examined the effect of siKGFR transfection in cell cultures in

presence of 20 ng/ml KGF. mRNA and protein expression levels

were tested by Q-RT-PCR and Western blot analysis. A sharp

Effects of KGFR Silencing
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decrease of KGFR mRNA was observed in cells transfected with

siKGFR as compared to mock-transfected cells (0.232 fold,

reduction = 76.8%, P = 0.003) (Fig. 3B). In presence of KGF, we

observed a downmodulation in the expression of KGFR also in

mock-transfected cells. However, KGFR mRNA inhibition by

siRNA was still evident (0.265 versus 0.598 fold, reduc-

tion = 55.7%, P = 0.018) (Fig. 3B). In the same set of experiments,

the levels of KGFR protein expression were also assayed by

Western blot. As shown in Fig. 3C, KGFR expression was

significantly decreased in siKGFR-transfected cells as compared to

mock-transfected cells. Densitometric analysis confirmed that

siKGFR reduced protein expression, in both untreated and

KGF-treated cells, by more than 50% with respect to mock-

transfected cells (0.47 fold versus 1 fold, reduction = 53% and 0.20

versus 0.73 fold, reduction = 72.6%, respectively) (Graph Fig. 3C).

siRNA-mediated downregulation of KGFR inhibits cell
proliferation and cell migration induced by KGF

To evaluate the biological effects of KGFR silencing, we

examined the siKGFR capacity to affect the KGF-induced

proliferation by carrying out a proliferation assay on the HaCaT

cell line. Plated cells were transfected with siKGFR and grown for

48 h in standard medium supplemented or not with 20 ng/ml

KGF. Cell proliferation was determined by counting cells positive

for Ki67 antigen, which identifies cycling cells, and reported in

graph as percentage of positive cells (Fig. 4A). As expected, in

mock-transfected cells we observed an increase in HaCaT cells

proliferation after KGF treatment, as compared to untreated cells

(39% versus 13.6%, 2.9 fold increase, P,0.001). The downreg-

ulation of KGFR expression through specific siRNA almost

completely abolished KGF effect on HaCaT cells proliferation,

Figure 1. KGFR and FGFR2-IIIc mRNA relative expression levels in MCF-7 cells. (A) Schematic drawing representing the alternative splicing
of FGFR2-IIIc and KGFR/FGFR2-IIIb. The inset (*) reports the cDNA sequence (nucleotides from 1590 to 1698) corresponding to the whole exon 8, with
the sequences targeted by the three siRNAs (grey boxes). (B) The levels of KGFR and FGFR2-IIIc mRNA expression were determined by Q-RT-PCR, and
normalized to b-actin mRNA levels. KGFR mRNA in MCF-7 cells was determined as fold with respect to FGFR2-IIIc mRNA. The graph show the
interquartile range of three independent experiments (boxes), their mean (horizontal dotted bars) and 95% Confidence Interval (CI) (whiskers). Two-
sided Student’s t test was used to compare KGFR versus FGFR2-IIIc expression: * P,0.001. The accompanying table reports mean expression level,
Standard Error (S.E.), and 95% CI for each assayed sample.
doi:10.1371/journal.pone.0002528.g001
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with a proliferation rate to background level (14.2% versus 39%,

2.7 fold difference, P,0.001) (Graph Fig. 4A).

We then analyzed the impact of KGFR silencing on cell

migration, another complex and strictly regulated cellular process

strongly induced by KGF treatment. To this end, we performed a

wound-healing assay. 48 h after transfection with siKGFR a cell-

free area was introduced in monolayers of HaCaT cells, as

previously described [33]. Cells treated or not with 50 ng/ml

KGF, the concentration reported to be more efficient in this assay

[34], were allowed to migrate from the edge of the wound for 24 h.

As shown in Fig. 4B, the wound-closure was nearly completed 24 h

after initial wounding in KGF-treated mock-transfected cells, while

untreated mock-transfected cells showed a limited migration with

respect to T0 (96.4% versus 23.1%, 4.2 fold increase, P = 0.035)

(Graph Fig. 4B). The transfection with siKGFR significantly

inhibited cell migration induced by KGF (Fig. 4B) and subsequently

reduced the recovered area from 96.4% of the control cells to

24.6%, 3.9 fold difference, P = 0.009) (Graph Fig. 4B).

The same wound-healing assay was also performed on MCF-7

breast cancer cells, known to be responsive to KGF in terms of

motility [15], with similar results (Fig. 4C). KGF treatment

promoted a strong repopulation, as compared to that of untreated

mock-transfected cells (83% versus 29.6%, 2.8 fold increase,

P,0.001). In KGFR silenced cells, KGF-induced migration was

nearly abolished, in comparison to control cells (25.4% versus

83%, 3.3 fold difference, P,0.001) (Graph Fig. 4C).

These results suggested that KGFR silencing is effective in

inhibiting KGF biological effects, such as the stimulation of cell

proliferation and migration, either in HaCaT keratinocytes or

breast cancer epithelial cells.

KGFR silencing inhibits the restoration of cell
proliferation induced by KGF upon 5-FU stimulation

Frequently, cancer cells develop resistance to common chemo-

therapeutic drugs, such as 5-FU, thus challenging chemotherapy

efficacy [23]. In order to investigate the role of KGFR in the

establishment of resistance to 5-FU, we transiently knocked down

KGFR expression by siRNA in the MCF-7 breast cancer cell line.

