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Abstract: Cytomegalovirus (CMV) causes significant morbidity and mortality in recipients of al-
logeneic hematopoietic cell transplantation (HCT). Whereas insights gained from mathematical
modeling of other chronic viral infections such as HIV, hepatitis C, and herpes simplex virus-2 have
aided in optimizing therapy, previous CMV modeling has been hindered by a lack of comprehensive
quantitative PCR viral load data from untreated episodes of viremia in HCT recipients. We performed
quantitative CMV DNA PCR on stored, frozen serum samples from the placebo group of participants
in a historic randomized controlled trial of ganciclovir for the early treatment of CMV infection in
bone marrow transplant recipients. We developed four main ordinary differential Equation mathe-
matical models and used model selection theory to choose between 38 competing versions of these
models. Models were fit using a population, nonlinear, mixed-effects approach. We found that
CMV kinetics from untreated HCT recipients are highly variable. The models that recapitulated the
observed patterns most parsimoniously included explicit, dynamic immune cell compartments and
did not include dynamic target cell compartments, consistent with the large number of tissue and
cell types that CMV infects. In addition, in our best-fitting models, viral clearance was extremely
slow, suggesting severe impairment of the immune response after HCT. Parameters from our best
model correlated well with participants’ clinical risk factors and outcomes from the trial, further
validating our model. Our models suggest that CMV dynamics in HCT recipients are determined by
host immune response rather than target cell limitation in the absence of antiviral treatment.

Keywords: CMV kinetics; virus dynamics model; allogeneic transplantation

1. Introduction

Cytomegalovirus (CMV) is a human herpes virus, HHV-5, that is transmitted through
saliva or breast milk, trans-placentally, and during organ or hematopoietic cell transplan-
tation. CMV infects more than 50% of the world’s population, and as with other herpes
viruses, CMV infects its host for life in a latent form [1]. While largely asymptomatic in the
general population, CMV causes serious disease in neonates and immunocompromised
hosts, including recipients of allogeneic hematopoietic cell transplants (HCT) in whom
CMV causes pneumonia, gastroenteritis, and retinitis [1,2].

Intra-host mathematical modeling of CMV and other viral infections has proven criti-
cal to understanding the dynamics of virus-host interactions and allows for the simulation
of clinical trials to improve the development of antiviral therapies and vaccines [3–5].
However, prior mathematical modeling of CMV has been limited by a lack of availability
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of untreated viral load data. Ganciclovir was approved for the treatment of AIDS retinitis
in 1989 before the widespread adoption of quantitative polymerase chain reaction (PCR)
for measurement of CMV viral load [6–8]. Thus, serious CMV infections are generally
treated with antivirals, precluding studies of untreated natural infection with quantitative
PCR. Previous studies analyzing CMV kinetics calculated viral doubling-times and decay
half-lives and associated high CMV viral load, viral load slope, and CMV doubling-times
with poor outcomes [9–11]. Kepler et al. developed a theoretical model from in vitro and
literature values for CMV parameters [12]; Rose and colleagues modeled varying viral
load responses to ganciclovir [13]; Mayer and colleagues developed deterministic and
stochastic models of infant infection fit to viral load data from frequent sampling of the
oral mucosa [14,15].

A mathematical model of CMV viral loads measured in blood from untreated patients
is needed to characterize the natural history of CMV accurately. Such a model would
quantify the main mechanisms driving the dynamics of CMV in the HCT population
after transplant. A data-validated model may allow us to understand how antiviral
treatments reduce viral replication in this setting and then further simulate treatment and
dosing scenarios to optimize viral suppression and to lower risk of disease after HCT.
Here, we present a mathematical model fit to viral load data obtained from frozen serum
samples from the placebo group from the only randomized controlled trial of ganciclovir
for the early treatment of CMV in bone marrow transplant recipients [16]. Because these
participants were not treated with ganciclovir until they reached the study endpoint of
tissue-invasive CMV disease or death, we were able to capture the full dynamic range
of CMV viral loads in our model. Following HCT, viral load trajectories and responses
to antiviral treatments varied widely among transplant recipients likely due to great
variability in immune parameters. Modeling infection in the absence of treatment allowed
us to capture the natural variability in these immune parameters and associate their values
with clinical outcomes from the trial.

2. Materials and Methods
2.1. Study Approach

We analyzed CMV viral loads from viral episodes that occurred in HCT recipients
after transplant to characterize the natural history of CMV in untreated individuals. We
developed four mechanistic ordinary differential Equation (ODE) mathematical models
of within-host CMV infection each with specific underlying mechanistic assumptions
regarding the dynamics of CMV-susceptible cells and CMV-specific immune responses
during infection. We used model selection theory to compare multiple instances of these
models. Specifically, in the model selection process, within each main model, we chose
which parameters could plausibly be zero in a biological setting and set those to zero
individually and in combination such that we fit every combination of biologically feasible
parameters to determine what version of the model the data supported most strongly.
We obtained two parsimonious models with identifiable parameters from the competing
list to describe the data. We then used the model with the most biological plausibility to
validate the model parameters by assessing their associations with risk factors for CMV
infection and disease and the primary endpoint of the clinical trial—the development of
CMV disease by 100 days after HCT.

2.2. Clinical Data

Frozen serum samples were saved from participants in the placebo-controlled random-
ized controlled trial of ganciclovir for early treatment of CMV after HCT [16,17]. In this trial,
viral cultures were used to screen for CMV in allogeneic HCT recipients who were either
CMV seropositive or who had received marrow from CMV seropositive donors. If viral
cultures were positive prior to day 80 after transplant and tissue-invasive CMV disease
had not already by diagnosed, HCT recipients were randomized to receive ganciclovir
or placebo through day 100 post-transplantation. Participants were followed for primary
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and secondary outcomes of tissue-invasive CMV disease or death, respectively [16]. In
a recent follow-up study to this historic trial, Duke and colleagues obtained these frozen
samples from the Fred Hutch Infectious Disease Sciences Biospecimen Repository and
selected samples for testing at approximately weekly intervals from day 0 to 100 after
transplantation. The University of Washington Molecular Virology Laboratory performed
quantitative CMV DNA PCR testing using a laboratory-developed assay with limit of
quantification of 71.4 IU/mL and limit of detection of 35.7 IU/mL [17].

Here, we analyzed viral loads obtained from participants in the placebo group prior to
diagnosis of CMV disease (at which point participants received treatment with open-label
ganciclovir). For each individual, we did not include undetectable viral loads measured
before the first positive aside from the last negative observation. If there was more than
one viral episode in an individual with negative samples between episodes, we analyzed
only the episode with the larger amount of data points. We did not model viral load data
from participants who had only undetectable viral loads (n = 2).

2.3. Calculation of Viral Load Kinetics

Peak viral load was considered to be the maximum log-10 converted viral load mea-
sured during the viral episode. For those participants who had undetectable CMV viral
loads after HCT, we included only the last undetectable observation prior to the first posi-
tive viral load measured. Because the time when the CMV virus first became detectable
between these measurements is unknown, we considered the start of the viral episode to
be the midpoint between the last undetectable and first positive viral load. For participants
who cleared the virus (i.e., viral load returned to undetectable), we considered the end of
the episode to be the midpoint between the last positive and subsequent undetectable viral
load. The expansion slope to the first positive was calculated as the difference in log-10
converted viral loads (i.e., viral load value at first positive minus the limit of detection)
divided by the difference in times when the first positive viral load was measured and
the start of the episode. Likewise, the expansion slope to the peak was calculated as the
difference in the peak and the limit of detection divided by the difference in times between
when the peak viral load was measured and the start of the episode. The clearance slope
was the difference in the limit of detection and the peak viral load divided by the difference
in times between when the episode ended and when the peak viral load was measured.

2.4. Model with Target Cell Limitation and Implicit, Static Immune Control (TC, No EIS)

The first of four main ODE models we used to understand the natural history of
untreated CMV during HCT was the standard within-host model of virus dynamics
(Figure 1a) [3]. This model includes three main compartments: Cells susceptible to CMV
(S), CMV-infected cells (I), and CMV virions (V). Susceptible cells (S) expand with constant
rate λ, die at rate δS, and are infected by CMV with rate β. CMV-infected cells (I) die
at rate δI , assumed implicitly to include a static immune response against CMV. Finally,
CMV-infected cells (I) produce at rate π virions (V) that are cleared at rate γ. Under these
assumptions, the model has the form

dS
dt = λ− δSS− βVS

dI
dt = βVS− δI I
dV
dt = π I − γV

(1)
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Figure 1. Model schematics for the main, competing structural mathematical models. (a) Model
with target cell limitation and implicit, static immune control (TC, no EIS). (b) Model with target cell
limitation and an explicit, dynamic immune system (TC, EIS) (c) Explicit, dynamic immune control
model without target cell limitation (EIS, no TC). (d) Semi-mechanistic, explicit immune control
model (VE).

