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Pancreatic cancer (PC) is a highly fatal and aggressive disease with its incidence and
mortality quite discouraging. It is of great significance to construct an effective prognostic
signature of PC and find the novel biomarker for the optimization of the clinical decision-
making. Due to the crucial role of immunity in tumor development, a prognostic model
based on nine immune-related genes was constructed, which was proved to be effective
in The Cancer Genome Atlas (TCGA) training set, TCGA testing set, TCGA entire set,
GSE78229 set, and GSE62452 set. Furthermore, S100A2 (S100 Calcium Binding Protein
A2) was identified as the gene occupying the most paramount position in risk model. Gene
set enrichment analysis (GSEA), ESTIMATE and CIBERSORT algorithm revealed that
S100A2 was closely associated with the immune status in PC microenvironment, mainly
related to lower proportion of CD8+T cells and activated NK cells and higher proportion of
M0 macrophages. Meanwhile, patients with high S100A2 expression might get more
benefit from immunotherapy according to immunophenoscore algorithm. Afterwards, our
independent cohort was also used to demonstrate S100A2 was an unfavorable marker of
PC, as well as its remarkably positive correlation with the expression of PD-L1. In
conclusion, our results demonstrate S100A2 might be responsible for the preservation
of immune-suppressive status in PC microenvironment, which was identified with
significant potentiality in predicting prognosis and immunotherapy response in
PC patients.
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INTRODUCTION

Pancreatic cancer (PC) is one of the most aggressive
malignancies, with a five-year survival rate of only 10% in the
United States (1). According to the latest epidemiological data,
there are 495,773 new cases and 466,003 deaths of PC worldwide
in 2020, making ratio of incidence and mortality close to 1:1 (2).
In addition to the lack of sensitive screening methods and the
rapid progression of PC, the dismal prognosis of this disease is
largely attributable to the lack of valid risk prediction models and
biomarkers in PC development (3). Therefore, it is of great
significance to construct an effective prognostic signature of PC
and find the novel biomarker for the optimization of the clinical
decision-making.

Tumor microenvironment (TME), a concept developed from
Paget’s “seed and soil” theory, is regarded as both a cause and
consequence of tumorigenesis, which is demonstrated to provide
a permissive environment for tumor initiation and progression
(4, 5). In addition to fibroblasts endothelial cells, stromal cells,
blood vessels and secreted factors, the TME comprises innate and
adaptive immune cells, which have a profound impact on tumor
development (6, 7). In recent years, the vital role of immune cells
in the occurrence and progression of PC is gradually revealed (8–
10). For example, Yamamoto et al. identified NBR1-mediated
selective macroautophagy/autophagy of MHC-I hindered cancer
cell recognition and clearance by CD8+ T cells in PC (11), and
granulin secretion by metastasis-associated macrophages
activates resident hepatic stellate cells into myofibroblasts,
resulting in a fibrotic microenvironment that sustains
metas ta t i c PC growth (12) . Meanwhi le , a l though
immunotherapy is almost ineffective for PC (13, 14), PC
patients who exhibited high effector T-cell infiltration in tumor
had longer overall survival (15, 16), implying that valuing
immune heterogeneity and remodeling the immune
microenvironment may hold promise for PC treatment.
Therefore, we considered a prognostic model based on
immune-related genes (IRGs) to better predict the prognosis of
PC patients and optimize the clinical decision-making.
Furthermore, the most paramount gene and its potential
mechanisms were further explored, as well as its ability to
predict patients’ response to immunotherapy.