The transfection with siKGFR was performed in the presence

or not of 20 ng/ml KGF, 25 mg/ml 5-FU or a combination of

Figure 2. Effect of three selected siRNAs on KGFR and FGFR2-IIIc mRNA expression levels. (A, B) MCF-7 cells were mock transfected or
transfected with 5 nM siRNA-1, -2, -3, or with a pooled set of them, and total RNA was extracted 48 h after transfection. The levels of KGFR (A) and
FGFR2-IIIc (B) mRNA expression were determined by Q-RT-PCR, and normalized to b-actin mRNA levels. KGFR (A) or FGFR2-IIIc (B) mRNA in siRNA-
transfected cells were determined as fold with respect to that expressed in mock-transfected cells. For each treatment, the graphs show the
interquartile range of three independent experiments (boxes), their mean (horizontal dotted bars) and 95% Confidence Interval (CI) (whiskers). Two-
sided Student’s t test was used to compare siKGFR-transfected versus mock-transfected cells: * P = 0.009. The accompanying tables report mean
expression level, Standard Error (S.E.), and 95% CI for each assayed sample.
doi:10.1371/journal.pone.0002528.g002
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Figure 3. Effect of siKGFR transfection on KGFR mRNA and protein expression levels. (A) HaCaT cells were mock transfected or
transfected with 5 nM siKGFR, and total RNA was extracted from the transfected cells 6, 24, 48, 72 and 96 h later. The levels of KGFR mRNA expression
were determined by Q-RT-PCR, and normalized to b-actin mRNA levels. The amount of KGFR mRNA at each time point was expressed as fold of KGFR
mRNA level with respect to the 6 h time point. For each time point, the graph shows the interquartile range of three independent experiments
(boxes), their mean (horizontal dotted bars) and 95% CI (whiskers). The accompanying table reports mean expression level, Standard Error (S.E.), and
95% CI for each assayed sample. Two-sided Student’s t test was used to compare siKGFR-transfected versus mock-transfected cells: * P,0.001 (24 h);
** P,0.001 (48 h); { P,0.001 (72 h); { P = 0.017 (96 h). (B) HaCaT cells were mock transfected or transfected with 5 nM siKGFR. 24 h after transfection,
cells were treated with 20 ng/ml KGF for 48 h. The levels of KGFR mRNA expression were determined by Q-RT-PCR, and normalized to b-actin mRNA
levels. The amount of KGFR mRNA was expressed as fold of KGFR mRNA levels with respect to untreated mock-transfected cells. Graph and table
report the same sets of data as in (A) for each assayed sample. P values were determined using two-sided Student’s t test: * P = 0.003 versus untreated
mock-transfected cells; ** P = 0.018 versus KGF-treated mock-transfected cells. (C) HaCaT cells were transfected and treated as in (B), and the levels of
KGFR protein expression were determined by Western blot analysis using a polyclonal anti-bek antibody. The same blot was probed for tubulin as
control for equal loading. The amount of KGFR protein was evaluated by densitometric analysis; the values from a representative experiment were
standardized to tubulin levels, expressed as fold of KGFR protein with respect to untreated mock-transfected cells and reported as a graph.
doi:10.1371/journal.pone.0002528.g003
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Figure 4. Effect of siKGFR transfection on KGF-induced proliferation and migration. (A) Proliferation assay. HaCaT cells, grown on
coverslips, were mock transfected or transfected with 5 nM siKGFR. 24 h after transfection, cells were treated with 20 ng/ml KGF for 48 h. Then, cells
were fixed and subjected to immunofluorescence analysis with a polyclonal antibody directed against Ki67 (red). The images are representative of
three independent experiments. Scale bar, 10 mm. Nuclei were visualized using 49, 6-diamido-2-phenylindole dihydrochloride (DAPI). The percentage
of Ki67-positive cells was determined by counting the number of Ki67-positive nuclei versus total number of nuclei in ten different areas randomly
taken from three different experiments, expressed as mean value695% CI and reported as a graph. P values were determined using the Student’s t
test: * P,0.001 versus untreated mock-transfected cells; ** P,0.001 versus KGF-treated mock-transfected cells. (B, C) Wound-healing assay. HaCaT
(B) and MCF-7 (C) cells were transfected as in (A). 48 h after transfection, a cell-free area (wound) was introduced in confluent cultures, as described
in Materials and Methods. Cells were treated or not with 50 ng/ml KGF and allowed to migrate for 24 h before photography under phase contrast
microscopy. The images are representative of three independent experiments. Scale bars, 10 mm. Cell migration was evaluated by repopulation of the
original wound with cells: the percentage of recovered area was measured by image analysis and values in the graphs are the average of three plates
for each condition695% CI. P values were determined using Student’s t test: (B) * P,0.001 versus untreated mock-transfected cells; ** P,0.001
versus KGF-treated mock-transfected cells. (C) * P = 0.035 versus untreated mock-transfected cells; ** P = 0.009 versus KGF-treated mock-transfected
cells.
doi:10.1371/journal.pone.0002528.g004
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them. First, we evaluated the efficiency of KGFR silencing by

analyzing both mRNA and protein expression levels.

As shown in Fig. 5A, treatment with KGF of mock-transfected

cells reduced the expression of KGFR mRNA compared to

untreated cells, independently from the presence of 5-FU in the

cell cultures (0.555 fold, reduction = 44.5%, P = 0.170, and 0.545

fold, reduction = 45.5%, P = 0.183, respectively). Moreover, 5-FU

alone poorly affected KGFR mRNA expression (0.911 fold,

reduction = 8.9%, P = 0.711). In siKGFR-transfected cultures, we

observed a strong effect on mRNA expression (0.133 fold,

reduction = 86.7%, P = 0.039), with modest variations in response

to the presence or absence of KGF and/or 5-FU. These data

confirmed that MCF-7 cells react similarly to HaCaT cells in

response to KGFR silencing. Furthermore, the results obtained at

RNA level were confirmed by analyzing protein expression, as

shown in Fig. 5B. The specific siRNA significantly decreased

KGFR protein in untreated cells, as well in KGF and/or 5-FU-

treated cells, by 60%–70% with respect to the same treatment in

mock-transfected cells (Graph Fig. 5B).