2.5. Model with Target Cell Limitation and an Explicit, Dynamic Immune System (TC, EIS)

The second main model (TC, EIS) adds an explicit immune response that changes over
time (explicit immune system = EIS) to the target cell-limited model in Equation (1). The
model schematic is shown in Figure 1b. We assumed there is a CMV-specific effector cell
compartment (E) that expands in the presence of CMV virions (V) at rate ω and decays with
rate δE [18–22]. Effector cells (E) kill CMV-infected cells (I) at rate κ. Because this model
includes an explicit, cytotoxic immune response against CMV, the parameter δI in this model
may represent an innate response to infection or an intrinsic death rate of the infected cells (I)
due to viral infection or both. With these assumptions, the TC, EIS model is:

dS
dt = λ− δSS− βVS

dI
dt = βVS− δI I − κ IE

dV
dt = π I − γV

dE
dt = ωV − δEE

(2)

2.6. Explicit, Dynamic Immune Control Model without Target Cell Limitation (EIS, No TC)

The third main model (EIS, no TC) differs from the second in that we assume the
susceptible cell pool (S) is so large that it is not changed significantly during CMV infection.
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This notion is plausible biologically given the large number of cell types that CMV infects
and the high prevalence of those cell types in the human body [1]. Thus, we assumed
in this model that the size of the susceptible cell compartment remains constant with
concentration S0, allowing us to remove the S Equation entirely. We simplify further by
defining the composite parameter β∗ = βS0. Based on this assumption, the EIS, no TC
model has the form:

dI
dt = β∗V − δI I − κ IE

dV
dt = π I − γV

dE
dt = ωV − δEE

(3)

The model schematic is shown in Figure 1c. For parameter identifiability purposes, we
rescaled variables and parameters to consider three more related models. First, we rescaled
the variable Î = π I and introduced the composite parameter β̂ = πβ∗ into Equation (3) so
that the model takes the form:

dÎ
dt = β̂V − δI Î − κ ÎE

dV
dt = Î − γV

dE
dt = ωV − δEE

(4)

Next, for further simplification, we considered the additional scaling Ê = κE and intro-
duced the composite parameter ω̂ = κω. Incorporating these definitions into Equation (4),
the model becomes:

dÎ
dt = β̂V − δI Î − Î Ê

dV
dt = Î − γV

dÊ
dt = ω̂V − δEÊ

(5)

Alternatively, we considered the scaling Ê = E
ω and κ̂ = κω in Equation (4), which

results in the following model:

dÎ
dt = β̂V − δI Î − κ̂ Î Ê

dV
dt = Î − γV

dÊ
dt = V − δEÊ

(6)

2.7. Semi-Mechanistic, Explicit Immune Control Model (VE)

Finally, because of the possibility of overfitting the above models due to the large
number of parameters, we constructed a fourth main model, a semi-mechanistic model for
CMV viral and immune dynamics, by assuming that during CMV infection, viral dynamics
are in quasi-stationary state with respect to the infected cell compartment (Figure 1d).
Under this assumption, π I ≈ γV. We simplified the model in Equation (3) by combining
the remaining viral and infected cell terms into one parameter: rv = β∗π

γ − δI . We called rv
the CMV turnover rate. Under these assumptions, the model is:

dV
dt = rvV − κEV
dE
dt = ωV − δEE

(7)

To find an identifiable model that fit the data well, we further considered the rescaling
Ê = E

ω and the composite parameter κ̂ = κω, resulting in the model:

dV
dt = rvV − κ̂ÊV

dÊ
dt = V − δEÊ

(8)



Viruses 2021, 13, 2292 6 of 30

Alternatively, with the same goal of identifiability, we introduced the rescaling Ê = κE
and the composite parameter ω̂ = κω. Incorporating these assumptions into Equation (7)
resulted in the model:

dV
dt = rvV − ÊV
dÊ
dt = ω̂V − δEÊ

(9)

2.8. Population, Nonlinear, Mixed-Effects Approach

To fit the models to the CMV viral load observations, we used a nonlinear, mixed-
effects framework. Under this framework, a viral load observation for individual i at time k
is modeled as log10 yik = fV(tik, θi)+ εV . Here, fV represents the solution of the mechanistic
model for the variable describing the virus (V) where θi is the parameter vector for individ-
ual i and εV ∼ N

(
0, σ2

v
)

is the measurement error for the log10-transformed viral load. We
assumed that θi is drawn from a probability distribution with median or fixed effects θpop

and random effects ηi ∼ N (0, σθ). Unless otherwise specified, we modeled parameters as
θi = θpopeni . In other words, the modeled parameters are log-normally distributed among
the population with variability denoted by ηi such that ln(θi) = ln(θpop) + ηi.

We modeled the initial value for the variable V as Vi,0 = Vpop
0 eηi+χviremic for participants

who were viremic (i.e., CMV viral loads were detectable) at the start of the modeling
interval, which in this data set meant that they were viremic on first measurement after
transplant. We estimated χviremic as a covariate of V0, meaning that χviremic = 0 for the
group of participants who were not viremic at the time of transplant (and thus at the time
of the start of the modeled viremic episode), but that χviremic could be estimated as greater
than zero for the group of participants who were viremic at the time of transplant (and at
the start of the modeled viremic episode). Including χviremic as a covariate of V0 allowed
the population distribution for V0 to be bimodal.

For viral load observations below the limit of detection we used the probabilistic
model that Monolix software (www.lixoft.com accessed on 27 October 2021) provides for
left-censored data [23].

2.9. Model Fitting

We explored the ODE models as described above by fitting versions of each model
assuming some parameters were equal to zero and estimating the remaining ones, including
initial conditions of state variables, as shown in Tables A1, A2, A5 and A7. Certain
parameters were estimated for each model and were never fixed at a value of zero because
their values must be non-zero in order to sustain infection (β, π) or an immune response
to infection (ω, κ). However, in the time frame modeled, susceptible cells may or may not
proliferate (λ) or die (δS), and infected cells (δI) or effector immune cells (δE) may or may
not die at significant rates. Thus, we assign these parameters values of zero individually
and in combination such that we fit all combinations of these parameters for each of
the four main models that include these parameters. Thus, we explored a total of 38
individual models. For each model, we obtained the Maximum Likelihood Estimation
(MLE) of the measurement error standard deviation σv, the MLE of the vector of fixed
effects θpop, and the MLE of the vector of standard deviations of the random effects σθ

for each parameter using the Stochastic Approximation of the Expectation Maximization
(SAEM) algorithm embedded in the Monolix software. We ran the SAEM algorithm five
times (i.e., assessments) for each model using randomly selected initial values for the
estimated parameters. For all model fits we assumed ti0 = 0 as the time of last negative
viral load after HCT or for those whose first viral load after transplant was positive, ti0 = 0
coincided with the first viral load measured.

2.10. Model Selection

To determine the most parsimonious model, we calculated the log-likelihood (logL)
for all five assessments for each of the 38 models. Then, we computed the Akaike Informa-
tion Criterion (AIC) for the assessment with the highest logL, where

www.lixoft.com


Viruses 2021, 13, 2292 7 of 30

AIC = −2max(logL) + 2m with m being the number of parameters estimated. Then,
we defined the delta score ∆AICj = AICj −min(AIC), where AICj is the particular AIC
for a model, and min(AIC) is the minimum AIC from all the models compared. We as-
sumed two models had similar support from the data if the delta scores comparing them
was less than two, i.e., ∆AIC < 2.

We analyzed the selection of our models further by assessing the relative standard
error of the parameters for practical identifiability. During the estimation process, if a
large change in a parameter causes no change in the likelihood, the data is not informing
the value of the parameter under that specific structural model. The relative standard
error (RSE) is a summary measure obtained during the parameter estimation process for
each parameter and is small if the data provides adequate information to estimate the
parameter. Specifically, Monolix calculates the Fisher Information Matrix (FIM) for each
set of estimated parameters. In this matrix, the contribution of each parameter to the
likelihood is indicated along the diagonal. The standard error (SE) vector is the square
root of the diagonal of the inverse of the FIM. In that sense, the smaller the SE for a
parameter, the more the data is informing that parameter. Finally, the RSE is the SE divided
by the estimated parameter value such that the RSE is the uncertainty in estimation of a
parameter normalized by its estimated value. When the SE of a parameter is greater than
its estimated value (RSE > 100%), that parameter is generally regarded not to be practically
identifiable [24]. To be stringent, for those models with parameters with RSE percentages
above 50%, we attempted to reduce the number of parameters while still maintaining some
biological plausibility to which we could map the parameter values. We chose final models
based on AIC, but also on identifiability and biological plausibility.

3. Results
3.1. CMV Viral Load Kinetics and Modeling Strategy

To characterize the natural history of CMV in untreated individuals we analyzed CMV
viral load observations from the stored serum of individuals in the placebo group of the
randomized controlled trial of ganciclovir described above. Viral loads from the 35 HCT
recipients in the placebo group are shown in Figure 2. For most participants, these viral loads
were measured in the absence of antiviral treatment. For those HCT recipients who reached the
primary clinical trial endpoint of tissue-invasive CMV disease in the first 100 days after HCT,
open-label ganciclovir was offered. On-treatment and post-treatment viral loads are shown
for those participants with dashed lines in Figure 2. In addition, two of the participants in the
placebo group had only undetectable viral loads. We did not include their viral load data for
modeling but modeled the viral load data of the remaining 33 HCT recipients. On average, 7.2
viral loads were measured during the modeling interval per HCT recipient (median 7), with
the number of measurements ranging from 3 to 14 per recipient.