In the present study, we constructed a prognostic model
based on nine IRGs and the corresponding nomogram, which
were proved to be an independent risk factor and was validated
in the training set, testing set, entire set, GSE78229 set and
GSE62452 set. S100A2 (S100 Calcium Binding Protein A2), a
highly conserved elongation factor (EF)-hand calcium-binding
protein, was identified as the gene occupying the most
paramount position in the risk signature. GSEA, ESTIMATE
and CIBERSORT algorithm revealed that S100A2 was closely
associated with the immune status in the PC microenvironment,
mainly related to lower proportion of CD8+T cells and activated
NK cells and higher proportion of M0 macrophages. Meanwhile,
the results of immunophenoscore (IPS) algorithm proved that
patients with high S100A2 expression might get more benefit
from immunotherapy. Afterwards, our own independent cohort
(PUMCH cohort) was also utilized to demonstrate S100A2 was
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an unfavorable marker of PC, as well as its remarkably positive
correlation with the expression of PD-L1.
MATERIALS AND METHODS

Datasets Sources and Processing
Immune-related genes were extracted and integrated from the
ImmPort database (https://immport.niaid.nih.gov; ≤March 1,
2021) (17). Gene expression profile, clinical information, and
mutation profile of the patients were downloaded from The
Cancer Genome Atlas (TCGA) dataset (https://portal.gdc.
cancer.gov/; ≤March 1, 2021). Samples with inadequate clinical
information and follow-up period less than 30 days were
excluded. Finally, 166 cases with corresponding gene expression
profiles and clinical information were included in the study
(Table 1, detailed in Table S1). Gene IDs was converted to
gene symbol using a GFF3 file, which was downloaded from
GENCODE (https://www.gencodegenes.org/). The gene
expression data was converted to TPM (Transcripts Per
Kilobase Million), and log2(TPM + 0.01) was used throughout
the analysis unless otherwise noted. The samples of tumor tissues
in TCGA set were randomly divided into to a training set and a
testing set by a ratio of 7:3 using “sample” function of R software.

Meanwhile, GSE15471, GSE28735, GSE62165, GSE62452,
GSE78229, and GSE71729 dataset were downloaded from the
Gene Expression Omnibus (GEO) (http://www.ncbi.nlm.nih.
gov/geo/) (18–23), in which GSE62452 and GSE78229 with
corresponding clinical information were used for external
validation (Table 2, detailed in Tables S2, S3). Expression
values were calculated using the robust multi-array average
(RMA) algorithm except GSE71729. The normalized
expression matrix of microarray data can be directly download
from the GEO dataset. They were performed on GPL570,
GPL6244, GPL13667, and GPL20769 platform. Probes were
matched to the gene symbols using the annotation files
provided by the manufacturer.

Furthermore, a single-cell dataset CRA001160 was analyzed
through Tumor Immune Single-cell Hub (TISCH) database
(http://tisch.comp-genomics.org/) and Seurat package, and also
cell type clustering and gene expression location analysis (24, 25).
The expression profile of 51 pancreatic cell lines was integrated
from the CCLE database (https://portals.broadinstitute.org/
ccle) (26).
Construction and Validation of a Risk
Signature Associated With Survival
of PC Patients
Limma package was applied to screen differentially expressed
genes (DEGs) in GSE15471, GSE28735, and GSE62165 datasets
respectively (27). |Fold Change| >1.5 and false discovery rate
(FDR) <0.05 were set as the cutoffs for the DEGs. The
intersection of DEGs were selected as candidate genes.
Univariate Cox regression was used to identify genes that were
significantly associated with overall survival (OS) of PC patients
November 2021 | Volume 12 | Article 758004
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in the training set (P <0.01). Subsequently, Least absolute
shrinkage and selection operator (LASSO) regression analysis
was further used to screen out the optimal gene combination for
constructing the risk signature. According to the regression
coefficient-weighted pseudogene expression, the risk signature
was established as follows: Risk score = (exprgene1 × Coefgene1) +
(exprgene2 × Coefgene2) + … + (exprgenen × Coefgenen). The
efficiency and independence of the risk signature were assessed
by Kaplan–Meier (K–M) curve, time-dependent receiver
operating characteristic (ROC) curve and survival point
diagram in both the internal validation set (training set, testing
set, and entire set) and the external validation set (GSE78229 set
and GSE62452 set). Copy number variation information of the
nine genes was extracted from the cBioportal database (http://
www.cbioportal.org/) (28), and protein expression in normal and
tumor tissues was obtained from the Human Protein Atlas
(HPA) database (https://www.proteinatlas.org/).