We next performed a proliferation assay on MCF-7 cells,

transfected with siKGFR or mock-transfected and grown for 48 h

in standard medium supplemented or not with KGF, 5-FU or a

combination of them, as above. Cell proliferation was evaluated by

counting cells positive for Ki67 antigen, and reported in graph as

percentage of positive cells (Fig. 6A). Also in MCF-7 we found an

increase in cell proliferation after KGF treatment, as compared to

untreated cells (34.8% versus 19.5%, 1.8 fold increase, P = 0.004).

As expected, treatment with 5-FU revealed an antiproliferative

effect (6.0% versus 19.5%, 3.3 fold difference, P,0.001), which

was almost completely abrogated by co-treatment with KGF

(28.4% versus 6.0%, 4.7 fold difference, P,0.001). KGFR

downregulation by siRNA nearly abolished KGF proliferative

effect, both alone and in combination with 5-FU (15.7% versus

34.8%, 2.2 fold difference, P,0.001 and 11.2% versus 28.4%, 2.5

fold difference, P = 0.002, respectively) (Fig. 6A).

It is known that ERK/MAPK pathway plays a major role in cell

proliferation and survival. Therefore, we performed a Western

blot analysis to assess ERK activation, by using antibodies either

specific for the phosphorylated form of the molecule or directed

against total ERK. As expected, in mock-transfected cells ERK

activation was significantly induced by KGF treatment (7.5 fold).

Conversely, 5-FU was able to decrease the levels of phosphory-

lated ERK (2.5 fold), which were almost completely restored by

the administration of KGF together with 5-FU (6.5 fold). In

siKGFR-transfected cells, according to the above results, the

stimulating effect of KGF on ERK phosphorylation was greatly

inhibited (2 fold) (Fig. 6B).

Furthermore, we assessed cell viability by crystal violet staining,

and its subsequent absorbance at 570 nm, which reflects

variations in cell number. 48 h after transfection, cells were

treated with KGF, 5-FU or a combination of them for 24 h, as

described above. Then, the remaining cells were fixed and

stained with 1% crystal violet (Fig. 7A). We compared the effect

of KGF and 5-FU on cell number, looking at the influence of

KGFR silencing in this process. In mock-transfected cells KGF

treatment was able to increase cell number (1.55 fold), 5-FU

induced a decrease of viable cells (0.45 fold), whereas in presence

of KGF, 5-FU was not effective (1.49 fold). On the other hand, in

siKGFR-transfected cells, 5-FU induced cell death as expected

(0.56 fold), whereas treatment with KGF was not able to induce

an increase of cell number (0.91 fold). In this case 5-FU keeps its

ability to determine cell death even in presence of KGF (0.49

fold) (Graph Fig. 7A).

In conclusion, these results highlight the ability of siKGFR to

counteract the capacity of KGF to block the antiproliferative effect

of chemotherapeutic agents, such as 5-FU.

Figure 5. Effect of siKGFR transfection on KGFR mRNA and
protein in cells treated with 5-FU. (A) MCF-7 cells were mock
transfected or transfected with 5 nM siKGFR. 48 h after transfection,
cells were treated with 20 ng/ml KGF, 25 mg/ml 5-FU or KGF plus 5-FU
for 24 h. The levels of KGFR mRNA expression were determined by Q-
RT-PCR, and normalized to b-actin mRNA levels. The amount of KGFR
mRNA in siKGFR-transfected cells was expressed as fold of the level of
KGFR mRNA with respect to untreated mock-transfected cells. For each
treatment, the graph shows the interquartile range of three indepen-
dent experiments (boxes), their mean (horizontal dotted bars), and 95%
CI (whiskers). The accompanying table reports mean expression level,
Standard Error (S.E.), and 95% CI for each assayed sample. P values were
determined using the Student’s t test: * P = 0.039 versus untreated
mock-transfected cells. (B) MCF-7 cells were transfected and treated as
in (A), and the amount of KGFR protein was evaluated by Western blot
analysis with an anti-bek polyclonal antibody. Tubulin served as a
loading control. The amount of KGFR protein was evaluated by
densitometric analysis: the values from a representative experiment
were standardized to tubulin levels, expressed as fold of KGFR level with
respect to untreated mock-transfected cells and reported as a graph.
doi:10.1371/journal.pone.0002528.g005
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KGFR silencing abrogates the antiapoptotic effects of
KGF upon 5-FU stimulation

Since cell treatment with 5-FU is known to induce apoptosis, we

assayed the protective role of KGF towards 5-FU induction of

apoptosis in MCF-7 cells [21,22]. MCF-7 cells were transfected

with siKGFR or mock-transfected and grown for 48 h in standard

medium supplemented or not with KGF, 5-FU or a combination

of them, as above. Cell apoptosis was evaluated by counting cells

positive for the cleaved, active form of caspase-3, a key executioner

of apoptosis, and reported in graph as percentage of positive cells

(Fig. 7B). KGF was able to induce a slight reduction in cell

apoptosis with respect to untreated cells (1.8% versus 3.1%, 1.7

fold difference, P = 0.001), while the treatment with 5-FU caused a

strong apoptotic effect (16.9% versus 3.1%, 5.5 fold increase,

P = 0.001). As previously demonstrated on the same cellular model

[21], the combination with KGF is able to protect MCF-7 cells

from apoptosis induced by 5-FU (3.0% versus 16.9%, 5.6 fold

difference, P,0.001). KGFR silencing suppressed KGF anti-

apoptotic effect, both alone and in combination with 5-FU (4.4%

versus 1.8%, 2.4 fold difference, P,0.001 and 15.1% versus 3.0%,

5.0 fold difference, P = 0.001, respectively) (Fig. 7B).

These data were consistent with the results obtained by Q-RT-

PCR, Western blot analysis and proliferation assay, and showed

that knockdown of KGFR protein expression may be a

therapeutic approach to avoid KGF suppression of 5-FU-induced

apoptosis in cancer cells.

KGFR silencing restores the antiproliferative effect of
tamoxifen on ER positive cells

Tamoxifen is the most frequently prescribed anti-estrogen for

the management of estrogen-responsive human breast cancers.

