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Sepsis is a life-threatening process related to a dysregulated host response

to an underlying infection, which results in organ dysfunction and poor

outcomes. Therapeutic strategies using mesenchymal stromal cells (MSCs)

are under investigation for sepsis, with efforts to improve cellular utility.

Syndecan (SDC) proteins are transmembrane proteoglycans involved with

cellular signaling events including tissue repair and modulating inflamma-

tion. Bone marrow-derived human MSCs express syndecan-2 (SDC2) at a

level higher than other SDC family members; thus, we explored SDC2 in

MSC function. Administration of human MSCs silenced for SDC2 in

experimental sepsis resulted in decreased bacterial clearance, and increased

tissue injury and mortality compared with wild-type MSCs. These findings

were associated with a loss of resolution of inflammation in the peritoneal

cavity, and higher levels of proinflammatory mediators in organs. MSCs

silenced for SDC2 had a decreased ability to promote phagocytosis of

apoptotic neutrophils by macrophages in the peritoneum, and also a dimin-

ished capability to convert macrophages from a proinflammatory to a

proresolution phenotype via cellular or paracrine actions. Extracellular

vesicles are a paracrine effector of MSCs that may contribute to resolution

of inflammation, and their production was dramatically reduced in SDC2-

silenced human MSCs. Collectively, these data demonstrate the importance

of SDC2 for cellular and paracrine function of human MSCs during sepsis.

Abbreviations

AA, arachidonic acid; CLP, cecal ligation and puncture; CM, conditioned medium; DHA, docosahexaenoic acid; EVs, extracellular vesicles;

hMSCs, human mesenchymal stromal cells; IFN-c, interferon gamma; IL-6, interleukin-6; LOX, lipoxygenase; LPS, lipopolysaccharide; MCP-

1, monocyte chemoattractant protein-1; MSCs, mesenchymal stromal cells; NTA, nanoparticle tracking analysis; qRT-PCR, quantitative real-

time PCR; SDC, syndecan; SDC2, syndecan-2; shSCR, scrambled control short hairpin construct; shSDC2, silenced SDC2 short hairpin

construct; SPMs, specialized proresolving lipid mediators; TEM, transmission electron microscopy; TNF-a, tumor necrosis factor alpha;

TUNEL, terminal deoxynucleotide transferase-mediated dUTP nick end-labeling.

417The FEBS Journal 289 (2022) 417–435 ª 2021 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies

This is an open access article under the terms of the Creative Commons Attribution License, which permits use,

distribution and reproduction in any medium, provided the original work is properly cited.

https://orcid.org/0000-0002-7219-7688
https://orcid.org/0000-0002-7219-7688
https://orcid.org/0000-0002-7219-7688
mailto:
http://creativecommons.org/licenses/by/4.0/


Introduction

Sepsis is defined as life-threatening organ dysfunction

caused by a dysregulated host response to infection

[1]. While comorbidities of the host, genetic determi-

nants, and environmental or other factors contribute

to this dysregulated response resulting in sepsis, the

ability of the immune system to clear the inciting

pathogen is critical. Without control of the underly-

ing infection, and the appropriate resolution of the

inflammatory response, collateral organ injury occurs

contributing to organ dysfunction and a poor out-

come. The interaction of innate immune cells, includ-

ing neutrophils and macrophages, allows the host to

efficiently clear pathogens and to return to homeosta-

sis [2,3].

Due to the challenges of therapy for the sepsis syn-

drome, and the fact that management remains pre-

dominantly supportive, new advances are being

explored including the use of cell-based therapies [4–8].
Mesenchymal stromal cells (MSCs) [9] have shown

promise in experimental models of sepsis [8]. The

immune evasive properties of MSCs allow the use of

allogeneic cells in humans and also permit the use of

human cells in mouse models of disease for preclinical

investigation [10]. A critical property of MSCs, or

their paracrine components [11], is modulation of the

immune response that allows clearance of the invading

organism(s) and limits tissue injury during sepsis [12].

While our laboratory and others have demonstrated

that MSCs improve outcomes in experimental models

of sepsis in mice [13–19], we seek to further under-

stand how MSCs control the immune response during

sepsis, with a special interest in the interaction between

macrophages and neutrophils.

In an effort to identify a more homogeneous popula-

tion of human MSCs, which does not require plastic

adherence in culture and in vitro cell surface marker

profiles and differentiation assays, investigators have

recently evaluated the use of syndecan-2 (SDC2 or

CD362) as a cell surface marker of a subpopulation of

MSCs. SDC2+ bone marrow-derived human MSCs were

shown to decrease the severity of Escherichia coli-

induced pneumonia and improve recovery from

ventilator-induced lung injury in rats, and this response

was superior to SDC2� cells and comparable to the

heterogeneous MSC population in vivo [20]. Similarly,

human umbilical cord-derived SDC2+ MSCs were

shown to be as effective as the total heterogeneous MSC

population in reducing E. coli-induced acute lung injury

in rats [21]. While these studies used SDC2 as a marker

for isolation of a homogeneous population of MSCs,

the purpose of our study was to determine whether

SDC2 plays an important role in MSC biology and

function during experimental sepsis.

Syndecans are heparan sulfate transmembrane pro-

teoglycans that interact with a large number of ligands,

and these molecules play a role in many cellular signal-

ing events related to cell adhesion, tissue repair, and

inflammation [22]. Interestingly, while involved in tissue

repair, the expression of SDC2 is increased in alveolar

macrophages in patients with pulmonary fibrosis, and

exerts antifibrotic effects in experimental models of lung

fibrosis [23,24]. In regard to inflammation, SDCs have

been shown to regulate leukocyte extravasation and

cytokine/chemokine function [25], and SDCs are

involved in many aspects of the inflammatory response,

from leukocyte recruitment to resolution of inflamma-

tion [26]. Since MSCs are also known to modulate

inflammation and tissue repair, we propose that SDC2

plays an important role in MSC function during sepsis

to alleviate organ dysfunction.