Meanwhile, in order to make the prediction model more
accurate, the clinicopathological information was also
incorporated with the riskscore to establish a nomogram,
which was based on the results of the univariate and
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multivariate analysis by using the ‘rms’ package in R language.
The C-index, calibration curve and time-dependent ROC curve
of 1-, 1.5-, and 2-year were applied to evaluate the predictive
effectiveness of the nomogram.
Differential Gene Analysis, Co-Expression
Network Construction and Functional
Enrichments Analysis Between S100A2
High and Low Expression Group
The pan-cancer expression analysis of S100A2 was performed
through the GEPIA2 database (29). edgeR package was used to
perform DEGs analysis between S100A2 high and low expression
group, in which |Log2FC| >2 and FDR <0.001 were considered
statistically significant (30). The pheatmap package, tidyverse
package, and ggrepel package were utilized to create the heatmap
and the volcano plot in R language. Approximately 50 genes with
the most significant differences were shown in the heatmap, and
those genes with their P values <1 × 10–20 and |logFC| >4 were
labeled in the volcano plot. Afterwards, the co-expression
network was constructed and visualized with STRING database
TABLE 1 | Clinical and pathologic information of training set, testing set and entire set.

Character TRAINING SET TESTING SET ENTIRE SET

Number % Number % Number %

Age
Median 65 64.5 65
Range 35–85 39–88 35–88
OS (M)
Median 15.3 16.1 15.6
Range 1.1–72.7 1.0–91.4 1.0–91.4
STATUS
ALIVE 52 44.83 24 48.00 76 45.78
DEAD 64 55.17 26 52.00 90 54.22
gender
Male 66 56.90 24 48.00 90 54.22
Female 50 43.10 26 52.00 76 45.78
AJCC_stage
I 14 12.07 4 8.00 18 10.84
II 97 83.62 44 88.00 141 84.94
III 2 1.72 1 2.00 3 1.81
IV 3 2.59 1 2.00 4 2.41
Grade
G1 17 14.66 9 18.00 26 15.66
G2 65 56.03 26 52.00 91 54.82
G3 32 27.59 15 30.00 47 28.31
G4 2 1.72 0 0.00 2 1.21
T STAGE
T1 3 2.59 3 6.00 6 3.61
T2 16 13.79 5 10.00 21 12.65
T3 95 81.90 41 82.00 136 81.93
T4 2 1.72 1 2.00 3 1.81
N STAGE
N0 32 27.59 13 26.00 45 27.11
N1 81 69.82 37 74.00 118 71.08
NX 3 2.59 0 0.00 3 1.81
M STAGE
M0 59 50.86 17 34.00 76 45.78
M1 3 2.59 1 2.00 4 2.41
MX 54 46.55 32 64.00 86 51.81
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and Cytoscape. The minimum required interaction score was set
to be high confidence (0.700) and disconnected nodes were
hidden in the network, therefore not all genes were
represented. To further elucidate the mechanism of S100A2 in
the development of PC, we performed GSEA analysis of the
DEGs (31). The ALL ontology of the DEGs was analyzed by Gene
Ontology (GO) (32), while pathway enrichment was analyzed by
the Kyoto Encyclopedia of Genes and Genomes (KEGG) (33).
The number of random sample permutations was set at 1,000,
and NOM p-value <0.05 and FDR q-value <0.25 were set as the
significance threshold.

Estimation of Tumor Infiltrating
Immune Cells
CIBERSORT algorithm could calculate the ratios of infiltrating
immune cells from tissue transcriptional profiles by a
deconvolution algorithm (34). Based on the expression profiles
of patients in the TCGA and GSE71729 datasets, we calculated
the relative abundance of 22 types of tumor infiltrating immune
cells in each patient. Meanwhile, stromal, immune, and estimate
scores were outputted respectively by the R package
‘estimate’ (35).