Nevertheless, many tamoxifen responsive breast cancer patients

acquire tamoxifen resistance, which mechanisms are not com-

pletely understood [26]. A potential interaction with the FGF/

FGFR pathways has been hypothesized to be involved in this

process, although not yet clarified [27]. To assess the possible

contribution of KGF/KGFR to the establishment of tamoxifen

resistance, we analyzed the effects of KGF, 17b-estradiol (E2) and

tamoxifen treatment on MCF-7 cells. The transfection with

siKGFR was performed in the presence or not of 20 ng/ml KGF,

20 ng/ml E2, 100 nM tamoxifen or combinations of them. As

shown in Figure 8A–B, at RNA and protein level, respectively, in

mock-transfected cells KGF induced a decrease of KGFR

expression both with (0.631 fold, reduction = 36.9%, P,0.001)

and without (0.735 fold, reduction = 26.5%, P = 0.049) co-

treatment with tamoxifen. Tamoxifen alone slightly affected

KGFR mRNA expression (1.113 fold, difference = 11.3%,

P = 0.032), while E2 caused an increase of more than two fold of

KGFR expression (2.062 fold, difference = 106.2%, P,0.001),

which was not affected by co-treatment with tamoxifen (2.106 fold,

difference = 110.6%, P,0.001). On the other hand, in siKGFR-

transfected cells a strong reduction of KGFR expression was

observed (0.126 fold, reduction = 87.4%, P,0.001), and it was not

affected by treament with KGF, tamoxifen and E2 alone or in

combination.

The same cultures were subsequently assayed to determine

proliferation rates by counting cells positive for Ki67 antigen. Data

were reported in graph as percentage of positive cells (Fig. 8C). In

mock-transfected cells, we observed an increase in cell prolifera-

tion after KGF treatment, as compared to untreated cells (45%

versus 13.2%, 3.4 fold increase, P,0.001). As previously reported

[35,36], also E2 caused an induction of MCF-7 cells proliferation

(40.1% versus 13.2%, 3.0 fold increase, P = 0.001). Tamoxifen

treatment induced only a slight reduction of basal proliferation

rate (12.1% versus 13.2%, 0.9 fold difference, P = 0.065) that was

not altered by co-treatment with E2 (12.2% versus 12.1%,

P = 0.787), while its effect was efficiently counteracted by KGF

(45.5% versus 12.1%, 3.8 fold increase, P,0.001). KGFR

silencing did not significantly affect E2-induced cell proliferation

(34.8% versus 40.1%, 1.2 fold difference, P = 0.129), whereas in

silenced cells KGF was not able to stimulate cell proliferation both

Figure 6. Effect of siKGFR transfection on KGF-induced
inhibition of 5-FU antiproliferative activity. (A) MCF-7 cells,
grown on coverslips, were mock transfected or transfected with 5 nM
siKGFR and 48 h later they were treated or not with 20 ng/ml KGF,
25 mg/ml 5-FU or KGF plus 5-FU. After 24 h, cells were fixed and
subjected to immunofluorescence analysis with an anti-Ki67 polyclonal
antibody. Nuclei were visualized using 49, 6-diamido-2-phenylindole
dihydrochloride (DAPI). Cell proliferation was evaluated as percentage
of Ki67-positive nuclei versus total number of nuclei in ten different
areas randomly taken from three different experiments, expressed as
mean value695% CI and reported as a graph. P values were determined
using the Student’s t test: * P = 0.004 and ** P,0.001 versus untreated
mock-transfected cells; *** P,0.001 versus 5-FU-treated mock-trans-
fected cells; { P,0.001 versus KGF-treated mock-transfected cells; {
P = 0.002 versus KGF plus 5-FU-treated mock-transfected cells. (B) MCF-
7 cells were transfected and treated as in (A), and Western blot analysis
of the phosphorylation status of ERK was carried out using a phospho-
specific ERK monoclonal antibody (p-ERK). Levels of total ERK were
assessed by blotting with an ERK2-specific antibody. The amount of
activated ERK was evaluated by densitometric analysis: the values from
a representative experiment were standardized to total ERK levels,
expressed as fold of p-ERK expression with respect to untreated mock-
transfected cells and reported as a graph.
doi:10.1371/journal.pone.0002528.g006
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in absence and presence of tamoxifen (13.2% versus 45%, 3.4 fold

difference, P,0.001 and 12.3% versus 45.5%, 3.7 fold difference,

P,0.001, respectively).

The same set of experiments was then performed on primary

cultures of KCs (Fig. 9). Treatment with KGF, alone or in

combination with tamoxifen, barely reduced the expression of

KGFR mRNA compared to untreated cells, (0.722 fold,

reduction = 27.8%, P = 0.283, and 0.742 fold, reduction = 25.8%,

P = 0.134, respectively) and a decrease of KGFR mRNA

expression (0.544 fold, difference = 45.6%, P = 0.020) was also

observed in tamoxifen treated cells. Transfection with siKGFR

induced a significant decrease in KGFR expression (0.113 fold,

reduction = 88.7%, P = 0.002), with negligible variations due to

the presence of KGF, E2 and/or tamoxifen (Fig. 9A). As for the

proliferation rates, reported in Figure 9B, a strong increase was

observed in KGF as well as E2 treated cells (49.3% versus 13.9%,

3.5 fold increase, P,0.001 and 41.9% versus 13.9%, 3.0 fold

increase, P,0.001, respectively). Tamoxifen caused a decrease in

cell proliferation as compared to untreated cells (3.2% versus

13.9%, 4.3 fold difference, P,0.001) even in presence of E2 (3.6%

versus 3.2%, 1.1 fold difference, P = 0.756). However, tamoxifen

effect was abolished by KGF-induced cell growth in co-treated

cultures (40.5% versus 3.2%, 12.6 fold increase, P,0.001). In

KGFR silenced KCs, a strong reduction of the capacity of KGF to

induce cell proliferation was observed (16.2% versus 15%, 1.1 fold

increase, P = 0.762). Even in this case, E2 capacity is only partially

affected (34.1% versus 41.9%, 1.2 fold difference, P,0.001).

