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Crowdsourced MRI quality metrics 
and expert quality annotations for 
training of humans and machines
Oscar Esteban   1, Ross W. Blair1, Dylan M. Nielson2, Jan C. Varada3, Sean Marrett3, 
Adam G. Thomas   2, Russell A. Poldrack   1 & Krzysztof J. Gorgolewski   1

The neuroimaging community is steering towards increasingly large sample sizes, which are highly 
heterogeneous because they can only be acquired by multi-site consortia. The visual assessment of 
every imaging scan is a necessary quality control step, yet arduous and time-consuming. A sizeable 
body of evidence shows that images of low quality are a source of variability that may be comparable 
to the effect size under study. We present the MRIQC Web-API, an open crowdsourced database that 
collects image quality metrics extracted from MR images and corresponding manual assessments 
by experts. The database is rapidly growing, and currently contains over 100,000 records of image 
quality metrics of functional and anatomical MRIs of the human brain, and over 200 expert ratings. The 
resource is designed for researchers to share image quality metrics and annotations that can readily be 
reused in training human experts and machine learning algorithms. The ultimate goal of the database 
is to allow the development of fully automated quality control tools that outperform expert ratings in 
identifying subpar images.

Background & Summary
Ensuring the quality of neuroimaging data is a crucial initial step for any image analysis workflow because 
low-quality images may obscure the effects of scientific interest1–4. Most approaches use manual quality con-
trol (QC), which entails screening every single image of a dataset individually. However, manual QC suffers 
from at least two problems: unreliability and time-consuming nature for large datasets. Unreliability creates great 
difficulty in defining objective exclusion criteria in studies and stems from intrinsically large intra-rater and 
inter-rater variabilities5. Intra-rater variability derives from aspects such as training, subjectivity, varying anno-
tation settings and protocols, fatigue or bookkeeping errors. The difficulty in calibrating between experts lies 
at the heart of inter-rater variability. In addition to the need for objective exclusion criteria, the current neu-
roimaging data deluge makes the manual QC of every magnetic resonance imaging (MRI) scan impractical. 
For these reasons, there has been great interest in automated QC5–8, which is progressively gaining attention9–16 
with the convergence of machine learning solutions. Early approaches5–8 to objectively estimate image quality 
have employed “image quality metrics” (IQMs) that quantify variably interpretable aspects of image quality8–13 
(e.g., summary statistics of image intensities, signal-to-noise ratio, coefficient of joint variation, Euler angle, etc.). 
The approach has been shown sufficiently reliable in single-site samples8,11–13, but it does not generalize well to 
new images acquired at sites unseen by the decision algorithm9. Decision algorithms do not generalize to new 
datasets because the large between-site variability as compared to the within-site variability of features poses 
a challenging harmonization problem17,18, similar to “batch-effects” in genomic analyses19. Additional pitfalls 
limiting fully automated QC of MRI relate to the small size of databases that include quality annotations, and the 
unreliability of such annotations (or “labels noise”). As described previously, rating the quality of every image in 
large databases is an arduous, unreliable, and costly task. The convergence of limited size of samples annotated for 
quality and the labels noise preclude the definition of normative, standard values for the IQMs that work well for 
any dataset, and also, the generalization of machine learning solutions. Keshavan et al.15 have recently proposed 
a creative solution to the problem of visually assessing large datasets. They were able to annotate over 80,000 
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bidimensional slices extracted from 722 brain 3D images using BraindR, a smartphone application for crowd-
sourcing. They also proposed a novel approach to the QC problem by training a convolutional neural network on 
BraindR ratings, with excellent results (area under the curve, 0.99). Their QC tool performed as well as MRIQC9 
(which uses IQMs and a random forests classifier to decide which images should be excluded) on their single-site 
dataset. By collecting several ratings per screened entity, they were able to effectively minimize the labels noise 
problem with the averaging of expert ratings. As limitations to their work, we would count the use of 2D images 
for annotation and the use of a single-site database. In sum, automating QC requires large datasets collected 
across sites, and rated by many individuals in order to ensure generalizability.