Results

SDC2 expression is higher in human MSCs

compared with fibroblasts, and silencing of SDC2

alters cell growth

We analyzed the level of SDC2 in human bone

marrow-derived MSCs (hMSCs) and human dermal

fibroblasts, a control mesenchymal cell. Using quanti-

tative real-time PCR (qRT-PCR), the level of SDC2

mRNA in hMSCs was 6.8-fold higher than human

fibroblasts (Fig. 1A). Furthermore, when assessing the

expression of SDC2 compared with other family mem-

bers, SDC2 was expressed significantly higher than

SDC1, SDC3, and SDC4 in bone marrow-derived

hMSCs (Fig. 1A). To explore the impact of SDC2 on

hMSCs function, we silenced SDC2 using a short hair-

pin RNA lentiviral construct (shSDC2) compared with

a scrambled control construct (shSCR). Figure 1B,C

demonstrates that silencing of SDC2 resulted in

decreased mRNA levels (more than 96% reduction)

and protein expression (~ 67% decrease) in hMSCs.

shSDC2 and shSCR hMSCs were next phenotyped

using flow cytometry and exhibited comparable expres-

sion of mesenchymal markers (Fig. 1D), including

CD90, CD73, and CD105. In both lines of hMSCs,

they showed a very low expression of MHCII. Silenc-

ing of SDC2 in hMSCs demonstrated a significant

reduction in cell growth at days 3, 4, and 5, compared

with shSCR hMSCs (Fig. 1E). Furthermore, while

shSCR hMSCs continued to grow over the 5 days of

evaluation, the growth of shSDC2 cells was not statis-

tically different between any of the days 1–5.
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Silencing SDC2 leads to a loss of hMSC survival

benefit, failure to protect from tissue injury, and

ineffective bacterial clearance in experimental

sepsis

We next assessed the therapeutic impact of hMSC-

derived SDC2 function in vivo. After the induction of

sepsis by cecal ligation and puncture (CLP), mice

received vehicle PBS, shSCR hMSCs, or shSDC2

hMSCs. hMSCs (5 9 105 cells/200 µL PBS) or vehicle

(PBS 200 µL) was administered intravenously 2 h, and

then again 24 h after CLP, and survival was assessed

over 7 days. Mice treated with PBS alone had a sur-

vival rate of ~ 23% (Fig. 2A). Injection of shSCR

hMSCs led to a marked increase in mouse survival

(~ 67%), whereas the survival of mice receiving

shSDC2 hMSCs was significantly diminished (~ 31%).

Assessment of organ injury at 48 h after CLP or sham

surgery revealed mice receiving shSDC2 hMSCs or PBS

after CLP had a similar increase in apoptosis of spleen

and bowel (distal small intestine), whereas mice receiv-

ing shSCR hMSCs after CLP had a blunted apoptotic

response, comparable to sham surgery (Fig. 2B). Lung

injury is another consequence of sepsis, and hMSCs

have been shown to restore fluid clearance and have

antimicrobial activity in human lungs ex vivo exposed

to live bacterial in a pneumonia model [27]. The mice

undergoing CLP showed evidence of thickening of the

alveolar walls, with some alveolar collapse and edema

at 48 h (Fig. 2C). While these changes were more evi-

dent in mice that received PBS or shSCD2 MSCs after

CLP, overall the histological findings in the lungs were

modest in this model of peritoneal sepsis.

Bacterial clearance was also assessed at 48 h after

CLP. Mice in all sepsis groups demonstrated bacteria

in the peritoneum and blood. The administration of

shSCR hMSCs after the onset of sepsis resulted in a

significant decrease in bacteria in both the peritoneum

and the blood compared with the PBS group

(Fig. 3A,B). In contrast, mice receiving shSDC2
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Fig. 1. Syndecan-2 is highly expressed in bone marrow-derived hMSCs, and silencing results in no change in mesenchymal markers but

decreased cell growth. (A) RNA was extracted from human dermal fibroblasts (Fb, blue bars) and bone marrow-derived hMSCs (MSC, red

bars), and qRT-PCR was performed for SDC1, SDC2, SDC3, and SDC4. Data are presented as mRNA levels of SDCs normalized for b-actin,

as a fold change to Fb, mean � SEM, n = 3 in each group. *P = 0.032 versus Fb, and †P = 0.03 SDC2 versus other SDCs. (B) RNA was

extracted from scrambled control short hairpin construct (shSCR) hMSCs (blue bar) and from silencing of SDC2 (shSDC2, red bar), and qRT-

PCR was performed for SDC2. Data are presented as mRNA levels of SDC2 normalized for b-actin, as a fold change to shSCR hMSCs,

mean � SEM, n = 3 in each group, *P = 0.0027 versus shSCR. (C) Flow cytometry was also performed for SDC2 in shSCR (blue bar) and

shSDC2 (red bar) hMSCs. Data are presented as mean fluorescent intensity, fold change to shSCR hMSCs, mean � SEM, n = 3 in each

group, *P = 0.002 versus shSCR. (D) Flow cytometry was performed for CD90, CD73, CD105, and MHCII in shSCR (blue bar) and shSDC2

(red bar) hMSCs. Data are presented as percentage of cells expressing the markers in each group, mean � SEM, n = 3 in each group; NS,

not significant between groups. (E) shSCR hMSCs (blue dots/line) and shSDC2 (red dots/line) hMSCs were seeded on day 0, and counted

daily through day 5. Data are presented as cell number 9 104, mean � SEM, n = 3 experiments in each group, *P = 0.011 shSDC2 versus

shSCR hMSC.
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hMSCs had significantly higher numbers of bacteria

in the peritoneum and blood compared with mice

receiving shSCR hMSCs, analogous to mice receiving

PBS alone. To further understand bacterial clearance,

we assessed the influence of hMSCs on neutrophil

and macrophage phagocytosis. Compared with no

hMSCs, shSCR hMSCs increased the percentage of

neutrophils phagocytizing bacteria (E. coli), and also

the total amount of bacteria engulfed (Fig. 3C). In

the presence of shSDC2 hMSCs, the percentage and

amount of E. coli phagocytized by neutrophils was

not different than neutrophils not exposed to hMSCs.