However, in silenced cells tamoxifen blockade of cell proliferation

was not counteracted by KGF (10.5% versus 40.5%, 3.9 fold

difference, P,0.001)

Figure 7. Effect of siKGFR transfection on cell viability and KGF-induced inhibition of 5-FU proapoptotic activity. (A) MCF-7 cells were
mock transfected or transfected with 5 nM siKGFR and 48 h later they were treated or not with 20 ng/ml KGF, 25 mg/ml 5-FU or KGF plus 5-FU. After
24 h, cells were fixed, stained with 1% crystal violet and analyzed at an absorbance of 570 nm. The values from a representative experiment were
expressed as relative optical density and reported as a graph. (B) MCF-7 cells, grown on coverslips, were transfected and treated as in (A). After 24 h,
they were fixed and subjected to immunofluorescence analysis with an antibody directed against the cleaved form of caspase-3. Nuclei were
visualized using 49, 6-diamido-2-phenylindole dihydrochloride (DAPI). The percentage of apoptotic cells was evaluated by counting the number of
cleaved caspase-3 positive nuclei versus total number of nuclei in ten different areas randomly taken from three different experiments, expressed as
mean value695% CI and reported as a graph. P values were determined using the Student’s t test: * P = 0.001 and ** P = 0.001 versus untreated mock-
transfected cells; *** P,0.001 versus 5-FU-treated mock-transfected cells; { P,0.001 versus KGF-treated mock-transfected cells; { P = 0.001 versus KGF
plus 5-FU-treated mock-transfected cells.
doi:10.1371/journal.pone.0002528.g007
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Figure 8. Effect of siKGFR transfection on KGF-induced inhibition of Tamoxifen antiproliferative activity in MCF-7 cells. (A) MCF-7
cells were mock transfected or transfected with 5 nM siKGFR. 48 h after transfection, cells were treated with 20 ng/ml KGF, 20 ng/ml E2, 100 nM
tamoxifen (Tam), KGF plus Tam or E2 plus Tam for 24 h. The levels of KGFR mRNA expression were determined by Q-RT-PCR, and normalized to b-
actin mRNA levels. The amount of KGFR mRNA in siKGFR-transfected cells was expressed as fold of the level of KGFR mRNA with respect to untreated
mock-transfected cells. For each treatment, the graph shows the interquartile range of three independent experiments (boxes), their mean
(horizontal dotted bars), and 95% CI (whiskers). The accompanying table reports mean expression level, Standard Error (S.E.), and 95% CI for each
assayed sample. P values were determined using the Student’s t test: * P,0.001 versus untreated mock-transfected cells. (B) MCF-7 cells were
transfected and treated as in (A), and the amount of KGFR protein was evaluated by Western blot analysis with an anti-bek polyclonal antibody.
Tubulin served as a loading control. (C) MCF-7 cells, grown on coverslips, were transfected and treated as in (A). After 24 h, cells were fixed and
subjected to immunofluorescence analysis with an anti-Ki67 polyclonal antibody. Nuclei were visualized using 49, 6-diamido-2-phenylindole
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dihydrochloride (DAPI). Cell proliferation was evaluated as percentage of Ki67-positive nuclei versus total number of nuclei in ten different areas
randomly taken from three different experiments, expressed as mean value695% CI and reported as a graph. P values were determined using the
Student’s t test: * P,0.001 and ** P = 0.001 versus untreated mock-transfected cells; *** P,0.001 versus Tam-treated mock-transfected cells;
{ P,0.001 versus KGF-treated mock-transfected cells; { P,0.001 versus KGF plus Tam-treated mock-transfected cells.
doi:10.1371/journal.pone.0002528.g008

Figure 9. Effect of siKGFR transfection on KGF-induced inhibition of Tamoxifen antiproliferative activity in KCs cells. (A) KCs cells
were mock transfected or transfected with 5 nM siKGFR. 48 h after transfection, cells were treated with 20 ng/ml KGF, 20 ng/ml E2, 100 nM Tam, KGF
plus Tam or E2 plus Tam for 24 h. The levels of KGFR mRNA expression were determined by Q-RT-PCR, and normalized to b-actin mRNA levels. The
amount of KGFR mRNA in siKGFR-transfected cells was expressed as fold of the level of KGFR mRNA with respect to untreated mock-transfected cells.
For each treatment, the graph shows the interquartile range of three independent experiments (boxes), their mean (horizontal dotted bars), and 95%
CI (whiskers). The accompanying table reports mean expression level, Standard Error (S.E.), and 95% CI for each assayed sample. P values were
determined using the Student’s t test: * P = 0.002 versus untreated mock-transfected cells. (B) KCs cells, grown on coverslips, were transfected and
treated as in (A). After 24 h, cells were fixed and subjected to immunofluorescence analysis with an anti-Ki67 polyclonal antibody. Nuclei were
visualized using 49, 6-diamido-2-phenylindole dihydrochloride (DAPI). Cell proliferation was evaluated as percentage of Ki67-positive nuclei versus
total number of nuclei in ten different areas randomly taken from three different experiments, expressed as mean value695% CI and reported as a
graph. P values were determined using the Student’s t test: * P,0.001, ** P,0.001 and *** P,0.001 versus untreated mock-transfected cells;
1 P,0.001 versus Tam-treated mock-transfected cells; { P,0.001 versus KGF-treated mock-transfected cells; { P,0.001 versus E2- treated mock-
transfected cells; # P,0.001 versus KGF plus Tam-treated mock-transfected cells.
doi:10.1371/journal.pone.0002528.g009
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Taken altogether, these results highlight the ability of siKGFR

to prevent KGF from blocking the antiproliferative effect of

tamoxifen in ER positive cells.

Discussion

In the present study we took advantage of the mechanism of

RNAi to silence the expression of KGFR in epithelial cell lines.