Tumor Mutation Burden Analysis
The mutation profile was acquired from TCGA data portal
(https://portal.gdc.cancer.gov/; ≤March 1, 2021). Somatic
variants data of patients were analyzed and visualized by
maftools package in R language (36). Then the tumor
mutation burden (TMB) of each patient was calculated and
analyzed by TCGA mutations package.

Prediction of the Patients’ Response to
Immunotherapy
Immunophenoscore (IPS) was a scoring scheme for the
quantification of tumor immunogenicity, which was verified to
positively correlated to the probability to respond to
Frontiers in Immunology | www.frontiersin.org 4
immunotherapy (37). The Cancer Immunome Atlas (https://
tcia.at/) characterized the intratumoral immune landscapes and
the cancer antigenomes from 20 solid cancers (37). The IPS data
of PC patients was extracted for the following analysis, including
the scores for anti-PD-1/PD-L1 treatment and anti-CTLA-4
treatment. Meanwhile, the correlation between S100A2 and
immune checkpoints was also investigated in TCGA entire set,
including PD-1, PD-L1, and CTLA-4.

Clinical Specimens
A total of 65 patients with primary PDAC who underwent
surgical resection at the Peking Union Medical College
Hospital (PUMCH) were included in this study (PUMCH
cohort, April 2019–November 2020). TNM staging was
evaluated according to the 8th edition of the American Joint
Committee on Cancer (AJCC) staging system for PC (38).
Sequential sections of each patient were used for following
studies. Written informed consent were obtained from all the
patients enrolled in this study. This project was approved by the
Ethics Committee of Peking Union Medical College Hospital.

Cell Culture
All pancreatic cancer cell lines were purchased from the
American Type Culture Collection (ATCC). All the cell lines
were tested for mycoplasma every two months and identified by
STR (Short Tandem Repeat) identification. HPNE, PANC-1,
T3M4 and MIACaPa-2 cell lines were cultured in high glucose
Dulbecco’s modified Eagle’s medium (DMEM; CORNING,
Manassas, USA), BxPC-3, AsPC-1, SW1990, PATU 8988 cell
lines were cultured in RPMI-1640 medium (CORNING,
Manassas, USA), and Capan-1 and CFPAC-1 cell lines were
cultured in Iscove’s Modified Dulbecco Medium (IMDM;
CORNING, Manassas, USA). All medium was supplemented
with 10% fetal bovine serum (HyClone, Logan, UT, USA). All
cell lines were routinely maintained at 37°C with 5% CO2 in a
humidified incubator.
TABLE 2 | Clinical and pathologic information of GSE62452 and GSE78229 dataset.

Character GSE62452 (N = 66) GSE78229 (N = 49)

Number % Number %

OS (M)
Median 14.6 14.2
Range 0.9–70.8 0.9–70.8
STATUS
Alive 16 24.24 14 28.57
DEAD 50 75.76 35 71.43
AJCC_stage
I 4 6.06 4 8.16
II 45 68.18 44 89.80
III 11 16.67 1 2.04
IV 6 9.09 0 0
Grade
G1 2 3.03 2 4.08
G2 32 48.48 24 48.98
G3 30 45.45 21 42.86
G4 1 1.52 1 2.04
GX 1 1.52 1 2.04
November 2021 | Volume 12 | Article
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Immunohistochemistry
Manual staining was performed as the protocol previously
described in this research (39). For primary antibody
incubation of each patient, two sequential sections were
incubated with rabbit monoclonal anti-S100A2 antibody
(1:250) (Abcam, ab109494) for 1 h and rabbit monoclonal
anti-PD-L1 antibody (1:200) (Abcam, ab205921) for
1 h respectively.