While macrophages phagocytized E. coli, the effect of

shSCR and shSDC2 hMSCs was not different from

macrophages not exposed to hMSCs (data not

shown).
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Fig. 2. Silencing of SDC2 in hMSCs results

in decreased survival and increased tissue

injury and a lack of bacterial clearance when

administered during sepsis. (A) Septic mice

were randomly separated into three groups:

PBS control (gray line, n = 13), shSCR

hMSCs (blue line, n = 15), and shSDC2

hMSCs (red line, n = 16). All mice were

subjected to CLP. 2 h after CLP, the mice

received PBS (200 µL) or hMSCs (5 9 105

cells in 200 µL PBS) via tail vein injection.

This treatment was also repeated at 24 h

after CLP. Survival of mice was monitored

over 7 days, and data are presented as

Kaplan–Meier survival curves, *P = 0.025

versus shSCR hMSC. (B) Tissue injury was

assessed by terminal deoxynucleotide

transferase-mediated dUTP nick end-

labeling (TUNEL) staining of spleen (left

panel) and bowel (right panel) tissues 48 h

after sham (�) or CLP (+) surgery. Data are

presented as quantification of apoptotic

cells per mm2, mean � SEM, from random

images of fluorescent microscope (920

objective) in sham (white bars, n = 10 and

13 images, respectively, from left and right

panels), CLP+PBS (gray bars, n = 24 and

18, respectively), CLP+shSCR hMSCs (blue

bars, n = 27 and 18 images, respectively),

and CLP+shSDC2 hMSCs (red bars, n = 27

and 20 images, respectively). P < 0.0001

for spleen and bowel, with significant

comparisons * versus sham, † versus PBS,

‡ versus shSCR hMSCs. (C) Lung

architecture was assessed by hematoxylin

and eosin staining of representative tissue

sections from sham (left upper panel),

CLP+PBS (right upper panel), CLP+shSCR

hMSCs (left lower panel), and CLP+shSDC2

hMSCs (right lower panel). Arrows point to

areas of injury. Scale bar represents

100 µm.
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SDC2 contributes to the ability of hMSCs to

modulate inflammation in sepsis

The spleen is an organ of functional importance dur-

ing sepsis, including to help clear bacteria, and it is

also susceptible to injury due to the immune response

during systemic infection [28]. Thus, we assessed the

infiltration of innate immune cells into splenic tissue

after CLP, using immunostaining for neutrophils

(Ly6G+) and macrophages (CD68+). There was

increased infiltration of Ly6G+ neutrophils and CD68+

macrophages in the PBS and the shSDC2 hMSC

groups after CLP, compared with the shSCR hMSC

group (Fig. 4A,B). In addition, we measured the

mRNA levels of the inflammatory cytokine IL-6,

which is important in the pathobiology of sepsis

[29,30], tumor necrosis factor alpha (TNF-a), and the

chemokine MCP-1, at 24 h after CLP. These media-

tors are biomarkers of the inflammatory response in

sepsis [31]. The level of IL-6 mRNA was significantly

higher in the shSDC2 hMSC group compared with the

shSCR hMSC group, a level comparable to PBS in

spleen, liver, and lung tissues (Fig. 5A). A similar pat-

tern of MCP-1 (Fig. 5B) and TNF-a (data not shown)

mRNA levels was seen in the spleen, with elevated

levels in the shSDC2 hMSC group compared with the

shSCR hMSC group. The levels of MCP-1 and TNF-a
mRNA had a similar trend in liver and lung tissues,

but the changes were not statistically significant.

We next assessed the inflammatory response in the

peritoneum, the site of initial injury in CLP-induced

sepsis. At 48 h after CLP, the total number of cells in
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the peritoneal fluid was significantly decreased in the

shSCR hMSC group, compared with the shSDC2

hMSC and PBS groups (Fig. 6A). Quantification of

neutrophils demonstrated an analogous response, with

more neutrophils in the shSDC2 hMSC group com-

pared with the shSCR hMSC group (Fig. 6B). Finally,

we assessed total macrophages (Fig. 6C) in the peri-

toneal fluid. In contrast to the spleen, the peritoneal

fluid demonstrated no significant difference in the

number of macrophages in mice receiving shSCR

hMSC, shSDC2 hMSC, or PBS during CLP. We next

further assessed the effect of hMSCs on macrophage

subtypes and function.

SDC2 is important for hMSCs to promote

efferocytosis and macrophage polarization

Macrophages and neutrophils work in concert to elim-

inate pathogens, and after bacterial clearance is initi-

ated, macrophages phagocytize apoptotic neutrophils

and cellular debris (efferocytosis), while concomitantly

shifting from an M1-like proinflammatory phenotype

to an M2-like proresolution phenotype [2,3,32,33]. To

further assess the impact of hMSC-derived SDC2 on

macrophage function, we assessed efferocytosis, an

important process during the resolution of inflamma-

tion [34]. Administration of shSCR hMSCs at 2 and

24 h after CLP increased the clearance of apoptotic

neutrophils by macrophages in the peritoneum at 48 h

(Fig. 7A). However, mice receiving shSDC2 hMSCs

had a level of efferocytosis similar to mice receiving

PBS. We also explored this concept in vitro, utilizing

the conditioned medium (CM) of hMSCs and their

ability to promote macrophage phagocytosis of apop-

totic neutrophils in culture. CM from shSCR hMSCs

was able to increase macrophage phagocytosis of

apoptotic neutrophils, while shSDC2 CM had signifi-

cantly reduced efferocytosis (Fig. 7B). These data sug-

gest that silencing of SDC2 in hMSCs promotes a loss

of efferocytosis, and this process relates to its para-

crine actions.