Therefore, the MRIQC Web-API (web-application program interface) provides a unique platform to address 
the issues raised above. The database collects two types of records: i) IQMs alongside corresponding metadata 
extracted by MRIQC (or any other compatible client) from T1w (T1-weighted), T2w (T2-weighted) and BOLD 
(blood-oxygen-level-dependent) MRI images; and ii) manual quality ratings from users of the MRIQC software. 
It is important to note that the original image data are not transferred to the MRIQC Web-API.

Within fourteen months we have collected over 50,000 and 60,000 records of anatomical and functional 
IQMs, respectively (Fig. 1). These IQMs are extracted and automatically submitted (unless the user opts out) 
with MRIQC (Fig. 2). Second, we leverage the efficiency of MRIQC’s reports in assessing individual 3D images 
with a simple interface that allows experts to submit their ratings with a few clicks (Fig. 3). This assessment 
protocol avoids clerical errors from the operator, as ratings are automatically handled and registered. In other 
words, MRIQC users are building a very large database with minimal effort every day. As only the IQMs and 
manual ratings are crowdsourced (i.e. images are not shared), data collection is not limited to public datasets 
only. Nonetheless, unique image checksums are stored in order to identify matching images. Therefore, such 
checksums allow users to find public images that IQMs and/or ratings derive from. The presented resource is 
envisioned to train automatic QC tools and to develop human expert training programs.

Methods
Here we describe an open database that collects both IQM vectors extracted from functional and anatomical 
MRI scans, along with quality assessments done by experts based on visual inspection of images. Although it was 
envisioned as a lightweight web-service tailored to MRIQC, the database is able to receive new records from any 
other software, provided they are able to correctly query the API (application programming interface).

Data generation and collection workflow.  The overall framework involves the following workflow 
(summarized in Fig. 2):

	 1.	 Execution of MRIQC and submission of IQMs: T1w, T2w, and BOLD images are processed with MRI-
QC, which computes a number of IQMs (described in section Technical Validation). The IQMs and 
corresponding metadata are formatted in JavaScript Object Notation (JSON), and MRIQC automatically 
submits them to a representational state transfer (REST) or RESTful endpoint of the Web-API. Users can 
opt-out if they do not wish to share their IQMs.

	 2.	 JSON records are received by the endpoint, validated, and stored in the database. Each record includes the 
vector of IQMs, a unique checksum calculated on the original image, and additional anonymized metadata 
and provenance.

	 3.	 Visualization of the individual reports: MRIQC generates dynamic HTML (hypertext markup language) 
reports that speed up the visual assessment of each image of the dataset. Since its version 0.12.2, MRI-
QC includes a widget (see Fig. 2) that allows the researcher to assign a quality rating to the image being 
screened.

Fig. 1  A rapidly growing MRI quality control knowledge base. The database has accumulated over 50,000 
records of IQMs generated for T1-weighted (T1w) images and 60,000 records for BOLD images. Records 
presented are unique, i.e. after exclusion of duplicated images.
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	 4.	 Crowdsourcing expert quality ratings: the RESTful endpoint receives the quality ratings, which are linked 
to the original image via their unique identifier.

	 5.	 Retrieving records: the database can be queried for records with any HTTP (HyperText Transfer Protocol) 
client or via the web using our interface: https://mriqc.nimh.nih.gov/. Additionally, a snapshot of the data-
base at the time of writing has been deposited to FigShare20.

Data Records
A full data snapshot of the database at the time of submission is available at FigShare20. Alternatively, data are 
accessible via DataLad21 with the dataset https://github.com/oesteban/mriqc-webapi-snapshot. Table 1 describes 
the structure of the dataset being released.

To obtain the latest updated records, the database can be programmatically queried online to get all the cur-
rently stored records through its RESTful API.