In the original trial, fifteen participants in the placebo group developed CMV disease
by day 100 [16]. Two of these participants died so quickly of CMV disease that no additional
points were able to be measured prior to their deaths (IDs 11, 30). Two participants were
diagnosed with CMV disease just prior to day 100 (ID 56, 61), such that the full viral
episode was able to be included prior to the start of open-label ganciclovir for ID 61; ID
56 had multiple episodes of viremia, so the first episode was removed independent of
CMV disease. We did not model data after the start of open-label ganciclovir for eleven
participants. However, two of these died shortly after diagnosis such that few points were
omitted (ID 10: 2 points, ID 58: 3 points). For the nine participants who survived beyond
day 100 (IDs 1, 5, 9, 17, 26, 29, 38, 60, 62), between 2 and 5 points were removed for an
average of 3.7 points removed. For those participants with more than one viral episode
with negative samples between episodes (IDs 3, 56, 63), we analyzed only the episode with
the larger number of data points.
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Figure 2. CMV viral load data from HCT recipients following transplant. Viral loads measured when
no antiviral therapy was given are indicated by solid lines. Viral loads measured during or after
ganciclovir was given (because participants were diagnosed with CMV disease) are indicated by
dashed lines. Different shades of blue represent different participants in the trial.

CMV viral load kinetics were calculated during the first five weeks of study treatment
(ganciclovir or placebo), and their associations with CMV disease and death were examined
in detail in a prior publication [17]. The focus of the current manuscript is to develop a
within-host, mechanistic mathematical model of untreated CMV infection after HCT rather
than a kinetic analysis or an analysis of clinical outcomes. However, we have characterized
some basic kinetics of the modeled episodes to demonstrate the heterogeneity that a model
would need to capture and for comparison to the literature. However, the existing literature
is based on assays performed in whole blood prior to the development of the international
standardization of PCR measurements (genomes or copies/mL rather than International
Units/mL), whereas our testing was performed using a plasma assay on serum samples
and were converted to IU/mL [9,11,25].

Generally, CMV viral load kinetics in the HCT recipients were heterogeneous in the
absence of antiviral treatment (Figure 2), but we were able to classify them into four general
categories: (1) rapid growth only, (2) rapid growth initially that later slowed, (3) growth fol-
lowed by partial clearance during the observation period or (4) growth followed by complete
clearance (Figure 3). We also observed that in categories (3) and (4), there was a plateau phase
before viral clearance in some individuals. Of the 33 modeled episodes, seven exhibited rapid
growth; four slowed growth; 12 partial clearance; and despite the profound immunosuppres-
sion required for bone marrow transplant at this time, ten were able to clear viral particles from
the blood completely in the first 100 days after HCT. Granted, some of the growth categories
are potentially misleading, as some participants developed CMV disease and were treated
with ganciclovir and thus may have cleared virus via immune mechanisms had they not been
treated with antivirals. However, given the high death rate of CMV disease without treatment,
we suspect this is unlikely in most cases.
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Figure 3. Illustrative examples of four CMV kinetics patterns in HCT recipients in the placebo group: (a)
rapid and (b) slowed growth without clearance and growth followed by (c) partial or (d) complete clearance.

Figure 4 depicts the viral kinetics of the modeled episodes. Peak viral load ranged
from 102 to 107.9 IU/mL with median 104.5 IU/mL and IQR 103.3 to 105.7 IU/mL. The
duration of modeled episodes ranged from 4.5 to 75 days with a median of 29 days and IQR
23.5 to 46.5 days. Note that duration is shown in weeks in Figure 4a. When the expansion
slope was calculated from the beginning of the viral episode (see methods for calculation
of start of episode) to the peak viral load (Slope to Peak), slope ranged from 0.06 log10 to
0.38 log10 IU/mL per day with median slope 0.17 log10 IU/mL per day (equivalent to a
doubling time of 1.8 days) and IQR 0.10 log10 to 0.19 log10 IU/mL per day (Figure 4b).
When the expansion slope was calculated from the beginning of the viral episode to the
first positive viral load (Slope to First Positive), slope ranged from 0.01 log10 to 1.92 log10
IU/mL per day with median slope 0.22 log10 IU/mL per day (equivalent to a doubling
time of 1.4 days) and IQR 0.13 log10 to 0.38 log10 IU/mL per day (Figure 4b). In the ten
participants whose CMV viral loads returned to undetectable levels, the clearance slope
was calculated from the peak viral load to the end of the viral episode (see methods for
calculation of the end of episode) [26]. The clearance slope ranged from −1.11 log10 to
−0.02 log10 IU/mL per day with median slope −0.12 log10 IU/mL per day and IQR
−0.16 log10 to −0.09 log10 IU/mL per day (Figure 4b).
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Figure 4. Viral kinetics of the modeled episodes. Box plots of (a) log 10-converted peak CMV viral load and duration of
viremia in weeks load (b) CMV viral load slopes calculated on a log-10 converted y-axis are shown. * Clearance slopes are
negative but have been multiplied by negative one here so that values can be seen on the same axis. One large outlier has
been removed from each of the slope-to-first-positive and clearance-slope box plots so that the remaining values can be
seen clearly. See text for maximum values. Box plots represent the distribution of the kinetics (horizontal middle line is the
median; ends of the boxes represent the first and third quartiles; whiskers represent 1.5 times the interquartile range).

Comparing our results to literature values, Emery and colleagues found peak viral
loads to be somewhat lower, ranging from 102.7 to 106.0 genomes/mL with median 103.9

genomes/mL among bone marrow transplant (BMT) recipients [11]. Emery et al. calculated
the slope between the last negative and first positive viral load among all patients studied (a
combination of renal, liver, and bone marrow transplant patients) and found that it ranged
from 0.03 log10 to 1.65 log10 genomes/mL per day with median 0.24 log10 genomes/mL
per day similar to the rate we calculated for the slope to first positive [11]. Emery and
colleagues also reported that the half-life of decline of viral DNA in the blood of eleven
BMT recipients was 1.52± 0.67 days when receiving ganciclovir [9]. Interestingly, in those
10 participants who cleared virus spontaneously in our data set, the median viral decline
of −0.12 log10 IU/mL per day corresponds to a half-life of 2.51 days, slower than that
calculated on ganciclovir.

To identify the possible mechanisms that drive the observed heterogeneous CMV
kinetics, we developed and used model selection theory to rank four competing ODE
models as described in the methods.

3.2. A Dynamic Effector Compartment Is Needed to Explain CMV Kinetics during HCT

To characterize the viral dynamics of CMV, initially, we used the following two
mathematical models (Figure 1a,b): (1) the standard model of virus dynamics with target
cell limitation but without an explicit effector immune system [3] (Equation (1), model
numbers 1.1–1.8—TC, No EIS model), and (2) an adaptation of that model including
an explicit immune cell compartment (Equation (2), model numbers 2.1–2.8—EIS, TC
model). We used a nonlinear, mixed-effects approach to fit the two models under different
assumptions regarding their parameter values (i.e., some parameters were given fixed
values = 0) for a total of 16 models (models 1.1–1.8 and 2.1–2.8, Tables A1 and A2). Then,
we used model selection theory to identify the most parsimonious model from this set of
competing models (see Materials and Methods, Section 2, for details). For target cell-limited
models without EIS, lower AICs were obtained when the death rate for infected cells δI > 0
was estimated (models 1.5–1.8), implying the need for inclusion of static immune control or
cytopathic cell death or both when dynamic immune control is not present. However, when
an explicit, dynamic immune system was included in the TC, EIS models, the best models
(red triangles in Figure 5; models 2.1 and 2.2 in Table A2) did not require δI to explain the
data. Furthermore, from the different instances of the two models, we found that models
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with explicit immune responses against CMV explained the data more accurately and
parsimoniously than models without one (Figure 5).

Figure 5. Comparison of competing models. Box plots represent the distribution of the −2 logL from five fitting runs
(horizontal middle line is the median; ends of the boxes represent the first and third quartiles; whiskers represent 1.5 times
the interquartile range). White triangles represent the AIC with the highest logL from the five runs of each model as defined
in the methods. Red triangles represent the best models by AIC defined as ∆AIC < 2 relative to the model with best AIC.
TC, No EIS models (Equation (1), models 1.1–1.8) are shown in green with varying parameter assumptions (Table A1). TC,
EIS models (Equation (2), models 2.1–2.8) are shown in orange with varying parameter assumptions (Table A2). EIS: explicit
immune system; TC: dynamic, target cell compartment.

Model fits for the best model with and without an effector cell compartment are shown
in Figures 6 and A1, respectively, using individual parameter estimates in Tables A3 and A4,
respectively. Model fits for the best model without an effector compartment (model 1.8)
show that this model lacks the necessary complexity to recapitulate the heterogeneity in
the CMV dynamics (Figure A1) compared to the fits of the model including immunity
(Figure 6).