Next, we assessed whether this effect on efferocyto-

sis by the CM of hMSCs translated into a change in

macrophage subtype, from an M1-like to an M2-like

phenotype. We took nonactivated murine macrophages

(M0) and stimulated them with LPS and IFN-c to

induce an M1-like proinflammatory phenotype, and at

the same time added CM from shSCR or shSDC2

hMSC. To identify macrophage subtypes, we used

markers of macrophage arginine metabolism to char-

acterize M1-like macrophages (expressing more NOS2)

and M2-like macrophages (expressing more arginase-1)

[35]. A ratio of arginase-1/NOS2 was used as a

biomarker of macrophage subtype. After 48 h of stim-

ulation with LPS and IFN-c, in the presence or

absence of hMSC CM, macrophage RNA was har-

vested and qRT-PCR performed to assess arginase-1/

NOS2 ratio. Figure 7C demonstrates that CM from

shSCR hMSCs promoted an M2-like phenotype, with

an increased ratio of arginase-1/NOS2, while in the

presence of CM from shSDC2 hMSC, the arginase-1/

NOS2 ratio was comparable to M1-like macrophages

(no CM). Specialized proresolving lipid mediators

(SPMs) are known to orchestrate the resolution of

inflammation, involving efferocytosis and polarization

to an M2-like proresolution macrophage phenotype,

and SPMs also have anti-inflammatory properties [36–
40]. Resolvin D1 and lipoxin A4, SPMs expressed in

MSCs, have been shown to regulate the inflammatory

response during models of sepsis and acute lung injury

[18,41]. Interestingly, when we assessed these SPMs in

the CM of hMSCs, we found that the production of

both resolvin D1 and lipoxin A4 was significantly

reduced in shSDC2 MSCs compared with shSCR

MSCs (Fig. 7D).

SDC2 is important for the ability of hMSC-

derived extracellular vesicles to promote

macrophage polarization and efferocytosis

An important component of the paracrine actions of

MSCs is extracellular vesicles (EVs) [42]. Thus, we

next explored the capacity of EVs derived from shSCR

and shSDC2 hMSC to modulate macrophage polariza-

tion and efferocytosis to initiate the resolution of

inflammation. We harvested EVs from hMSCs as

described [43]. The isolation and characterization of

EVs were in accordance with the 2018 Minimal Infor-

mation for Studies of Extracellular Vesicles (MISEV)

[44], as outlined by the International Society for Extra-

cellular Vesicles. In the present studies, EVs repre-

sented a heterogeneous vesicle population that occupy

a diameter of < 200 nm, express established EV-

associated markers including CD9 and CD81, and

adhere to the typical biconcave features of EVs

(Fig. 8A). Exosomes comprised a subpopulation of

EVs. Beyond establishing the presence of known mark-

ers for EVs from both shSCR and shSDC2 hMSCs

(Fig. 8B), we importantly demonstrated that histone

H3 (not released in EVs [45]) was only evident in the

cells and not the EVs. As a whole, these data confirm

the isolation and purification of EVs from hMSCs.

Moreover, SDC2 was present in shSCR EVs (Fig. 8C)

and was reduced in shSDC2 EVs. We exposed macro-

phages (stimulated with IFN-c and LPS) to full CM,

EVs, or the soluble fraction of CM (EV deficient) from
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shSCR hMSCs. In the experiments using EVs, a cell

equivalent number of EVs from shSCR or shSDC2

hMSCs was administered, unless stated otherwise.

Notably, EVs from shSCR hMSCs promoted polariza-

tion of macrophages from M1-like to M2-like pheno-

type (Fig. 8D). Although less dramatically, the soluble

fraction also induced polarization to an M2-like phe-

notype. We next assessed the impact of EVs from

shSDC2 hMSCs, and shSCR hMSCs, on macrophage

polarization and efferocytosis. EVs from shSDC2

hMSCs lost the ability to polarize M1-like to M2-like

macrophages, in comparison with EVs from shSCR

hMSCs (Fig. 8E). Moreover, EVs from shSCR hMSCs

were able to increase efferocytosis of apoptotic neu-

trophils by macrophages (Fig. 8F), but after silencing

SDC2, this function of EVs from shSDC2 hMSCs was

lost.

Silencing of SDC2 in hMSCs results in decreased

EV production

To assess the impact of SDC2 on EV production, we

next performed nanoparticle tracking analysis (NTA).

EV production was dramatically reduced in hMSCs

silenced for SDC2 (Fig. 9A). Specifically, these data

demonstrated that the EVs released from shSCR
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hMSCs were > 2.5-fold greater than those from

shSDC2 hMSCs. To determine whether fewer EVs are

contributing to the alteration in shSDC2 paracrine

function, we repeated the experiment shown in

Fig. 8E, but instead of using EVs from an equivalent

number of shSCR and shSDC2 hMSCs, we normal-

ized to the number of EVs. As demonstrated in

Fig. 9B, when we used an analogous number of EVs,

both shSDC2 (1.5 9 106 cell equivalents) and shSCR

(0.5 9 106 cell equivalents) hMSC EVs were able to

polarize cells from an M1-like to an M2-like pheno-

type to a comparable degree. To further investigate

EVs in shSDC2 hMSCs, we performed immunoblot-

ting of EVs to assess key EV-associated markers, using

b-actin expression for normalization. The expression

of syntenin, Tsg101, CD63, and ALIX were all

decreased in EVs of shSDC2 hMSCs compared with

shSCR hMSCs (Fig. 9C). Taken together, these data

suggest that decreased EV production, and fewer EVs

in the CM of shSDC2 hMSCs, compared with shSCR

hMSCs, contributed to the aberrant paracrine func-

tion.