MRIQC reports, generated for all T1w images found in OpenfMRI are available for expert training at https://
mriqc.s3.amazonaws.com/index.html#openfmri/.

Technical Validation
MRIQC extends the list of IQMs from the quality assessment protocol10 (QAP), which was constructed from 
a careful review of the MRI and medical imaging literature. The technical validity of measurements stored to 
the database is demonstrated by our previous work9 on the MRIQC client tool and its documentation website: 
https://mriqc.readthedocs.io/en/latest/measures.html. Definitions for the anatomical IQMs are given in Table 2, 
and for functional IQMs in Table 3. Finally, the structure of data records containing the manual QC feedback is 
summarized in Table 4.

Limitations.  The main limitation of the database resides in that a substantial fraction of the records (e.g., 
around 50% for the BOLD IQMs) miss important information about imaging parameters. The original cause 
is that such information was not encoded with the input dataset being fed into MRIQC. However, as BIDS is 
permeating the current neuroimaging workflow we can expect BIDS datasets to become more complete, thereby 
allowing MRIQC to submit such valuable information to the Web API. Moreover, the gradual adoption of better 
DICOM-to-BIDS conversion tools such as HeuDiConv22, which automatically encodes all relevant fields in the 
BIDS structure, will surely help minimize this issue.

During the peer-review process of this manuscript, one reviewer identified a potential problem casting float 
numbers into integers on the content of the “bids_MagneticFieldStrength” field of all records. The bug was con-
firmed and consequently fixed on the MRIQC Web-API, and all records available on the database snapshot 
deposited at FigShare have been amended. When retrieving records directly from the Web-API, beware that those 
with creation date prior to Jan 16, 2019, require a revision of the tainted field. Similarly, the reviewer identified 
some 1,600 records with an echo-time (TE) value 30.0 with a repetition time (TR) of 2.0, which indicates that TE 
was misspecified in milliseconds (BIDS mandates seconds). Problematic data points can be (and are) present in 
the data, and there is likely no setup that could fully rule out the inclusion of misidentified results, although the 
automation in conversion above mentioned will surely minimize this problem.

User runs MRIQC

IQMs + anonymized
metadata

GET
Queries

Ratings

POST JSON
to

endpoint

MRIQC Web API
Server

Fig. 2  Experimental workflow to generate the database. A dataset is processed with MRIQC. Processing 
finishes with a POST request to the MRIQC Web API endpoint with a payload containing the image quality 
metrics (IQMs) and some anonymized metadata (e.g. imaging parameters, the unique identifier for the image 
data, etc.) in JSON format. Once stored, the endpoint can be queried to fetch the crowdsourced IQMs. Finally, a 
widget (Fig. 3) allows the user to annotate existing records in the MRIQC Web API.
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Usage Notes
Primarily, the database was envisioned to address three use-cases:

	 1.	 Sampling the distribution of IQMs and imaging parameters across datasets (including both publicly availa-
ble and private), and across scanning sites.

	 2.	 Ease the image QC process, crowdsourcing its outcomes.
	 3.	 Training machines and humans.

These potential usages are revised with finer detail in the following. Note this resource is focused on quality 
control (QC), rather than quality assessment (QA). While QC focuses on flagging images that may endanger 
downstream analysis for their bad quality (i.e., identifying outliers), QA identifies issues that degrade all image’s 
quality (i.e., improving the overall quality of images after a problem spotted in the scanning device or acquisition 
protocol -via QC of actual images- is fixed).

Collecting IQMs and imaging parameters.  Based on this information, researchers can explore ques-
tions such as the relationship of particular imaging parameters (e.g. MR scan vendor, or more interestingly, the 
multi-band acceleration factor of newest functional MRI sequences) with respect to the signal-to-noise ratio 
or the power of N/2 aliasing ghosts. Jupyter notebooks demonstrating examples of this use-case are available at 
https://www.kaggle.com/chrisfilo/mriqc/kernels.