In summary, we found that a model with an explicit, dynamic immune response
against infection is required to recapitulate the heterogeneity of patterns observed in CMV
kinetics after HCT.
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Figure 6. Fit of the best TC, EIS model (2.2) to CMV DNA viral loads from untreated recipients of HCT following transplant.
Solid lines represent model predictions; blue circles represent observed viral loads above the assay limit of detection (LOD);
white circles indicate observed viral loads below the LOD.

3.3. Target Cell Limitation Is Not a Significant Driver of CMV Kinetics during HCT

Next, we explored whether having a dynamic, susceptible, target cell compartment
was also necessary to explain the viral load data. We adapted the best, main model (Equa-
tion (2)) from the previous section and replaced the dynamic susceptible cell compartment
with a static compartment. Because CMV can infect a large and diverse population of
human cells (epithelial, endothelial, fibroblast, and smooth muscle cells, among others), in
this model, we assumed that the number of susceptible cells is large and does not change
significantly during infection [1]. Therefore, the susceptible cell compartment in this model
is constant (S(t) = S0 for all t) (Equation (3) and Figure 1c).

We explored several versions of the models in Equations (3)–(6); models 3.1–3.4, 4.1–
4.2, 5.1–5.2, 6.1–6.7 (Table A5) and found that the best models with a constant number of
susceptible cells (blue boxplots in Figure 7) generally outperform the models with dynamic
susceptible cell compartments (orange boxplots in Figure 7). This result suggests that target
cell limitation may not be a main driver of CMV dynamics during HCT.
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Figure 7. Comparison of competing models. Box plots represent the distribution of the −2 logL from five fitting runs
(horizontal middle line is the median; ends of the boxes represent the first and third quartiles; whiskers represent 1.5 times
the interquartile range). White triangles represent the AIC with the highest logL from the five runs of each model as defined
in the methods. Red triangles represent the best models by AIC defined as ∆AIC < 2 relative to the model with best AIC.
The target cell-limited models (TC, EIS) are shown in orange as in Figure 1b. The models with constant susceptible cells (EIS,
No TC—Equations (3)–(6); models 3.1–3.4, 4.1–4.2, 5.1–5.2, 6.1–6.7) are shown in blue with varying parameter assumptions
(Table A2). EIS: explicit immune system; TC: dynamic target cell compartment.

Up until this point in the model selection process, we focused on comparing models
to identify which mechanisms were driving the observed CMV dynamics. We determined
that an explicit, dynamic, immune cell compartment is needed, but a dynamic target cell
compartment may not be needed to recapitulate the data. However, next, we shifted
our focus to parameter estimation and identifiability. When fitting to only one type of
data, in this case, viral load, estimating distinct parameters that have similar effects on
model control (e.g., the viral infectivity rate and viral production rate both contribute to
viral expansion) may prove impossible. The data does not provide enough information
to distinguish the contribution of separate parameters. In this case, some of the involved
parameters might not be identifiable, and multiple values with similar goodness of fit can
be estimated. To avoid this problem, parameters can be combined into composites that
describe multiple rates simultaneously. The composite estimated values are identifiable,
but measurable values for those parameters in the composites cannot be disentangled.
We take this approach in Equations (4)–(6) and arrive at the model with the best AIC,
model 6.2. Note that this model had the lowest AIC prior to the discovery that it contained
non-identifiable parameters as described in the following paragraph.

Model 6.2 is based on Equation (6), which as with all models in this category, has
a large and static target cell compartment and a dynamic effector cell compartment that
expands in response to virus and kills infected cells. Specifically, Equation (6) combines
the elements of viral expansion: infectivity, viral production rate, and the large target cell
compartment into a single composite parameter β̂ and the elements of effector cell killing:
proliferation in response to virus and the killing rate into a single, composite parameter κ̂.
In this particular version of the model (6.2), δE = 0 and δI = 0, such that in this model we
estimated only β̂, γ, κ̂, I0, Ê0, V0, and χviremic as shown in Equation (10). Thus, viral control
is mediated by a combination of viral clearance γ and effector cell expansion and killing
of infected cells κ̂. As in all models we fit, because some participants had detectable viral
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loads on the first measurement after transplant, we estimated V0 separately for those with
and without initial detectable viral loads with χviremic as a covariate of V0 (see Materials
and Methods, Section 2, for details).

dÎ
dt = β̂V − κ̂ Î Ê

dV
dt = Î − γV

dÊ
dt = V

(10)

We examined the relative standard error % (RSE%) of this model as a further measure
of identifiability and determined that some of the parameters still were not identifiable,
as their RSE% were well above 50% (see Figure 8 for RSE% of model version 6.2) [24].
However, in fitting this version of the model, we found that estimates of Ê0 and V0 were
consistently at or near zero. Thus, we reduced the number of estimated parameters further
in this model by fixing the values of the initial conditions of Ê and V to achieve model
identifiability (Table A5). We found that fitting the version of the model with Ê0 and
V0 fixed at zero (model 6.7) resulted in a practically identifiable model with the lowest
AIC, lower than the previously identified best model 6.2 (red triangles in Figure 7 and
parameters on the right side of Figure 8).

Figure 8. Distributions (over five assessments) of relative standard error percentages (RSE%) of
estimated parameters in the EIS, no TC model version 6.2 with estimated initial conditions for state
variables on the left and model version 6.7 with initial values for Ê and V fixed at zero on the right.
Generally, parameters with RSE% above 50% (dashed line) are considered non-identifiable. Note that
RSE% are not shown for fixed Ê0 and V0 on the right because they were fixed and not estimated.

The assumption that the concentrations of Ê0 and V0 are near zero immediately prior
to the start of viremia may be biologically plausible. Because we included the covariate
χviremic, all model V0 values fixed at zero represent observed values below the limit of
detection. In addition, Î0 is small, but non-zero, and may represent the nidus of infection
prior to viral production. HCT recipients with CMV viremia must rely either on CMV-
specific T cell expansion from the small, remaining immune memory after conditioning or
new, developing immunity from their donor after transplant, meaning that CMV-specific
immunity may be weak after HCT. Indeed, Tormo and colleagues found that CMV-specific
T cell responses were undetectable at the start of viremia in 13 out of 14 HCT recipients
they studied, consistent with our assumption that Ê0 = 0 [18].
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Model fits for the best model (6.7) are shown in Figure 9 using individual parameter
estimates from Table A6. From the best model fits, we estimated that CMV has a median
viral clearance rate in plasma of 0.27 virions per day, equivalent to a half-life of 2.6 days.
Note that the viral clearance rate is mechanistically distinct from the slope of the viral
decline as measured in the viral kinetics section, but the median estimate is similar to our
kinetics calculation of viral decline of 2.5 days. Additionally, we found that in the best
model, the death rate of the CMV-specific effector cells, δE, was fixed at zero, suggesting
long-lived immune cells.

Figure 9. EIS, no TC model fits from model 6.7 to CMV DNA viral loads from untreated recipients of HCT following
transplant. Solid lines represent model predictions; blue circles represent observed viral loads above the assay limit of
detection (LOD); white circles indicate observed viral loads below the LOD.

3.4. A Semi-Mechanistic Model of CMV Virus and Immunity after HCT Is Identifiable and Offers
Biological Plausibility

Because quantitative PCR viral load data from untreated participants with CMV
infection is scarce and because CMV infection dynamics behave differently in different
hosts (e.g., people with AIDS versus transplant recipients), parameter values have not been
estimated robustly in the literature [10]. As noted in the previous section, fitting complete
models with enough parameters to describe the data makes finding identifiable models
with meaningful parameters difficult. This is problematic because when parameters are
non-identifiable, we cannot rely on their estimates. In addition, despite having the lowest
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AIC, we noticed that the best model (6.7), was not capturing viral loads in those HCT
recipients who did not clear virus and instead had persistently positive or increasing
viral loads because this model does not have a non-zero viral steady state. Because these
behaviors occur frequently in this patient population and will be important to capture
clinically in simulation, we wanted to develop an identifiable model that could recapitulate
this behavior.

Thus, we explored a semi-mechanistic mathematical model based on the previous
model with an explicit and dynamic immune response and a constant susceptible cell pool
(Figure 1d). In this model, we assumed free virus to be in a quasi-stationary state with
respect to infected cells. This assumption allowed us to reduce the final model such that it
tracks only two variables over time: CMV virus (V) and a CMV-specific immune response
(E) (Equation (7)). The best version of the VE models 9.2 is based on Equation (9), which as
with all VE models contains two Equations: the viral Equation features a single turnover
rate rv and a viral killing term (meant to represent infected cell killing); the effector immune
cell Equation features effector cells that proliferate in response to virus at rate ω̂ and die
at rate δE. In this version of the model, ω̂ is a composite parameter representing both the
killing rate of infected cells and the proliferation rate of effector cells. Model 9.1 is identical
to this version of the model except that Ê0 is estimated at zero. In model 9.2, we fixed
Ê0 = 0, which made the model practically identifiable with all parameter RSE% < 50%
(Table 1). Again, we think this value for Ê0 is biologically plausible based on experimental
results demonstrating the absence of CMV-specific T cells at the start of viremia after
HCT [18].