Thus, we analyzed the effect of siKGFR on cell proliferation and

motility in transiently transfected cells. We also evaluated whether

downregulation of KGFR expression could restore the apoptotic

and antiproliferative effects of 5-FU and tamoxifen on a breast

cancer cell line as well as on epithelial primary cultures.

Alterations in the expression of growth factors and/or their high

affinity receptors have been shown to be involved in processes that

can lead to tumor development. The FGFR family and the related

ligands participate in the physiological processes that regulate

differentiation, proliferation, migration and cell survival [37].

Many splice variants generated from the 4 genes encoding the

FGFRs and 23 FGF ligands thus far identified yield a high number

of combinations ensuring a finely regulated cross-talk between

epithelial and mesenchymal cells. Moreover, proper FGFR

signaling requires restricted expression of specific receptors on

different cell types. Among FGFR, KGFR expression turned out

to be tissue specific, being expressed on epithelial cells under

physiological conditions [2].

Previous studies have reported that abnormal expression of

KGFR can be correlated with tumor progression, reduction of free

survival and worse prognosis in different epithelial cancers, such as

prostate, breast, gastric [38] and pancreatic [39] carcinomas. In

particular, in prostate cancer, lack of KGFR expression seems to

be associated to a more aggressive behavior of the tumor, which

becomes androgen-insensitive [40]. In salivary gland tumors, loss

of KGFR expression has been reported in malignant transforma-

tion [41]. On the other hand, in pancreatic cancer it has been

observed that co-expression of KGF and KGFR in tumor cells is

correlated with poorer prognosis. It has been hypothesized that

upregulation of either KGF or KGFR expression may contribute

to venous invasion, possibly through induction of VEGF-A

expression, thus causing a higher risk of metastasis [39]. In breast

cancer, KGFR upregulation has been documented in specimens

obtained at the early stages of tumors [42]. Thus, it has been

suggested that KGF-mediated stimulation of these cells might

contribute to the metastatic progression. KGF has been also

observed in some tumor cells of epithelial origin, despite its

physiologic expression is restricted to mesenchymal cells. This

finding has been documented in about a half of breast cancers and

a quarter of pancreatic adenocarcinomas, suggesting a potential

autocrine loop of the KGF/KGFR axis in these tumor cells

[21,43,44]. Co-expression of KGF and KGFR has been also

documented in the MCF-7 cell line. It has been suggested that co-

expression of KGF/KGFR in tumor cells might interfere with the

efficacy of some chemotherapeutic agents, thus contributing to a

poorer prognosis of the disease [21]. Furthermore, it has been

observed that KGF, following the binding to KGFR, exerts an

antiapoptotic role in epithelial cells, by affecting the regulation of

AKT/MAPK survival/proliferation pathway, whose end results

influence cell fate [45].

Moreover, acquired resistance to tamoxifen therapy in ER-

positive breast cancers is a frequent clinical observation, although

the mechanisms capable to determine this effect remain unclear.

Deregulations involving members of the FGF/FGFR family have

been suggested to play a role in this phenomenon [27].

In the present study we set up a system that efficiently reduces

KGFR expression in epithelial cells. At our knowledge, this is the

first highly specific RNAi active on KGFR without affecting the

closely related FGFR2-IIIc isoform. This finding might turn out

important to evaluate the effects on epithelial tumors characterized

by an altered activation of KGFR. Furthermore, it could represent

a useful approach to selectively study the pathway of KGFR

activation without interfering with other FGFR family members.

We observed that silencing of KGFR caused modifications in

the physiological behavior of the tested cell lines. Two major

effects of KGF treatment on epithelial cells were assayed. Both

proliferation rate, as measured by Ki67 marker, and migration

capacity, as determined by the in vitro wound-healing assay,

showed that KGFR silenced cells become poorly responsive to

KGF. These modifications of cell behavior are particularly

intriguing since high rates of proliferation and migration represent

two fundamental characteristics of malignant cells. It could be

envisioned the possibility that KGFR silencing in cancers,

particularly in those overexpressing KGFR and/or KGF, might

affect the growth rate of the primary tumor as well as its metastatic

potential.

A further interesting observation was obtained by evaluating the

effects of 5-FU in KGFR silenced cells. Previous researches have

shown that KGF interferes with the capacity of 5-FU to block cell

proliferation and to induce apoptosis [19,21]. We confirmed these

data in our study, but more importantly we observed that silencing

of KGFR expression restores the efficacy of 5-FU, as documented

by Ki67 labeling, index of cell proliferation, and by the viability

assay, measure of the capacity of 5-FU to cause cell death. These

results underline the potential role of the KGF/KGFR pathway in

decreasing the therapeutic efficacy of 5-FU treatment.

Similarly, in the breast cancer cell line MCF-7 and in epithelial

primary cultured cells, we observed that KGF treatment interferes

with the capacity of tamoxifen to block cell proliferation, whereas

KGFR silencing completely restores tamoxifen efficacy.

Although not clearly established, the involvement of the KGF/

KGFR pathway has been envisioned in different tumors of

epithelial origin. Recent data showing a possible association

between genetic alterations in the FGFR2 gene and risk of breast

cancers raised the interest to studies aimed to better address this

issue [46,47]. The altered expression of KGF/KGFR observed in

some cancers suggests that a screening to evaluate the expression

of KGFR and KGF in tumor biopsies might turn out useful as

prognostic marker. The present study, showing that silencing of

KGFR affects proliferation, motility and response of tumor-

derived cell lines to chemotherapeutic drugs, such as 5-FU and

tamoxifen, seems to indicate that KGFR may represent an

important target for the development of novel therapeutic

strategies.

Further studies are needed to prove specificity and efficacy of

siKGFR in vivo. Should these studies confirm our findings, it could

be envisioned the possibility that delivery of siRNAs within tumor

cells to downregulate KGFR expression might represent an

approach to overcome the reduced efficacy of drugs commonly

used in the treatment of tumors of epithelial origin, as well as to

reduce the rate of tumor growth and metastasis.