Filename Size Description

bold.csv 71 MB IQMs and metadata of BOLD images (unique records)

bold_curated.csv 162 MB Same as bold.csv, after curation and checksum matching

T1w.csv 79 MB IQMs and metadata of T1w images (unique records)

T1w_curated.csv 110 MB Same as T1w.csv, after curation and checksum matching

T2w.csv 1.1 MB IQMs and metadata of T2w images (unique records)

T2w_curated.csv 1.7 MB Same as T2w.csv, after curation and checksum matching

rating.csv 131 kB Manually assigned quality annotations

Table 1.  List of data tables retrieved from MRIQC-WebAPI. The following datasets are available at FigShare20. 
The < name > _curated.csv file versions correspond to the original tables after matching checksums to images 
in publicly available databases (and further curation as shown in https://www.kaggle.com/chrisfilo/mriqc-data-
cleaning).

Fig. 3  MRIQC visual reports and feedback tool. The visual reports generated with MRIQC include the 
“Rate Image” widget. After screening of the particular dataset, the expert can assign one quality level (among 
“exclude”, “poor”, “acceptable”, and “excellent”) and also select from a list of MR artifacts typically found in MRI 
datasets. When the annotation is finished, the user can download the ratings to their local hard disk and submit 
them to the Web API.
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Crowdsourcing an optimized assessment process.  To our knowledge, the community lacks a large 
database of multi-site MRI annotated for quality that permits the application of machine learning techniques to 
automate QC. As Keshavan et al. have demonstrated, minimizing the time cost and fatigue load along with the 
elimination of bookkeeping tasks in the quality assessment of individual MR scans enables collection and anno-
tation of massive datasets. The graphical user interface for this use-case is presented in Fig. 2.

IQMs based on noise measurements

CJV
The coefficient of joint variation of GM and WM was proposed as an objective function by Ganzetti et al.23 for the 
optimization of INU correction algorithms. Higher values are related to the presence of heavy head motion and large INU 
artifacts.

CNR The contrast-to-noise ratio24 is an extension of the SNR calculation to evaluate how separated the tissue distributions of GM 
and WM are. Higher values indicate better quality.

SNR
MRIQC includes the signal-to-noise ratio calculation proposed by Dietrich et al.25, using the air background as noise 
reference. Additionally, for images that have undergone some noise reduction processing, or the more complex noise 
realizations of current parallel acquisitions, a simplified calculation using the within tissue variance is also provided.

QI2
The second quality index of Mortamet et al.8 is a calculation of the goodness-of-fit of a χ2 distribution on the air mask, once 
the artifactual intensities detected for computing the QI1 index have been removed. The description of the QI1 is found below.

IQMs based on information theory

EFC The entropy-focus criterion26 uses the Shannon entropy of voxel intensities as an indication of ghosting and blurring induced 
by head motion. Lower values are better.

FBER The foreground-background energy ratio10 is calculated as the mean energy of image values within the head relative to the 
mean energy of image values in the air mask. Consequently, higher values are better.

IQMs targeting specific artifacts

INU MRIQC measures the location and spread of the bias field extracted estimated by the intensity non-uniformity (INU) 
correction. The smaller spreads located around 1.0 are better.

QI1
Mortamet’s first quality index8 measures the number of artifactual intensities in the air surrounding the head above the nasio-
cerebellar axis. The smaller QI1, the better.

WM2MAX
The white-matter to maximum intensity ratio is the median intensity within the WM mask over the 95% percentile of the 
full intensity distribution, that captures the existence of long tails due to hyper-intensity of the carotid vessels and fat. Values 
should be around the interval [0.6, 0.8]

Other IQMs

FWHM The full-width half-maximum27 is an estimation of the blurriness of the image calculated with AFNI’s 3dFWHMx. Smaller is 
better.