Model fits for the best, identifiable version of the VE model (version 9.2) are shown
in Figure 10 using individual parameter estimates in Table A8. Population parameters
estimates and RSE% are shown in Table 1. We found the population median virus turnover
rate (rv) is 0.39 day−1 (95% CI 0.21–0.76), equivalent to a doubling time of 1.77 days (95%
CI 0.91–3.3 days). In the case of rv, this rate should be mechanistically identical to the viral
expansion slope measured in the viral kinetics section. However, the calculation of slope
from data sampled relatively sparsely during the expansion phase, as in our data and in
the CMV literature, is problematic [9,11,27]. Arguably, because this mathematical model
contains only one parameter for viral expansion rv, we were able to calculate the rate of
expansion more reliably.

Consistent with the previous section, we found that cells in the effector compartment
are long-lived with a median half-life

(
ln[2]
δE

)
of 50 days.

Table 1. Population parameter estimates of the best version of the VE model 9.2 using Equation (9).
RSE%: percentage of the relative standard error. An RSE% > 50 implies the corresponding parameter
might not be identifiable with the available data.

Parameter Value RSE%

Fixed effects
(θpop)

rpop
v 0.39 6.7

ωpop 1.1 × 10−6 40.9
δ

pop
E 0.014 39.4

Vpop
0 14.7 23.5

Covariate χviremic 2.3 28.1

Standard deviation of
the random effects

(σθ)

σrv 0.33 16.2
σω 4.0 15.8
σδE 1.3 25.4
σV0 0.88 44.0

CMV viral load
measurement error σv 0.43 4.1
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Figure 10. VE model (9.2) fits to CMV DNA viral loads from untreated recipients of HCT following transplant. Solid lines
represent model predictions; blue circles represent observed viral loads above the assay limit of detection (LOD); white
circles indicate observed viral loads below the LOD.

3.5. CMV Turnover Rate and Immune Response Differs Relative to CMV-Related Risks Factors
and Trial Outcomes

By fitting different versions of the VE model Equations (7)–(9), we found that this
model did not outperform the EIS, no TC model in terms of AIC (Figure 11). However,
we found value in this model in other dimensions. First, the parameters were mostly
identifiable. Second, this model has the least variability in likelihood and AIC when
running multiple assessments. Last, this model offers the benefit of a non-zero viral steady
state. Particularly in the HCT setting, patients may have viral loads that initially begin
to clear and later begin to rise or have persistently positive CMV viral loads [18]. This
phenomenon is likely due to ongoing immunosuppression for graft-versus-host disease
that some HCT recipients require long after transplant or slow engraftment of the CMV-
specific T cell response from the donor [18,28]. In our data set, participant IDs 16, 31, 33, 56,
57, and 60 demonstrate this trend in the data. Because of the non-zero viral steady state,
the VE model can capture the increasing and lingeringly positive viral loads unlike the
previous models presented.
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Figure 11. Comparison of competing models. Box plots represent the distribution of the −2 logL from five fitting runs
(horizontal middle line is the median; ends of the boxes represent the first and third quartiles; whiskers represent 1.5 times
the interquartile range). White triangles represent the AIC with the highest logL from the five runs of each model as defined
in the methods. Red triangles represent the best models by AIC defined as ∆AIC < 2 relative to the model with best AIC.
The mechanistic models with dynamic immunity and no target cell limitation (EIS, No TC) are shown in blue as in Figure 1c.
The VE models are shown in grey (Equation (7), models 7.1–7.3, 8.1–8.2, 9.1–9.2). EIS: explicit immune system; TC: dynamic
target cell compartment; VE: virus and effector cell.

Next, because of the biological plausibility and parameter identifiability of the semi-
mechanistic VE model, we used the best version (9.2) to ask how these CMV-specific
parameters might relate to clinical risk factors for tissue-invasive CMV disease and the
clinical outcome of CMV disease itself in the clinical trial. One protective factor against
CMV infection and disease is a positive CMV donor serology (i.e., antibody test), meaning
that the donor of the transplant has been exposed to CMV, and thus, presumably has
pre-existing immunity to CMV that may confer protection to the recipient [19]. Graft-
versus-host disease, a condition in which cells from the transplant attack a recipient’s skin,
gastrointestinal, and liver cells, is a risk factor for CMV infection and disease. Tissue-
invasive CMV disease during the first 100 days after HCT was the primary endpoint of the
clinical trial.

We show the distributions of the individual parameter estimates relative to (1) CMV-
donor serostatus, (2) the presence of acute graft-versus-host disease (agvh) and (3) diagnosis
of CMV-disease during the clinical trial in Figure 12 and compare the mean of the individual
estimates in those with and without the clinical conditions using a student’s t-test.

We found that the median CMV turnover rate (rv) was slower (0.40 versus 0.45) when
the transplant donor was CMV seropositive versus seronegative, and the proliferation rate
of CMV-specific effector cells (ω) in response to virus was higher (Figure 12a), consistent
with some immune protection from the CMV-positive donor.

Our model also predicts that for HCT recipients with acute graft-versus-host-disease
the virus replicates faster, with doubling rates 1.2-fold higher when they have agvh (dou-
bling times of 1.9 and 1.65 days with and without agvh, respectively) (Figure 12b), consis-
tent with an increased risk for CMV disease in those with agvh.
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Finally, we found that participants who were diagnosed with CMV disease during the
trial had an 8-fold lower median immune proliferation rate in response to virus (Figure 12c).

Figure 12. Model parameter estimates (viral growth rate, CMV-specific effector cell proliferation rate, and death rate of
effector cells) compared among individuals relative to clinical CMV risk factors and outcomes: (a) CMV donor serostatus,
(b) acute graft-versus-host disease and (c) CMV disease diagnosed during the randomized trial.

4. Discussion

Despite the development of effective antiviral therapies such as ganciclovir, CMV
continues to cause substantial morbidity after HCT, and viral resistance may develop
over time on current therapies [2,19]. Safer, more convenient, yet potent treatments are
needed. Intrahost mathematical modeling could be an important tool for understanding
the dynamics of CMV virus-host interactions and has the potential to improve the clinical
trials process through simulation [3–5,13,15]. A natural history mathematical model of
CMV would allow us to perturb the model with proposed antiviral therapies and would



Viruses 2021, 13, 2292 20 of 30

provide a baseline for understanding required potencies and optimal dosing intervals for
eliminating virus. Additionally, a baseline, quantitative understanding of the degree of
immune control required for controlling virus might aid the development of a therapeutic
CMV vaccine given after HCT.

Historically, mathematical modeling of CMV has been limited by the lack of avail-
ability of quantitative viral loads from untreated episodes of CMV viremia. Despite this,
several groups have made important observations through modeling and other quantita-
tive analysis of this pathogen [11–15,29–31]. However, because of this lack of data, in vivo
estimation of basic model parameter values has proven difficult. In vitro estimates are
unlikely to be reliable given the differences between in vitro and in vivo systems [9]. In
addition, whereas viral loads from other chronic viral infections such as HIV and hepatitis
C tend to both grow, plateau, and respond to antiviral therapies in stereotypic patterns, in
immunocompromised hosts, such as HCT recipients, viral dynamic patterns vary with the
immunologic status of the host [13,32,33].

Because we were able to obtain viral loads from frozen blood samples collected from
HCT recipients from the placebo group in the historic randomized controlled trial evalu-
ating ganciclovir for the early treatment of CMV after transplant, we have developed a
natural history mathematical model for CMV after HCT [16,17]. We followed a systematic
model selection procedure exploring four mechanistic ODE models with several parame-
terizations for a total of 38 competing models. We compared models mostly based on the
Akaike Information Criteria, but in addition, we also considered the identifiability of their
parameters and biological plausibility. From the competing models, we have identified
two that fit the viral load data well and from which we can identify the model parameters.

In the process of fitting these models, we discovered that the data supported the
inclusion of an explicit, dynamic immune system in the best models whereas a dynamic
target cell compartment was not needed to recapitulate the observed data well. Rather
assuming a constant, large pool of susceptible cells, whose number was unaffected by
infection, was sufficient for model fitting, consistent with the fact that CMV can infect many
tissue and cell types throughout the body. Given that we were fitting only to viral load
data, we were limited in the number of parameters that could be identified independently.
Thus, we formed some composite parameters, which limits some parameters’ independent
interpretability somewhat.