Discussion

Syndecan family members are transmembrane proteo-

glycans, with heparan sulfate extracellular domains

that can be released from the cell membrane by shed-

dase enzymes [26,46]. Both the expression levels and

the proteolytic cleavage of extracellular domains of

SDCs are known to be upregulated during inflamma-

tory responses [26]. Circulating levels of soluble SDC1

and SDC3 have been reported to be increased during

critical illnesses (including sepsis) compared with con-

trol patients [47]. By regulating leukocyte extravasa-

tion and cytokine/chemokine function, SDCs have a

role in the regulation of the inflammatory response,

from leukocyte recruitment to the resolution of inflam-

mation [26]. Recently, using SDC2 as a marker on the

surface of hMSCs, investigators identified a population

of cells that was beneficial against bacterial pneumonia

and ventilator-induced lung injury [20,21]. This popu-

lation of SDC2+ cells was as effective as standard

heterogeneous hMSCs to decrease severity, and

improve recovery, from these acute lung injury models.

Administration of SDC2+ hMSCs during experimental

sepsis was also reported to be advantageous compared

with a vehicle control [48]. Given that human MSCs

expressing SDC2 on their cell surface were comparable

to but not more effective than the heterogeneous MSC

population, we sought to further elucidate the impor-

tance of endogenous SDC2 on hMSC function.

Syndecans in mammals are expressed in cell- and

tissue-specific patterns, and SDC2 is known to be

expressed in mesenchymal cells [49]. Interestingly, we

demonstrated that the expression of SDC2 is more

than sixfold higher in bone marrow-derived hMSCs

than in control mesenchymal fibroblasts, and SDC2 is

much more highly expressed than SDC1, SDC3, or

SDC4 in hMSCs. Silencing of SDC2 resulted in a loss
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in increased tissue expression of

proinflammatory mediators. RNA was also
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presented as mRNA levels of IL-6 or MCP-1

normalized for b-actin, as a fold change to
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of survival benefit, more tissue cell death, and less bac-

terial clearance when administered after the onset of

polymicrobial sepsis compared with shSCR hMSCs.

While the administration of shSCR hMSCs resulted in

a decrease in the infiltration of neutrophils (Ly6G+)

and macrophages (CD68+) into splenic tissue during

sepsis, this decrease in innate immune cell infiltration

was not evident in mice receiving shSDC2 hMSCs.

Evaluation of the inflammatory response in the peri-

toneum (site of injury) revealed a similar decrease in

neutrophils in mice receiving shSCR hMSCs after the

onset of sepsis, and this response was lost in mice

receiving shSDC2 hMSCs.

With evidence that the inflammatory response was

not resolving as efficiently after receiving shSDC2

hMSCs, compared with shSCR hMSCs, we further

assessed the phagocytosis of apoptotic neutrophils by

macrophages (efferocytosis), a critical process during

the resolution of inflammation [34,50]. Here, we found

that efferocytosis was significantly greater in mice

receiving shSCR hMSCs than mice receiving shSDC2

hMSCs. The clearance of apoptotic neutrophils by

macrophages is associated with a shift from an M1-like

proinflammatory to an M2-like proresolution pheno-

type [2,3,33]. Thus, even though the overall number of

peritoneal macrophages was not different between the

groups, we hypothesized a shift in macrophage pheno-

type. The CM from shSCR hMSCs was able to pro-

mote the conversion of M1-like macrophages to M2-

like macrophages, and this effect was not present when

using the CM of shSDC2 hMSCs. Furthermore, we

demonstrate for the first time that the production of

resolvin D1 and lipoxin A4, SPMs known to promote

efferocytosis and polarization of macrophages to a

proresolution phenotype, was decreased in the CM of

shSDC2 compared with shSCR hMSCs. SPMs are

dependent on lipoxygenase (LOX) enzymes for their

biosynthesis [50], and exposure of human and mouse

MSCs to a LOX inhibitor (baicalein), or silencing of

the 5-LOX and 12/15-LOX enzymes in mouse MSCs

resulted in a blunted effect on neutrophil phagocytosis

of bacteria and a loss of survival benefit during peri-

toneal sepsis [18]. Thus, the defect in SPM production

has important consequences on the function of shSDC2

hMSCs during sepsis.

The ability of MSCs to modulate an inflammatory

response and to protect tissue from injury, or to pro-

mote tissue repair, is largely via their paracrine actions

[6,51,52]. An important component of the paracrine

actions of MSCs occurs through EVs, and MSC-derived

EVs have been shown to be beneficial in sepsis [52].

Uptake of EVs by macrophages is able to induce a

switch from the M1-like to M2-like phenotype [53,54],

and this modulation of macrophages has been shown to

be important in experimental models of infection,

inflammatory organ injury, acute lung injury, and
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pulmonary hypertension [52,54,55]. Interestingly,

biodistribution of EVs accumulates mainly in organs

such as the spleen, liver, and lung [56], organs in which

the inflammatory mediators IL-6 and MCP-1 were

decreased after administration of shSCR hMSCs, com-

pared with shSCD2 hMSC. It is uncertain whether there

is a potential for EV homing to specific organs during

disease, although the route of administration influences

the biodistribution [56]. Moreover, Mansouri and col-

leagues also demonstrated that MSC-derived exosomes/

EVs were able to reprogram myeloid cells in the bone

marrow, leading to lower proinflammatory monocytes

in the lung after administration of bleomycin [57]. Thus,

the effect of EVs on bone marrow-derived myeloid cells

may also provide an immunomodulatory mechanism by

which EVs have a systemic response.