RNA Isolation and RT-PCR
Total RNA was extracted from PDAC cell lines by Trizol reagent
(Ambion, Life Technologies, 15596026). The cDNA was
synthesized using a cDNA Reverse Transcription kit (Thermo
scientific, K1622). Quantitative PCR was performed using
PowerUp™ SYBR™ Green Master Mix (Applied Biosystems,
A25742) in StepOnePlus™ (Applied Biosystems) according to
the manufacturer’s protocols. The primer sequences were used
as follows:

S100A2: Forward 5′-GCCAAGAGGGCGACAAGTT-3’,
Reverse 5′-AGGAAAACAGCATACTCCTGGA-3’;

GAPDH: Forward 5′-GTCTCCTCTGACTTCAACAGCG-3’,
Reverse 5’-ACCACCCTGTTGCTGTAGCCAA-3’.

All the values were normalized to GAPDH, and the 2−DCt

method was used to quantify the fold change.

Statistical Analysis
All the statistical analyses and visualization were performed
using Rstudio (version 4.1.0) and GraphPad Prism 8 (version
8.0.1), including DEGs analysis, univariate and multivariate Cox
regression analysis, LASSO regression analysis, correlation
analysis, clinicopathological factor analysis, ROC curve
analysis, and K-M survival analysis. A two-sided P <0.05 was
considered as statistically significant unless otherwise noted.
RESULTS

Nine Immune-Related Genes Were
Screened Out For Constructing A
Risk Signature
The flowchart of the whole analysis was illustrated in Figure S1.
A total of 1,793 IRGs were integrated from the ImmPort database
(Table S4) 17. First, DEGs of normal and tumor samples in
GSE15471 (Normal = 36, Tumor = 36), GSE28735 (Normal = 45,
Tumor = 45), and GSE62165 (Normal = 13, Tumor = 118)
datasets were analyzed by limma package (|Fold Change| >1.5
and P <0.05 were considered statistically significant).
Approximately 50 genes with the most significant differences
were shown in the heatmap respectively (Figures 1A–C).

Then we intersected the three differential gene sets, and finally
obtained 86 common DEGs (Figure 1D). Subsequently,
univariate Cox regression analysis of 86 candidate genes was
applied in TCGA training set (n = 116) to identify prognosis-
related genes (P <0.01), resulting in 26 genes with Hazard Ratio
(HR) >1 and one gene with HR <1 (Table S5). LASSO regression
analysis was further performed on the prognosis-related genes in
Frontiers in Immunology | www.frontiersin.org 5
order to avoid overfitting problems and construct the risk
signature, and nine genes (AREG, CXCL10, MET, OAS1, PI3,
PLAU, S100A14, S100A2, and SPP1) were finally screened out
according to the optimal lambda value (Figures 1E, F, log
(lambda.min) = −2.554188). At the same time, the copy
number variation and the protein expression status of these
nine genes were also explored through the cBioportal database
and the HPA database (Figures S2, S3).
CONSTRUCTION OF A RISK SIGNATURE
FOR PREDICTING SURVIVAL RATE OF PC

Base on the expression level of nine IRGs and the regression
coefficient derived from LASSO regression model, we designed a
risk-score formula for PC patients’ survival prediction in training
set. The risk score for each patient was calculated as follows: Risk
score = (0.0356 × expression level of AREG) + (0.0651 ×
expression level of CXCL10) + (0.1030 × expression level of
MET) + (0.0269 × expression level of OAS1) + (0.0002 ×
expression level of PI3) + (0.0129 × expression level of PLAU) +
(0.0455 × expression level of S100A14) + (0.0519 × expression
level of S100A2) + (0.0404 × expression level of SPP1). Then the
patients in the training set were divided into high-risk group (n =
58) and low-risk group (n = 58) according to the median cut-off
value of the risk scores.