For the best model with an explicit, dynamic immune system compartment and
without target cell limitation (EIS, no TC, Equation (6), model 6.7), we estimated three
parameters: β̂, κ̂, and γ. β̂ is a composite parameter that describes viral infectivity, viral
productivity, and the constant supply of target cells that CMV infects and thus reflects
the overall viral growth rate. κ̂ contains elements of both the killing rate of immune
effector cells and the proliferation rate of those cells in response to virus and thus may be a
marker of the adaptive immune response. Therefore, parameters β̂ and κ̂ may be useful in
comparing participants to each other, but the actual parameter estimates may be difficult
to interpret. On the other hand, γ represents a measurable rate, the clearance rate of CMV
viral particles from the blood. From the best fit of this model, we estimated that the CMV
genome clearance rate in plasma has a median of 0.27 per day, equivalent to a half-life of
2.6 days, which is slow. For comparison, the clearance rates of HIV and hepatitis C viruses
have been estimated to be 23 per day and 8 per day, respectively [34]. Hepatitis B, a DNA
virus, has complex clearance dynamics and two forms of viral DNA such that estimating
the clearance rate is difficult, but the median half-life has been estimated to range from
9 to 21 h, also significantly faster than CMV [35]. The model clearance rate estimate is
distinct from our viral kinetics calculation of clearance slope (equivalent to a half-life of
2.5 days) and a prior estimate made by Emery and colleagues in which the slope of viral
decline in bone marrow transplant receiving ganciclovir was calculated to be equivalent
to a half-life of 1.5 days. First, Emery et al. estimated this rate during treatment rather
than during natural immune clearance [9]. Second, the downslope of viral load during
therapy may reflect the death rate of infected cells or the removal rate of viral particles
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from the blood, but this cannot be disentangled without either additional knowledge of the
biological system or a mechanistic model or both. Interestingly, despite this difference in
calculation methods, the viral particle removal rate and the calculated viral decline kinetic
from our data set in those clearing virus spontaneously was substantially slower than
those receiving ganciclovir in the Emery et al. study [9]. In another study from this group,
patients with HIV starting antiretroviral therapy that included a protease inhibitor and
with CMV viremia were not given specific anti-CMV therapy and were followed by CMV
PCR. The median time to viral clearance was 13.5 weeks (range 5–40 weeks). Granted, we
cannot calculate a reliable clearance slope from this data because the median sampling
interval was nine weeks, but this study further supports the slow natural clearance rate of
CMV [36].

Of note, the size of the CMV DNA genome, which is considerably larger than the
RNA genome of either HIV or hepatitis C, may also play a role in the slow clearance of
CMV. In addition, whereas the model has allowed us to estimate this rate, a more accurate
estimation could be obtained via plasmapheresis experiments as were performed in HIV
and hepatitis C [34]. Not only will this parameter value be helpful to us in modeling
antiviral therapy in the future but also suggests that the ability of the immune system to
clear viral DNA particles from the blood after HCT is limited. In addition, in this best-fitting
version of Equation (6), the death rate of immune effector cells (δE) was zero. Granted
the model is fit only over a period of 100 days, so biologically, it is unrealistic to conclude
that these cells are immortal. However, this finding suggests that the CMV-specific cells
are long-lived and may represent memory cells. The literature supports this notion with
reports that CD4 and CD8 T cells are likely the most important cells for controlling CMV
infection after transplant [2,18,19,21,22].

Our preferred model, the best-fitting version of the semi-mechanistic model that tracks
only CMV viral load and CMV-specific effector cells (VE model 9.2), recapitulates the data
well and contains only identifiable parameters. However, in terms of AIC, the EIS, no TC
model performs better than the VE model. Whereas we can learn from both models, we
chose to validate the VE model against the clinical trial risk factors and outcomes because
it captures not only the viral episodes that end in complete viral clearance but also the
episodes that plateau or increase after initial decrease. Additionally, the model appeared
to be more stable and less sensitive to initial parameter conditions with low variability
between the five assessments of each version of the model.

From the VE model, we estimated the viral turnover rate (rv) as 0.39 per day, equiva-
lent to a doubling time of 1.8 days. For HIV, the doubling time has been estimated at 1.1
days [37]. In this regard, CMV appears to replicate more slowly than HIV but surprisingly
quickly for a virus usually considered to be slow in vitro [9]. Emery and colleagues found
a similar median viral doubling time of 1.3 days in bone marrow transplant recipients
albeit with a direct approach rather than with a mechanistic model [9]. In our viral kinetics
calculations, we found the median doubling times to be 1.4 and 1.8 days depending on
the calculation method (from start of estimated detectable DNAemia to first measured
viral load versus to peak). However, the calculation of slope from data sampled relatively
sparsely during the expansion phase, as in our data and in the CMV literature, is prob-
lematic [9,11,27]. Because this mathematical model contains only one parameter for viral
expansion, rv, this rate should estimate the true viral expansion rate. Arguably, because the
model interpolates between measured points accurately, we were able to calculate the rate
of expansion more reliably with this version of the model. Additionally, consistent with
the EIS, no TC model, we found that immune effector cells were long-lived with a median
half-life of 50 days.

We validated the VE model against clinical data from the randomized trial and found
that both the viral turnover rate and effector cell proliferation rate in response to virus
correlated with important clinical features. Those with CMV-naïve HCT donors and
acute graft-versus-host disease had higher viral turnover rate parameters (rv). Those who
were diagnosed with tissue-invasive CMV disease during the clinical trial had slower
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proliferation of effector cells in response to virus (ω), suggesting that our model parameters
have some clinical relevance.

Our study presents two intrahost models fit to long, untreated CMV reactivation
episodes following HCT measured by quantitative CMV DNA PCR. In addition, we have
expanded quantitative knowledge of intrahost virus-host interactions. However, there are
some important limitations to this work. First, we have direct measurements only from the
viral compartment and thus are limited in the number of parameters that we can identify
independently. Next, our measurements from the viral compartment are measures of DNA
rather than infectious virus. This limitation plagues our field, as we do not generally use
viral culture clinically in humans due to problems with speed, reliability, quantification,
and sensitivity. Especially in the setting of the SARS-CoV-2 pandemic, the persistence of
viral genome (RNA) shedding in the absence of infectious virus has become evident [38].
Addressing this limitation is a challenge for the field of intrahost modeling.

Moving forward, we can use our best, data-validated models to simulate the ranges
of viral dynamics that we observed in the placebo group while modeling the effect of
ganciclovir therapy in the ganciclovir arm of the randomized trial. This will allow us to
estimate the efficacy of ganciclovir and propose optimal dosing strategies for ganciclovir
and other CMV antivirals. Prior to this study, we would have been unable to distinguish
natural immunity from the antiviral effect.

5. Conclusions

We fit multiple competing versions of four ordinary differential Equation models and
found two best models that recapitulated the highly variable CMV infection dynamics that
occurred after HCT in the placebo group of a historic randomized trial. As a result of the
fitting process, we discovered that to model this data most parsimoniously (1) an explicit,
dynamic immune cell compartment was needed; (2) a dynamic target cell compartment
was not needed; and (3) immune cells were long-lived. In addition, we found that viral
clearance appears to be extremely slow and suggests severe impairment of the immune
response after HCT. Parameters from our best model correlated well with participants’
clinical data from the trial, further validating our model.

Author Contributions: E.R.D., M.B., J.T.S. and E.F.C.-O. conceived of the study design. E.R.D. and
M.B. contributed to data collection. E.R.D., J.T.S. and E.F.C.-O. developed the analysis plan. E.R.D.,
F.A.T.B. and E.F.C.-O. performed the data analysis and modeling. E.R.D. and E.F.C.-O. developed the
figures and tables. E.R.D. and E.F.C.-O. prepared the original draft of the manuscript. All authors
participated in the writing, review, and editing of the final manuscript. All authors have read and
agreed to the published version of the manuscript.

Funding: Merck Sharp & Dohme Corp., a subsidiary of Merck & Co., Inc., provided funding for the
original project to E.R.D., M.B., and J.T.S., contract number EP08050.002. Additional funding was
provided by NIH grants KL2 TR002317 (to E.R.D.), R01 AI150500 (to E.F.C.-O.), K24 HL093294 (to
M.B.), and P01 CA18029 (to M.B.); and the Fred Hutchinson Cancer Research Center Vaccine and
Infectious Disease Division (Biorepository).

Institutional Review Board Statement: The original studies were approved by the Fred Hutchinson
Cancer Research Center IRB and the FDA. The VL surrogate study was also approved by the Fred
Hutchinson Cancer Research Center IRB.

Informed Consent Statement: All patients or their legal guardians provided written informed consent.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: We dedicate this work to the late Joel D. Meyers and James M. Goodrich, who
conducted the original trial on which this work is based. We also dedicate this work to the late
Francisco Marty whose support and enthusiasm for this work inspired us. We acknowledge the
original study participants for their commitment to research and the research staff for their dedication
to this work. We would like to thank Jo Tono, Vera Okolo, Heather Andrews, Darneshia Smith, and
Laurel Joncas Schronce for management of frozen samples; the late John Hansen for maintaining the



Viruses 2021, 13, 2292 23 of 30

Research Cell Bank serum collection that provided additional samples to our Biorepository; Elizabeth
Nguyen, Lisa Chung, Sonia Goyal, and Louise Kimball for record review; and Daniel Reeves for
advice on improving manuscript figures.

Conflicts of Interest: The funders had no role in the design of the study; in the collection, analyses,
or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.
However, in the interest of disclosure of possible conflicts, we report the following: Merck Sharp &
Dohme Corp., a subsidiary of Merck & Co., Inc. provided funding to E.R.D., M.B. and J.T.S. for the
original project that funded the viral load data used in this study.