In the present study, the paracrine actions of shSCR

hMSCs to induce the conversion of M1-like to M2-

like macrophages were in part related to EVs in the

CM, along with soluble factors. However, EVs har-

vested from shSDC2 hMSCs (from an equivalent num-

ber of cells as shSCR hMSCs) failed to induce a

change in macrophage phenotype. Additionally, the

EVs from shSDC2 hMSCs were not able to increase

the phagocytosis of apoptotic neutrophils, as seen with

shSCR EVs.
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comparisons * versus PBS and † versus shSCR hMSC. (B) Next, we performed the efferocytosis assay in vitro. Macrophages were
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hMSCs (red bar, n = 5). Data are presented as the percentage of macrophages phagocytizing apoptotic neutrophils, mean � SEM.

P = 0.021, with significant comparisons * versus PBS and † versus shSCR hMSC. (C) M0 macrophages were stimulated with IFN-c
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bars, n = 5) and shSDC2 hMSCs (red bars, n = 5) were exposed to SPM substrates DHA or AA for 24 h, and then, the CM from the cells

was analyzed by ELISAs for resolvin D1 (left) or lipoxin A4 (right), respectively. Data are presented as mean � SEM. P < 0.0001, with

significance comparison † versus CM of shSCR hMSCs.
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comparisons * versus PBS and † versus shSCR hMSC.

427The FEBS Journal 289 (2022) 417–435 ª 2021 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies

J. Han et al. Syndecan-2, MSC function, and sepsis



In an effort to understand the mechanism behind

this abnormal response of EVs from shSDC2 hMSCs,

we assessed the number of EVs present in the CM of

an equivalent number of cells in each groups. We

noted there was more than ~ 2.5-fold fewer EVs in the

CM of shSDC2 hMSCs compared with shSCR

hMSCs, and when we normalized for the number of

EVs, the paracrine actions of shSDC2 EVs were analo-

gous to shSCR EVs in converting M1-like to M2-like

macrophages. Previously, it has been shown that the

cytosolic adaptor syntenin connects to ALIX via the

heparan sulfate proteoglycans of SDC1 and SDC4 and

then interacts with other endosomal sorting complex

required for transport (ESCRT) machinery to support

membrane budding and biogenesis of exosomes (sub-

population of EVs) [58,59]. Interestingly, we found

that silencing of SDC2 in hMSCs resulted in decreased

expression of syntenin, ALIX, Tsg101, and CD63,

established EV-associated markers. Taken together,

these data support the concept that SDC2 is critical
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for the production of EVs in hMSCs, and we hypothe-

size that decreased numbers of EVs from shSDC2

hMSCs may contribute to decreased efferocytosis, loss

of macrophage polarization to the M2-like phenotype,

and altered resolution of inflammation. Since SDC1

and SDC4 are known to influence the cargo of EVs

[60–62], we cannot exclude the impact of SDC2 on the

composition of MSC-derived EVs and this influence

on sepsis pathobiology.

In conclusion, this study demonstrates an important

role for endogenous SDC2 on bone marrow-derived

hMSC function (both cellular and paracrine actions)

during experimental sepsis. Beyond the ability of

hMSC to promote bacterial clearance by neutrophils,

SDC2 is important to allow prompt resolution of

inflammation resulting in less tissue injury and

improved survival. The ability of hMSCs to enhance

the clearance of apoptotic neutrophils from the peri-

toneum, and transition of macrophages from an M1-

like proinflammatory phenotype to an M2-like prores-

olution phenotype, is lost after silencing of SDC2 in

the cells. In addition, the paracrine actions of hMSC-

derived EVs contributes to efferocytosis and M2-like

polarization of macrophages in vitro, and these actions

are related in part to the impact of SDC2 on cellular

EV production. Collectively, these data advance our

understanding of how SDC2 promotes hMSC function

during experimental polymicrobial sepsis.

Materials and methods

Cells

Primary human bone marrow-derived mesenchymal stromal

cells (hMSCs) were obtained from the Institute for Regen-

erative Medicine, Texas A&M Health Science Center.

hMSCs were cultured in MEMa (Gibco, Gaithersburg,

MD, USA) supplemented with 20% FBS, and used at pas-

sages 5–6. Control mesenchymal cells were human dermal

fibroblasts.

Lentivirus silencing of SDC2 in hMSC

The vector for SDC2 (shSDC2), target sequence 50-
GTCATTGCTGGTGGAGTTATT-30 (TRCN0000298635),

and scrambled control (shSCR) construct (SHC016) were

purchased from Sigma-Aldrich (St. Louis, MO, USA). For

production of lentiviral particles, a second-generation pack-

aging mix and LentiFectinTM Transfection Reagent (Applied

Biological Materials, Richmond, BC, Canada) were used.

shSDC2 and shSCR lentiviral particles were added to

hMSCs for 24 h, followed by selection using puromycin

(10 lg�mL�1) as described [18].

Assessment of SDC2 silencing by qRT-PCR and

flow cytometry

Total RNA was extracted from shSDC2- and shSCR-

infected hMSCs, and qRT-PCR was performed as

described [63,64] using the human primers of SDC2 for-

ward 50-CAACATCTCGACCACTTCCA-30 and reverse 50-
TGGGTCCATTTTCCTTTCTG-30. qRT-PCR of b-actin
was used for normalization of SDC2 expression by the

comparative Ct method using primers of human b-actin
forward 50-AGGCACCAGGGCGTGAT-30 and reverse 50-
GCCCACATAGGAATCCTTCTGAC-30. Cells were har-

vested after silencing, and flow cytometry was performed,

using the CD362(SDC2)-PE antibody (Table 1). The cells

were then assessed using a BD FACSCanto II, and ana-

lyzed by FLOWJO software (Becton Dickinson and Company,

Franklin Lakes, NJ, USA).