Materials and Methods

Cell culture and treatments
The estrogen receptor a-positive MCF-7 human breast

adenocarcinoma cell line, purchased from the American Type

Culture Collection (No. HTB-22, ATCC-LGC Promochem,

Teddington, UK), and the human keratinocyte cell line HaCaT
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were both cultured in Dulbecco’s Modified Eagle’s Medium

(DMEM; Invitrogen, Karlsruhe, Germany), supplemented with

10% fetal bovine serum (FBS; Invitrogen) and antibiotics. Primary

cultures of human estrogen-sensitive keratinocytes (KCs) were

established from 1 cm2 full-thickness mucosal biopsy of the vaginal

vestibule. Following enzymatic dissociation, keratinocytes were

seeded onto collagen IV (10 mg/ml)-coated culture plates and

maintained in chemical defined medium MCDB 153 (EpiLife,

Cascade Biologics, Inc., Portland, OR, USA), with medium

change twice a week, as previously reported [48].

For quantitative RT-PCR (Q-RT-PCR), Western blot analysis

and immunofluorescence, 20 h after transfection with siRNA

HaCaT cells were serum starved for 4 h and then treated for 48 h

with 20 ng/ml human recombinant KGF (Upstate Biotechnology,

Lake Placid, NY), while MCF-7 cells were treated with 20 ng/ml

KGF, 25 mg/ml 5-FU (Sigma-Aldrich, Milan, Italy) or a

combination of them. For wound-healing assay, 36 h after

transfection cells were serum starved for 12 h and then treated

for 24 h with 50 ng/ml KGF. For the experiments with 17b-

estradiol (E2) and tamoxifen, MCF-7 cells were grown in phenol

red-free DMEM supplemented with 10% dextran charcoal-treated

FBS (Invitrogen). Both MCF-7 and KCs were serum starved for

4 h and then treated for 48 h with 20 ng/ml KGF, 20 ng/ml E2

(Sigma-Aldrich), 100 nM tamoxifen or combinations of them.

Design and selection of siRNAs
The targeted sequences for human KGFR siRNAs, selected

from the cDNA sequence located ,0.2 kb after start codon, were

designed by using publicly available algorithms (www.ambion.

com/techlib/misc/siRNA_finder.html) and according to the

guidelines from Tuschl et al. [49]. In brief, we selected three 27-

mer RNA duplexes targeted to sequences located within the exon

8 of the FGFR2 gene, exclusively expressed in the KGFR/

FGFR2-IIIb isoform, and not in the FGFR2-IIIc. These duplexes,

named siRNA-1, siRNA-2 and siRNA-3, were analyzed by

BLAST (http://www.ncbi.nlm.nih.gov/BLAST) to ensure that

there were no significant sequence homologies with other genes.

Subsequently, they were synthesized by Invitrogen and dissolved

in the siRNAs buffer, as recommended by the manufacturer. The

efficacy of either the three individual duplexes or the pooled set of

them was assessed by Q-RT-PCR, the most efficient condition was

chosen for following studies and it was referred to as siKGFR.

In vitro transfection with siRNAs
HaCaT, MCF-7 and KCs cells were transfected with siRNAs

using the HiPerfect transfection reagent (Qiagen Inc., Hilden,

Germany), according to the manufacturer’s instructions. Briefly, 1

day prior to transfection cells were seeded at 1.56105 for HaCaT

or 2.06105 for MCF-7 and KCs per 60 mm Petri dish,

corresponding to a density of 60%-70% at the time of transfection.

The final optimal siRNA concentration was determined in 5 nM

(data not shown). Cells were incubated with HiPerfect alone

without siRNA as a negative control (mock transfection). Cells

were harvested 72 h after transfection for mRNA analysis, protein

expression, immunofluorescence and wound-healing assays. In

time course experiments, the analysis was performed 6, 24, 48, 72

and 96 h after transfection. In each case, three replicate

experiments were performed.

Quantitative RT-PCR
Cells were harvested and total RNA was extracted with the use

of TRIzol reagent (Invitrogen). cDNA was generated with

oligo(dT) from 1 mg of RNA using the SuperScript III Reverse

Transcriptase Kit (Invitrogen). After reverse transcription, the

abundance of KGFR or FGFR2-IIIc mRNA in HaCaT and

MCF-7 cells was quantified by Q-RT-PCR. Relative quantifica-

tion was performed using b-actin mRNA as an endogenous

control: for each examined sample, KGFR and FGFR2-IIIc

mRNA expression data were normalized to the b-actin expression.

The primers sets (Invitrogen) designed to detect each mRNA were

the following: KGFR forward, 59-ACTCGGGGATAAATAG-

TTCCAA-39; KGFR reverse, 59-CCTTACATATATATTCCC-

CAGCAT-39; FGFR2-IIIc forward, 59-CACCACGGACAAA-

GAGATTGA-39; FGFR2-IIIc reverse, 59- ATTACCCGC-

CAAGCACGTAT-39; b-actin forward, 59- CGCCGCCAG-

CTCACCATG-39; b-actin reverse, 59-CACGATGGAGGG-

GAAGACGG-39. TaqMan probes for KGFR (59-AAGTGCT-

GGCTCTGTTCAATGT-39), FGFR2-IIIc (59-TGTAACTTTT-

GAGGACGCTGGGGAA-39) and b-actin (59-TCGACAAC-

GGCTCCGGCATGTGCA-39) were purchased from MWG-

BIOTECH AG (Anzingerstr, Ebersberg, Germany). The Q-RT-

PCR reactions were performed using iQ Supermix (Bio-Rad

Laboratories, Hercules, CA) in a MyiQTM Thermal Cycle (Bio-

Rad), following the manufacturer’s instructions. For each sample

three replicates were performed. All reactions began with 3 min at

95uC for iTaqTM DNA polymerase activation, followed by 40

cycles of 95uC for 15 sec for denaturation and 60uC for 1 min for

annealing-extension. Data were analyzed according to Pfaffl [50]

and were expressed as fold of KGFR or FGFR2-IIIc mRNA with

respect to control. For each graph, boxes indicated the

interquartile range, the horizontal dotted line indicated the mean

value and whiskers indicated 95% confidence intervals (CIs).