ICVs Estimation of the intracranial volume (ICV) of each tissue calculated on the FSL fast’s segmentation. Normative values fall 
around 20%, 45% and 35% for cerebrospinal fluid (CSF), WM and GM, respectively.

rPVE
The residual partial volume effect feature is a tissue-wise sum of partial volumes that fall in the range [5–95%] of the total 
volume of a pixel, computed on the partial volume maps generated by FSL fast. Smaller residual partial volume effects (rPVEs) 
are better.

SSTATs Several summary statistics (mean, standard deviation, percentiles 5% and 95%, and kurtosis) are computed within the 
following regions of interest: background, CSF, WM, and GM.

TPMs Overlap of tissue probability maps estimated from the image and the corresponding maps from the ICBM nonlinear-
asymmetric 2009c template28.

Table 2.  Summary table of image quality metrics for anatomical (T1w, T2w) MRI. MRIQC produces a vector of 
64 image quality metrics (IQMs) per input T1w or T2w scan. (Reproduced from our previous work9).

Spatial IQMs

EFC, FBER, FWHM, SNR, SSTATs (see Table 2)

IQMs measuring temporal variations

tSNR A simplified interpretation of the original temporal SNR definition by Krüger et al.29. We report the median value of the tSNR 
map calculated as the average BOLD signal across time over the corresponding temporal s.d. map.

GCOR Summary of time-series correlation as in30 using AFNI’s @compute_gcor

DVARS The spatial standard deviation of the data after temporal differencing. Indexes the rate of change of BOLD signal across the 
entire brain at each frame of data. DVARS is calculated using Nipype, after head-motion correction

IQMs targeting specific artifacts

FD Framewise Displacement - Proposed by Power et al.1 to regress out instantaneous head-motion in fMRI studies. MRIQC 
reports the average FD.

GSR The Ghost to Signal Ratio31 estimates the mean signal in the areas of the image that are prone to N/2 ghosts on the phase 
encoding direction with respect to the mean signal within the brain mask10. Lower values are better.

DUMMY The number of dummy scans - A number of volumes at the beginning of the fMRI time-series identified as nonsteady states.

IQMs from AFNI

AOR AFNI’s outlier ratio - Mean fraction of outliers per fMRI volume as given by AFNI’s 3dToutcount

AQI AFNI’s quality index - Mean quality index as computed by AFNI’s 3dTqual

Table 3.  Summary table of image quality metrics for functional (BOLD) MRI. MRIQC produces a vector of 64 
image quality metrics (IQMs) per input BOLD scan.
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A database to train machines and humans.  Training machines.  As introduced before, the major bot-
tleneck in training models that can predict a quality score for an image or identify specific artifacts, without 
problems to generalize across MR scanners and sites, is the small size of existing datasets with corresponding 
quality annotations. Additionally, these annotations, if they exist, are done with extremely varying protocols. 
Thus, the ability of the presented database to crowdsource quality ratings assigned by humans after visual inspec-
tion addresses both problems. The availability of multi-site, large samples with crowdsourced quality annotations 
that followed a homogeneous protocol (the MRIQC reports) will allow building models that overperform the 
random forests classifier of MRIQC9, in the task of predicting the quality rating a human would have assigned 
to an image, given a vector of IQMs (i.e., from IQMs to quality labels). Matching public image checksums, this 
resource will also enable to train end-to-end (from images to quality labels) deep-learning solutions.

Training humans.  Institutions can use the resource to train their experts and compare their assessments across 
themselves and against the existing quality annotations corresponding to publicly available datasets. Programs 
for training experts on quality assessment can be designed to leverage the knowledge shared via the proposed 
database.

Code Availability
The MRIQC Web API is available under the Apache-2.0 license. The source code is accessible through GitHub 
(https://github.com/poldracklab/mriqcwebapi).

MRIQC is one possible client to generate IQMs and submit rating feedback. It is available under the BSD 
3-clause license. The source code is publicly accessible through GitHub (https://github.com/poldracklab/mriqc).
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