Growth curve

Seventy-two hours after puromycin selection, shSCR and

shSDC2 hMSCs were plated in 35-mm dishes at a density

of 2 9 104 cells/35-mm dish (day 0). The medium was

changed every other day. The cell number was counted

daily, from day 1 to day 5.

Cecal ligation and puncture

C57BL/6 male mice, 6–8 weeks of age, underwent CLP as

described [17–19,65], with two-thirds of the cecum ligated

and punctured with two 21-gauge holes. In sham experi-

ments, surgery was performed, without CLP. The mice

received hMSCs (5 9 105 cells/200 µL PBS) or vehicle

(PBS 200 µL) via intravenous administration at 2 h after

CLP, and then again at 24 h after CLP (5 9 105 cells/

200 µL PBS or PBS 200 µL only). The mice were sacrificed

at 24–48 h after CLP, or they were monitored over 7 days

to determine survival.

Bacterial clearance

Peritoneal fluid and blood were drawn 48 h after CLP.

Serial dilutions of whole blood and peritoneal fluid were

performed and then incubated overnight at 37 °C on LB

agar plates. CFUs of bacteria were counted and calculated

as described [17].

Flow cytometry and efferocytosis of peritoneal

cells

Peritoneal lavage was performed 48 h after CLP or sham

surgery. Cells from the recovered fluid were stained with

antibodies targeting Ly6G-APC and CD11b-PE to identify

neutrophils, and F4/80-APC to identify macrophages [19].
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For in vivo efferocytosis [18], peritoneal cells were stained

with F4/80-APC antibody. After washing with 19 PBS, the

cells were permeabilized with Cytofix/Cytoperm (BD Bio-

sciences, Billerica, MA, USA) and stained intracellularly

with Ly6G-FITC antibody. The cell population positive for

both F4/80-APC and Ly6G-FITC by flow cytometry was

identified as macrophages phagocytizing apoptotic neu-

trophils (efferocytosis). The antibodies used for flow cytom-

etry are detailed in Table 1.

Histology and immunohistochemistry

Mice were sacrificed 48 h following CLP or sham surgery,

and organs were harvested and fixed in 10% formalin, pro-

cessed, embedded in paraffin, and sectioned (5 µm). Tissue

sections were assessed by hematoxylin and eosin stain, or

stained for apoptotic cells using ApoAlert DNA Fragmen-

tation Assay Kit (Clontech, Mountain View, CA, USA).

Tissues were also immunostained with Ly6G and CD68

antibodies (Table 1) for assessment of neutrophil and

macrophage infiltration. The area of positively stained cells

was calculated per 209 objective using IMAGEJ software

(National Institutes of Health, Bethesda, MD, USA) or

Adobe Photoshop (Adobe Systems Incorporated, San Jose,

CA, USA), respectively, and numerous random fields were

assessed per tissue section.

Assessment of organ inflammatory mediators by

qRT-PCR

The liver, spleen, and lung were harvested 24 h after CLP or

sham surgery. Total RNA was extracted and qRT-PCR per-

formed [63,64]. The primers used to assess inflammation were

mouse IL-6 forward 50-ACAAGTCGGAGGCTTAATTAC

ACA T-30 and reverse 50-TTGCCATTGCACAACTCTTTT

C-30, and mouse MCP-1 forward 50-ACTGAAGCCAGCTC

TCTCTTCCTC-30 and reverse 50-TTCCTTGGGGTCAG

CACAGAC-30. Mouse b-actin was used to normalize gene

expression, using primers for mouse b-actin forward 50-
ACCAACTGGGACGATATGGAGAAGA-30 and reverse

50-TACGACCAGAGGCATACAGGGACAA-30.

Preparation of hMSC conditioned medium

Human mesenchymal stromal cells were cultured to 80–
90% confluence, washed with PBS, and replenished with

supplement-free MEMa. After 24 h, the CM was collected,

and centrifuged at 805 g for 5 min to remove cell debris.

The CM was then concentrated using an Amicon Ultra-4

centrifugal filter units with a 3-kDa cutoff (Millipore, Bil-

lerica, MA, USA). Aliquots of the concentrated hMSC CM

were then kept at �80 °C until they were used.

Isolation of hMSC extracellular vesicles

Growth medium of hMSCs (MEMa plus 20% FBS) was sub-

jected to ultracentrifugation (100 000 g for 2 h at 4 °C) to
deplete EVs. The EV-depleted medium was then added to

hMSCs for 36 h and collected, and HEPES solution (1 M

Sigma, pH 7.4) was added at 1 : 40 dilution for a final con-

centration of 25 mM. The supernatant was then spun at 300 g

for 10 min at 4 °C. The supernatant was again collected, fil-

tered (0.22 µm), and spun at 2000 g for 10 min at 4 °C. Next,

the supernatant was subjected to ultracentrifugation at

100 000 g for 90 min at 4 °C, and the pellet was collected.

Finally, this pellet was resuspended in cold PBS and subjected

to a final ultracentrifugation step (100 000 g for 90 min at

4 °C) to isolate EVs for use in the experiments [43].

Transmission electron microscopy

Extracellular vesicles were assessed morphologically by

transmission electron microscopy (TEM). An aliquot of

EVs was absorbed to a formvar/carbon grid, stained with

Table 1. Antibodies used for flow cytometry, western blot

analyses, and immunofluorescent staining.