Appendix A

Figure A1. TC, No EIS model (1.8) fits to CMV DNA viral loads from untreated recipients of HCT following transplant.
Solid lines represent model predictions; blue circles represent observed viral loads above the assay limit of detection (LOD);
white circles indicate observed viral loads below the LOD.
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Figure A2. VE model (9.2) projections for Ê = κE, the effector term in the best VE model.

Table A1. Model parameters that were estimated and fixed for the target cell-limited models without
an explicit, dynamic immune system using Equation (1) and resulting best AIC of five assessments
run with randomly selected initial conditions for each estimated parameter are shown. Unless
otherwise indicated, all initial values for state variables were estimated.

Equation Model Estimated Parameters Fixed Parameters Best AIC

1 1.1 β, π, γ λ = 0, δS = 0, δI = 0 629
1 1.2 λ, β, π, γ δS = 0, δI = 0 607
1 1.3 δS, β, π, γ λ = 0, δI = 0 694
1 1.4 λ, δS, β, π, γ δI = 0 613
1 1.5 β, δI , π, γ λ = 0, δS = 0 522
1 1.6 λ, β, δI , π, γ δS = 0 528
1 1.7 δS, β, δI , π, γ λ = 0 522
1 1.8 λ, δS, β, δI , π, γ none 479
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Table A2. Model parameters that were estimated and fixed for the target cell-limited models with an
explicit, dynamic immune system using Equation (2) and resulting best AIC of five assessments run
with randomly selected initial conditions for each estimated parameter are shown. Unless otherwise
indicated, all initial values for state variables were estimated.

Equation Model Estimated Parameters Fixed Parameters Best AIC

2 2.1 β, κ, π, γ, ω, δE λ = 0, δS = 0, δI = 0 435
2 2.2 λ, β, κ, π, γ, ω, δE δS = 0, δI = 0 434
2 2.3 δS, β, κ, π, γ, ω, δE λ = 0, δI = 0 441
2 2.4 λ, δS, β, κ, π, γ, ω, δE δI = 0 440
2 2.5 β, δI , κ, π, γ, ω, δE λ = 0, δS = 0 437
2 2.6 λ, β, δI , κ, π, γ, ω, δE δS = 0 440
2 2.7 δS, β, δI , κ, π, γ, ω, δE λ = 0 530
2 2.8 λ, δS, β, δI , κ, π, γ, ω, δE none 443

Table A3. Individual parameter estimates of the best version of the TC, EIS model using Equation (2).

ID λ β π γ κ ω δE V0 E0 S0 I0

1 0.00046 9.1 × 10−8 465.1 0.30 5.6 × 10−7 0.15 0.0 0.69 0.0 7108.0 0.01
2 0.00046 9.1 × 10−8 466.5 0.43 2.4 × 10−6 998.99 0.0 0.81 0.0 7145.0 0.12
3 0.00046 9.0 × 10−8 465.4 0.56 1.0 × 10−6 5.92 0.0 0.82 0.0 6980.6 0.09
5 0.00046 9.3 × 10−8 467.5 0.17 6.1 × 10−7 0.25 0.0 0.80 0.0 7422.8 0.02
8 0.00046 9.1 × 10−8 466.4 0.37 2.5 × 10−6 1051.98 0.0 0.86 0.0 7142.8 0.11
9 0.00046 9.1 × 10−8 465.7 0.27 9.5 × 10−7 3.65 0.0 0.80 0.0 7127.8 0.02
10 0.00046 9.1 × 10−8 465.5 0.28 6.0 × 10−7 0.23 0.0 0.81 0.0 7067.2 0.03
11 0.00046 9.2 × 10−8 467.6 0.18 9.2 × 10−7 2.87 0.0 0.82 0.0 7305.8 0.19
16 0.00046 9.4 × 10−8 469.4 0.21 4.7 × 10−7 0.05 0.0 0.82 0.0 7654.9 0.10
17 0.00046 9.2 × 10−8 466.6 0.22 9.8 × 10−7 4.20 0.0 0.82 0.0 7189.8 0.08
20 0.00046 9.3 × 10−8 468.4 0.49 9.9 × 10−7 4.36 0.0 0.87 0.0 7470.1 0.12
26 0.00046 9.1 × 10−8 465.0 0.54 7.8 × 10−7 1.11 0.0 0.75 0.0 7071.9 0.01
28 0.00046 9.3 × 10−8 468.0 0.49 1.7 × 10−6 109.01 0.0 0.94 0.0 7358.7 0.19
29 0.00046 9.1 × 10−8 465.7 0.26 7.4 × 10−7 0.83 0.0 0.82 0.0 7048.1 0.07
30 0.00046 9.7 × 10−8 472.0 0.10 3.9 × 10−7 0.02 0.0 0.79 0.0 8248.5 0.02
31 0.00046 9.1 × 10−8 467.6 0.20 1.3 × 10−6 19.56 0.0 0.82 0.0 7188.6 1.13
32 0.00046 9.1 × 10−8 466.2 0.40 2.7 × 10−6 1778.75 0.0 0.82 0.0 7129.1 0.08
33 0.00046 9.3 × 10−8 467.5 0.04 5.6 × 10−7 0.18 0.0 0.84 0.0 7380.3 0.18
35 0.00046 9.4 × 10−8 468.7 0.44 8.1 × 10−7 1.37 0.0 0.81 0.0 7616.7 0.03
37 0.00046 9.1 × 10−8 465.6 0.12 2.6 × 10−6 1299.04 0.0 0.82 0.0 7091.4 0.03
38 0.00046 9.4 × 10−8 469.3 0.15 7.2 × 10−7 0.72 0.0 0.95 0.0 7553.4 0.47
44 0.00046 9.0 × 10−8 464.6 0.23 1.2 × 10−6 11.31 0.0 0.76 0.0 6992.0 0.01
45 0.00042 9.0 × 10−8 464.3 1.39 2.1 × 10−6 0.86 0.0 65.69 0.0 6920.9 0.02
49 0.00046 9.1 × 10−8 465.3 0.37 1.5 × 10−6 56.51 0.0 0.80 0.0 7057.2 0.02
51 0.00046 9.1 × 10−8 466.3 0.46 1.9 × 10−6 215.97 0.0 0.81 0.0 7182.1 0.04
56 0.00046 8.9 × 10−8 464.2 0.19 1.5 × 10−6 50.66 0.0 0.81 0.0 6875.4 0.03
57 0.00046 9.1 × 10−8 465.3 0.08 2.2 × 10−6 572.06 0.0 0.80 0.0 7059.2 0.03
58 0.00048 9.0 × 10−8 464.4 0.45 1.1 × 10−6 5.74 0.0 0.85 0.0 6938.4 0.02
59 0.00047 9.0 × 10−8 465.1 0.19 6.7 × 10−7 0.55 0.0 0.88 0.0 7023.2 0.03
60 0.00045 9.0 × 10−8 464.4 0.16 1.9 × 10−6 171.94 0.0 0.82 0.0 6953.0 0.02
61 0.00046 8.9 × 10−8 465.1 0.32 3.6 × 10−7 0.01 0.0 0.85 0.0 7006.2 0.03
62 0.00046 8.9 × 10−8 464.9 0.29 4.0 × 10−7 0.02 0.0 678.73 0.0 6950.6 0.05
63 0.00046 9.2 × 10−8 467.1 0.26 1.7 × 10−6 103.95 0.0 774.44 0.0 7299.9 0.05
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Table A4. Individual parameter estimates of the best version of the TC, no EIS model using Equation (1).

ID λ δS β δI π γ V0 S0 I0

1 0.0 0.01 4.0 × 10−7 0.31 3286 0.30 2.7 × 10−8 444.0 0.001
2 0.0 0.38 4.4 × 10−7 0.34 3392 0.39 2.7 × 10−8 450.2 0.010
3 0.0 0.11 4.7 × 10−7 0.31 3447 0.28 2.7 × 10−8 458.3 0.012
5 0.0 0.02 4.4 × 10−7 0.29 3384 0.22 2.7 × 10−8 455.8 0.003
8 0.0 0.26 4.3 × 10−7 0.32 3368 0.33 2.7 × 10−8 448.1 0.007
9 0.0 0.04 4.4 × 10−7 0.31 3361 0.27 2.7 × 10−8 450.0 0.004