To evaluate the competitive performance of the nine immune-
related genes signature, Kaplan–Meier (K–M) curve analysis and
time-dependent receiver operating characteristic (ROC) curve
analysis were applied (Figure 2A). As shown in the Kaplan–
Meier curves, patients in the high-risk group suffered worse
prognosis than the patients in the low-risk group (Figure 2B, P
<0.001). At the same time, the area under curves (AUCs) of the
risk signature were 0.797 for 1 year survival, 0.740 for 1.5 year
survival, 0.766 for 2 year survival, 0.794 for 2.5 year survival and
0.834 for 3 year survival (Figure 2B), proving a high prognostic
value for survival prediction in the training set. Compared with the
low-risk group, the expressions of S100A2, AREG, CXCL10,MET,
OAS1, PI3, PLAU, S100A14, and SPP1 increased in the high-risk
group. Consistent with this, the number of deaths increased with
the risk scores rising (Figure 2B).

Effectiveness and Independence
Validation of the Risk Signature
for the Survival Prediction
We next performed internal validation of the risk signature in
testing set (n = 50) and the entire set (n = 166), and external
validation in GSE78229 dataset (n = 49) and GSE62452 dataset
(n = 66). By calculating the risk scores for each patient based on
the above-mentioned formula, the patients in these datasets were
divided into high-risk group and low risk group using the same
criteria. Consistent with the results in the training set, patients in
the high-risk group had significantly lower overall survival (OS)
than those in the low-risk group (Figures 2C, D, P <0.05). The
AUCs of ROC curves for predicting 1-, 1.5-, 2-, 2.5-, and 3-year
survival of PC patients in the testing set were 0.772, 0.633, 0.623,
November 2021 | Volume 12 | Article 758004

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Chen et al. S100A2 in Pancreatic Cancer
0.634, and 0.671 respectively (Figure 2C), and those in the entire
set were 0.790, 0.701, 0.725, 0.747, and 0.764 (Figure 2D). As for
external validation, the AUCs of ROC curves were 0.541, 0.626,
0.761, 0.755, and 0.842 in GSE78229 dataset, and 0.512, 0.579,
0.739, 0.745, and 0.814 in GSE62452 dataset (Figures 2E, F).
Meanwhile, the expressions of the nine hub IRGs increased
significantly and the number of deaths was remarkably higher
in the high-risk group, which was consistent with the results of
the training set (Figures 2E, F).

Afterwards, we intended to investigate whether the survival
prediction based on the risk signature was independent of other
clinical factors (Table 1). Univariate Cox regression analysis and
multivariate Cox regression analysis were conducted on these
factors in the training set, testing set and entire set respectively.
And the results showed that the risk signature was independent
of other clinical factors, including age, gender, AJCC_stage,
Frontiers in Immunology | www.frontiersin.org 6
grade, T stage and N stage (Figures S4A–F, P <0.05 in all
dataset for risk score). The prognostic value of the risk
signature was also explored in different cohorts stratified by
age, gender, tumor grade and T stage (Figures S5A–L, P <0.05 in
all subgroups). Regardless of the subgroup, patients in the high-
risk group suffered significantly poorer prognosis than those in
the low-risk group, further confirming that this risk signature
was an independent prognostic factor for PC.
Construction and Validation of a
Nomogram Based on the Nine-Gene
Signature of PC
In order to better optimize the risk signature, detailed clinical
information of 166 PC patients in the TCGA dataset was
collected, including age, gender, tumor grade, AJCC tumor
B C