Western blot analysis
For Western blot analysis, siKGFR- and mock-transfected

HaCaT or MCF-7 cells, treated as above described, were lysed in

RIPA buffer. Total proteins (50–150 mg) were resolved under

reducing conditions by 8%–12% SDS–PAGE and transferred to

Immobilon-FL membranes (Millipore, Billerica, MA). For KGFR

detection, the membranes were incubated overnight at 4uC with

anti-bek, a rabbit polyclonal antibody raised against the intracellular

domain of KGFR/FGFR2 (C-17; 1:200 dilution; Santa Cruz

Biotechnology, Santa Cruz, CA), followed by a goat anti-rabbit

horseradish peroxidase-conjugated secondary antibody (Sigma-

Aldrich). Bound antibody was detected by enhanced chemilumi-

nescence detection reagents (Pierce Biotechnology, Inc, Rockford,

IL), according to manufacturer’s instructions. To estimate the

protein equal loading, the membranes were rehydrated through

washing in TBS–T, stripped with 100 mM b-mercaptoethanol and

2% SDS for 30 min at 55uC and reprobed with an anti-tubulin

antibody (1:1000 dilution; Sigma-Aldrich). To detect MAPK

activation, membranes were incubated overnight at 4uC with a

monoclonal antibody that recognizes the phosphorylated form of

ERK (1:1000 dilution; Cell Signaling Technology, Danvers, MA),

followed by goat anti-mouse horseradish peroxidase-conjugated

secondary antibody (Sigma-Aldrich), which was visualized by

enhanced chemiluminescence. Protein equal loading was assessed

by reprobing the membranes with a polyclonal antibody directed

against ERK-2 (1:1000 dilution; Sigma-Aldrich). Densitometric

analysis was performed using Quantity One Program (Bio-Rad).

Briefly, the signal intensity for each band was calculated and the

background subtracted from experimental values. The resulting

values were then normalized, expressed as fold increase with respect

to the control value and visualized as graphs.

Immunofluorescence microscopy
Cells, grown on coverslips, were siKGFR- or mock-transfected

and treated as described above, then fixed in 4% paraformalde-
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hyde in phosphate-buffered saline (PBS) for 30 min at 25uC,

followed by treatment with 0.1 M glycine in PBS for 20 min at

25uC and with 0.1% Triton X-100 in PBS for additional 5 min at

25uC to allow permeabilization. To assess cell proliferation, cells

were incubated with an anti-Ki67 rabbit polyclonal antibody (1:50

in PBS; Zymed Laboratories, San Francisco, CA), which identifies

cycling cells. The primary antibody was visualized using Texas

Red conjugated goat anti-rabbit IgG (1:100 in PBS; Jackson

ImmunoResearch Laboratories, West Grove, PA). To evaluate

apoptosis, cells were incubated with a primary antibody that

specifically detects the cleaved form of caspase-3 (1:400 in PBS;

Cell Signaling), visualized with a FITC-conjugated goat anti-

rabbit IgG (1:50 in PBS; Cappel Research Products, Durham,

NC). Nuclei were visualized using 49, 6-diamido-2-phenylindole

dihydrochloride (DAPI) (1:10000 in PBS; Sigma-Aldrich). Fluo-

rescence signals were analyzed by recording stained images using a

cooled CCD color digital camera SPOT-2 (Diagnostic Instru-

ments Incorporated, Sterling Heights, MI) and Axiovision software

(Carl Zeiss Inc., Oberkochen, Germany). The percentage of Ki67-

positive cells and of cleaved-caspase 3-positive cells was evaluated

by counting, for each treatment, a total of 500 cells, randomly

taken from ten microscopic fields in three different experiments,

expressed as mean value695% CI and reported as graphs.

Cell survival assay
To evaluate the cytotoxicity of 5-FU, siKGFR- or mock-

transfected MCF-7 cells were treated as described above, fixed for

10 min in a solution 10% acetic acid-10% methanol, stained with

crystal violet (1% w/v) and photographed using a Power Shot G5

digital camera (Canon, Inc., Tokyo, Japan). Since it is known that

the intensity of light passing through the crystal violet stained

culture is proportional to the number of cells per unit area [51], we

further measured the optical density of the stained cells at a

wavelength of 570 nm, and reported it as a graph.

Wound healing assay
HaCaT and MCF-7 cells were seeded at 26105 cells and

1.26105 cells per 35 mm Petri dish, respectively, transfected as

described above and grown until confluence. Confluent cells were

serum starved for 12 h and then a standardized cell-free area

(wound) was introduced by scraping the monolayer with a sterile

tip, as previously described [33]. After intensive wash, the

remaining cells were incubated for 24 h in the presence of

50 ng/ml KGF. Then, cells were fixed with 4% paraformaldehyde

for 30 min at 25uC and photographs were taken using an Axiovert

25 inverted microscope (Carl Zeiss) and a Power Shot G5 digital

camera (Canon, Inc.). Some plates were fixed and photographed

immediately after wounding, representing a T0 control. Migration

was quantified by a measure of the recovered wound area,

performed using the freely available image-processing software

ImageJ 1.38 (http://rsb.info.nih.gov/ij/). The data presented for

each cell line are a mean of triplicate experiments695% CI.

Statistical analysis
Data were analyzed by two-way analysis of variance (ANOVA)

and Student’s t test. 95% confidence intervals were calculated. All

statistical tests were two-sided, and P,0.05 were considered

statistically significant. Statistical analyses were performed using

STATA 8.0 (STATA Corporation, College Station, TX).
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