Flow cytometry

Target Company

Catalog

number Clone Fluorophore

Syndecan-

2

MACS 130-107-480 REA468 PE

CD90 Biolegend 328115 5E10 AF647

CD73 Biolegend 344015 AD2 FITC

CD105 Biolegend 323207 43A3 APC

HLA DR Biolegend 307609 L243 APC

Ly6G Biolegend 127613 1A8 APC

Ly6G Biolegend 127606 1A8 FITC

CD11b BD

bioscience

557397 M1/70 PE

F4/80 Biolegend 123116 BM8 APC

Western blot analyses

Target Company Catalog number Isotype Host species

Syndecan-2 Abcam ab191062 IgG Rabbit

ALIX Abcam ab117600 IgG1 Mouse

Tsg101 Abcam ab30871 IgG Rabbit

Syntenin-1 Santa Cruz sc-515538 IgG2a Mouse

CD63 Santa Cruz sc-5275 IgG1 Mouse

CD81 Santa Cruz sc-166029 IgG2b Mouse

CD9 Santa Cruz sc-13118 IgG1 Mouse

b-actin Santa Cruz sc-47778 IgG1 Mouse

Histone H3 Abcam ab1791 IgG Rabbit

Immunofluorescent staining

Target Company Catalog number Isotype Host species

Ly6G Biolegend 127602 IgG2a, j Rat

CD68 Abcam ab125212 IgG Rabbit
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2% uranyl acetate, and visualized on a JEOL 1200EX

TEM as previously described [66].

Nanoparticle tracking analysis

Extracellular vesicles from 1 9 106 hMSCs were harvested

as previously described, and then diluted in 100 µL of PBS.

The size and concentration of the EVs were then deter-

mined using NTA (NanoSight LM10 System; Malvern

Instruments, Westborough, MA, USA) as described previ-

ously [66,67].

Western blotting of EVs

Extracellular vesicles from shSCR and shSDC2 hMSCs

were lysed in 19 RIPA buffer (Cell Signaling, Danvers,

MA, USA) and 19 mini protease inhibitor cocktail (cOm-

pleteTM). After adding Laemmli’s SDS Sample Buffer (69;

Boston BioProducts, Ashland, MA, USA), the lysed EVs

were boiled at 100 °C for 5 min, and then, equal protein

concentration was electrophoresed on 4–20% Mini Protein

TGX Gels (Bio-Rad Laboratories, Hercules, CA, USA).

Antibodies for blotting (SDC2, ALIX, Tsg101, syntenin-1,

Histone H3, CD63, CD81, CD9, and b-actin) are detailed

in Table 1. Protein expression was assessed using IMAGEJ

software.

Isolation of murine macrophages and neutrophils

Mice were given an intraperitoneal injection of Bio-Gel

P100 polyacrylamide beads (2% solution; Bio-Rad Labo-

ratories) [17]. For harvesting neutrophils, after 16–17 h,

the mice were anesthetized and 10 mL of sterile PBS was

used to lavage the peritoneal cavity, and cells were

washed and filtered through a 40-µm nylon mesh.

Macrophages were harvested 5 days after injection of the

Bio-Gel P100 polyacrylamide beads in a similar manner

[18].

Macrophage polarization assay

Murine macrophages were seeded at 2 9 106 cells/60-mm

dish in Roswell Park Memorial Institute (RPMI) 1640

medium with 10% FBS, and after 2 h, the attached cells

were M0 macrophages. Interferon (IFN)-c 10 ng�mL�1 and

E. coli LPS 10 ng�mL�1 were added to each dish to induce

M1 macrophage polarization. CM or EV equivalents from

5 9 105 hMSCs, PBS, or recombinant human syndecan-2

(R&D System, Minneapolis, MN, USA—500 ng�mL�1

[24]) were added to each dish. The cells were cultured for

48 h, and RNA was then extracted from the macrophages,

and the expression of arginase-1 and nitric oxide synthase

(NOS)2 was assessed by qRT-PCR. The primers used for

mouse arginase-1 were forward 50-ATGGAAGAGACCT

TCAGCTAC-30 and reverse 50-GCTGTCTTCCCAAGA

GTTGGG-30. The primers used for mouse NOS2 were for-

ward 50-GCCACCAACAATGGCAACA-30 and reverse 50-
CGTACCGGATGAGCTGTGAATT-30.

Efferocytosis assay in vitro

Murine macrophages were harvested as described [18] and

seeded at 2 9 106 cells per 60-mm dish for 2 h. The med-

ium and unattached cells were removed, and CM or EVs

from 5 9 105 hMSC equivalents were added to the macro-

phages for another 2 h. Finally, 4 9 106 apoptotic neu-

trophils (induced by overnight culture) were added to each

dish, incubated for 1 h, and then harvested for flow cytom-

etry. F4/80 and Ly6G antibodies were used to label macro-

phages and neutrophils as described [18].

ELISA for human resolvin D1 and lipoxin A4

shSCR and shSDC2 hMSCs were plated on a 24-well dish

(50 000 cells per well). The cells were placed in Hanks’

Balanced Salt Solution supplemented with 0.1% FBS, plus

substrate docosahexaenoic acid (DHA, 10 µM) or arachi-

donic acid (AA, 10 µM). After 24 h, human resolvin D1

and lipoxin A4 were assessed by ELISA kits from Cayman

Chemicals (Ann Arbor, MI, USA) as suggested by the

manufacturer.

Animals

Studies using mice were carried out in accordance with the

Public Health Service Policy on the Humane Care and Use

of Laboratory Animals, and approved by the Institutional

Animal Care and Use Committee (IACUC) of Brigham

and Women’s Hospital.

Statistical analysis

For comparisons between two groups, we used Student’s

unpaired t-test. For EV particles per mL, the area under

the curve was assessed by Student’s unpaired t-test. For

analysis of more than two groups, one-way or two-way

analysis of variance was performed. When data were not

normally distributed, nonparametric analyses were per-

formed using the Kruskal–Wallis test. Comparisons of

mortality were made by analyzing the Kaplan–Meier sur-

vival curves, and then, log-rank test was used to assess for

differences in survival. Statistical significance was accepted

at P < 0.05.
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