10 0.0 0.02 4.1 × 10−7 0.30 3350 0.23 2.7 × 10−8 447.9 0.004
11 0.0 0.04 4.8 × 10−7 0.29 3472 0.21 2.7 × 10−8 460.9 0.015
16 0.0 0.01 4.0 × 10−7 0.26 3505 0.20 2.7 × 10−8 471.4 0.007
17 0.0 0.07 4.7 × 10−7 0.29 3449 0.23 2.7 × 10−8 458.7 0.012
20 0.0 0.11 6.1 × 10−7 0.35 3629 0.38 2.7 × 10−8 486.0 0.020
26 0.0 0.04 4.5 × 10−7 0.33 3345 0.36 2.7 × 10−8 451.0 0.002
28 0.0 0.23 4.8 × 10−7 0.33 3487 0.36 2.7 × 10−8 460.6 0.024
29 0.0 0.04 4.5 × 10−7 0.30 3409 0.24 2.7 × 10−8 453.9 0.009
30 0.0 0.01 4.1 × 10−7 0.25 3452 0.14 2.7 × 10−8 469.7 0.002
31 0.0 0.18 4.5 × 10−7 0.30 3480 0.19 2.7 × 10−8 452.8 0.070
32 0.0 0.39 4.3 × 10−7 0.34 3374 0.40 2.7 × 10−8 448.7 0.008
33 0.0 0.02 4.5 × 10−7 0.24 3483 0.05 2.7 × 10−8 465.1 0.011
35 0.0 0.01 7.2 × 10−7 0.44 3465 0.61 2.7 × 10−8 469.9 0.003
37 0.0 0.08 3.9 × 10−7 0.34 3281 0.46 2.7 × 10−8 437.7 0.004
38 0.0 0.03 5.3 × 10−7 0.28 3548 0.18 2.7 × 10−8 471.9 0.021
44 0.0 0.08 4.8 × 10−7 0.31 3431 0.32 2.7 × 10−8 461.0 0.005
45 0.0 0.03 4.0 × 10−7 0.39 3320 0.55 3.6 × 101 444.8 0.003
49 0.0 0.12 4.7 × 10−7 0.32 3424 0.34 2.7 × 10−8 457.7 0.007
51 0.0 0.19 4.5 × 10−7 0.33 3412 0.35 2.7 × 10−8 453.8 0.009
56 0.0 0.12 4.4 × 10−7 0.30 3380 0.21 2.7 × 10−8 449.9 0.007
57 0.0 0.04 3.7 × 10−7 0.33 3276 0.55 2.6 × 10−8 431.6 0.007
58 0.0 0.05 4.2 × 10−7 0.32 3329 0.30 2.7 × 10−8 446.3 0.003
59 0.0 0.04 4.6 × 10−7 0.31 3384 0.20 2.7 × 10−8 452.8 0.005
60 0.0 0.10 4.2 × 10−7 0.31 3359 0.30 2.7 × 10−8 447.3 0.006
61 0.0 0.01 3.0 × 10−7 0.24 3312 0.15 2.7 × 10−8 444.3 0.003
62 0.0 0.02 3.4 × 10−7 0.27 3343 0.15 370 443.7 0.007
63 0.0 0.39 4.5 × 10−7 0.32 3400 0.24 530 452.7 0.008

Table A5. Model parameters that were estimated and fixed for the explicit, dynamic immune
system models without target cell-limitation using Equations (3)–(6) and resulting best AIC of five
assessments run with randomly selected initial conditions for each estimated parameter are shown.
Unless otherwise indicated, all initial values for state variables were estimated. #17.9 is half the limit
of detection of the CMV DNA assay, which is why it was chosen as a fixed value for V0 in model
version 6.6.

Equation Model Estimated Parameters Fixed Parameters Best AIC

3

3.1 β∗, κ, π, γ, ω, δE δI = 0 427
3.2 β∗, κ, π, γ, ω δI = 0, δE = 0 423
3.3 β∗, δI , κ, π, γ, ω δE = 0 435
3.4 β∗, δI , κ, π, γ, ω, δE none 432

4
4.1 β̂, δI , κ, γ, ω, δE none 425
4.2 β̂, δI , κ, γ, ω δE = 0 419

5
5.1 β̂, γ, ω̂ δE = 0, Ê0 = 0 448
5.2 β̂, γ, ω̂, δE Ê0 = 0 451
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Table A5. Cont.

Equation Model Estimated Parameters Fixed Parameters Best AIC

6

6.1 β̂, κ̂, γ, δE δI = 0 420
6.2 β̂, κ̂, γ δI = 0, δE = 0 417
6.3 β̂, κ̂, γ, δE δI = 0, Ê0 = 0 451
6.4 β̂, κ̂, γ, δE δI = 0, Ê0 = 0, V0 = 0 453
6.5 β̂, κ̂, γ δI = 0, δE = 0, Ê0 = 0 413

6.6 β̂, κ̂, γ
δI = 0, δE = 0, Ê0 =

0, V0 = 17.9# 464

6.7 β̂, κ̂, γ
δI = 0, δE = 0, Ê0 =

0, V0 = 0
414

Table A6. Individual parameter estimates of the best and identifiable version of the EIS, no TC model
using Equation (6).

ID β γ κ V0 I0

1 0.31 0.34 1.1 × 10−7 0 3.4
2 0.31 0.48 2.0 × 10−3 0 64.8
3 0.31 0.62 5.7E × 10−6 0 45.5
5 0.31 0.19 2.0 × 10−7 0 12.6
8 0.31 0.43 2.1 × 10−3 0 61.0
9 0.31 0.32 3.2 × 10−6 0 11.3

10 0.31 0.32 1.8 × 10−7 0 17.5
11 0.31 0.20 2.9 × 10−6 0 93.2
16 0.33 0.33 6.6 × 10−8 0 110.2
17 0.31 0.25 3.8 × 10−6 0 40.8
20 0.32 0.51 4.4 × 10−6 0 65.1
26 0.31 0.61 8.8 × 10−7 0 5.2
28 0.31 0.51 1.7 × 10−4 0 92.2
29 0.31 0.30 6.5 × 10−7 0 34.4
30 0.34 0.10 1.1 × 10−8 0 14.6
31 0.31 0.21 2.3 × 10−5 0 468.1
32 0.31 0.47 3.7 × 10−3 0 44.9
33 0.32 0.07 2.0 × 10−7 0 99.2
35 0.32 0.45 1.2 × 10−6 0 18.2
37 0.31 0.13 3.0 × 10−3 0 19.9
38 0.32 0.15 6.5 × 10−7 0 233.8
44 0.31 0.23 1.3 × 10−5 0 5.0
45 0.31 1.70 1.8 × 10−6 246 10.3
49 0.31 0.41 7.1 × 10−5 0 11.4
51 0.31 0.51 3.4 × 10−4 0 23.2
56 0.30 0.20 7.6 × 10−5 0 12.3
57 0.31 0.09 1.2 × 10−3 0 15.0
58 0.31 0.55 5.3 × 10−6 0 11.0
59 0.31 0.24 4.0 × 10−7 0 16.9
60 0.31 0.16 3.3 × 10−4 0 10.6
61 0.31 0.45 1.9 × 10−8 0 20.4
62 0.31 0.25 3.6 × 10−8 246 41.5
63 0.31 0.26 2.1 × 10−4 246 84.2
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Table A7. Model parameters that were estimated and fixed for the semi-mechanistic, virus-effector
cell models (VE) using Equations (7)–(9) and resulting best AIC of five assessments run with randomly
selected initial conditions for each estimated parameter are shown. Unless otherwise indicated, all
initial values for state variables were estimated.

Equation Model Estimated Parameters Fixed Parameters Best AIC

7
7.1 rv, κ, ω, δE none 461
7.2 rv, κ, ω, δE E0 = 0 457
7.3 rv, κ, ω δE = 0 573

8
8.1 rv, κ̂, δE none 458
8.2 rv, κ̂, δE Ê0 = 0 453

9
9.1 rv, ω̂, δE none 458
9.2 rv, ω̂, δE Ê0 = 0 451

Table A8. Individual parameter estimates of the best version of the VE model using Equation (9).

ID rv ω δE V0

1 0.38 4.6 × 10−8 0.015 5.3
2 0.47 1.1 × 10−3 0.013 17.2
3 0.36 2.8 × 10−6 0.010 18.2
5 0.48 6.9 × 10−8 0.015 9.8
8 0.32 1.1 × 10−6 0.014 9.8
9 0.41 1.2 × 10−6 0.014 10.3

10 0.42 7.5 × 10−8 0.015 13.0
11 0.58 1.3 × 10−6 0.014 21.1
16 0.51 1.2 × 10−8 0.019 20.0
17 0.47 1.1 × 10−6 0.015 18.8
20 0.41 1.5 × 10−6 0.012 19.6
26 0.32 5.0 × 10−7 0.011 5.7
28 0.55 7.2 × 10−5 0.011 15.1
29 0.44 2.4 × 10−7 0.015 17.9
30 0.58 3.7 × 10−9 0.015 6.7
31 0.57 1.4 × 10−6 0.034 57.5
32 0.43 1.6 × 10−3 0.013 16.4
33 0.68 7.9 × 10−8 0.237 18.8
35 0.40 3.8 × 10−7 0.016 10.2
37 0.24 1.6 × 10−4 0.017 8.4
38 0.72 6.5 × 10−7 0.014 22.6
44 0.33 2.2 × 10−6 0.024 11.7
45 0.18 1.5 × 10−6 0.003 23.1
49 0.34 2.6 × 10−5 0.013 11.5
51 0.40 1.6 × 10−4 0.012 11.5
56 0.37 1.3 × 10−5 0.040 13.9
57 0.30 8.1 × 10−5 0.060 12.9
58 0.33 2.7 × 10−6 0.014 9.7
59 0.39 5.6 × 10−8 0.020 20.2
60 0.30 2.8 × 10−5 0.015 11.8
61 0.38 5.6 × 10−9 0.010 14.3
62 0.38 9.6 × 10−9 0.015 370.4
63 0.43 3.0 × 10−5 0.036 410.9
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