E FD

A

FIGURE 1 | Screening out immune-related genes for constructing a risk signature. (A–C). Heatmap of immune-related DEGs between PC and normal tissue in
GSE15471, GSE28735, and GSE62165. (D) Venn plot of the intersection of three DEGs dataset. (E) LASSO coefficient profiles of 27 prognostic IRGs. (F) Cross-
validation for tuning parameter selection in the LASSO model.
November 2021 | Volume 12 | Article 758004
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stage and TNM stage (Table 1). First, we performed univariate
Cox regression analyses on all the factors in training set, and then
factors with P <0.2 were included in the multivariate analysis
(Figures 3A, B). Concomitantly, we reconfirmed that risk score
was an independent prognostic factor in this process. Finally, risk
score, age, T stage and N stages were incorporated into the
construction of nomogram for predicting 1-, 1.5-, and 2-year
survival rate of PC. In the nomogram, the patients’ 1-, 1.5-, and
2-year survival rates were estimated by the total points obtained
by adding up the point of each factor (Figure 3C). The C-index
of the training set, the testing set and entire set were 0.718, 0.686,
and 0.708 respectively, indicating the excellent performance of
the nomogram. Subsequently, time-dependent ROC curve and
calibration plot were applied to further evaluate the effectiveness
of the nomogram. The AUCs of ROC curves for predicting 1-,
1.5-, and 2-year survival were 0.764, 0761, and 0.807 in the
training set (Figure 3D), 0.785, 0.692, and 0.723 in the test set
(Figure 3E), and 0.767, 0.732, and 0.777 in the entire set,
respectively (Figure 3F). In addition, the calibration plot
Frontiers in Immunology | www.frontiersin.org 7
showed good agreement between the predicted and actual
outcome of 1-year, 1.5-year, and 2-year OS of the nomogram
in training set (Figures S6A–C), testing set (Figures S6D–F) and
entire set (Figures S6G–I).
S100A2 Is Highly Expressed and
Correlates With Unfavorable Prognosis
in PC
In the DEGs analysis between the high and low risk groups, the
increased expression of S100A2 occupied the most significant
position (Figure 4A, FDR = 5.55 × 10−36, log2FC = 4.36).
Furthermore, due to its high proportion in the risk signature,
we tended to consider that S100A2 occupied the core position in
the risk signature. A pan-cancer analysis of S100A2 was
performed, showing that PC experienced one of the most
remarkably increase of S100A2 expression among all types of
cancer (Figure S7). To be specific, a joint analysis of TCGA and
GTEx databases confirmed that the expression of S100A2 in PC
B C D E F

A

FIGURE 2 | Validation of the risk signature for survival prediction in training set, testing set, entire TCGA set, GSE78229 set, and GSE62452 set. (A) The process of
the risk signature validation. (B–F) Kaplan–Meier analysis of OS of the risk signature, time-dependent ROC analysis of the risk signature, heatmap of the nine hub
genes expression, the risk scores distribution and survival status of the patients in training set (B), testing set (C), entire TCGA set (D), GSE78229 set (E), and
GSE62452 set (F).
November 2021 | Volume 12 | Article 758004

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Chen et al. S100A2 in Pancreatic Cancer
tissues was significantly higher than that in normal tissues
(Figure 4B, P <0.001). Meanwhile, TCGA entire set was
divided into S100A2 high and low expression groups based on
S100A2 median expression. The Kaplan–Meier analysis
elucidated that PC patients with S100A2 high expression
suffered a poor prognosis than those with S100A2 low
expression (Figure 4C , P <0.01). Concomitantly, the
association between S100A2 expression and patients’
clinicopathological information was further investigated.
Notably, the expression of S100A2 was significantly increased
along with the progression of tumor grade, AJCC_stage, age and
T stage (Figures 4D–I).
Frontiers in Immunology | www.frontiersin.org 8
In order to further verify the above findings, we conducted
clustering on the single-cell dataset CRA001160 and explored the
predominant expression cells of S100A2 (24, 25). It was found
that S100A2 was mainly expressed by cancer cells in PC tissues
(Figure 5A). Subsequently, the significantly high expression of
S100A2 in tumor cells was confirmed by qRT-PCR in pancreatic
normal cell line (HPNE) and pancreatic cancer cell lines (AsPC-
1, BxPC-3, Capan-1, CFPAC-1, MIA PaCa-2, PATU 8988,
PANC-1, SW1990, and T3M4) (Figure 5B). Meanwhile,
PUMCH cohort (n = 65) was utilized to further validate
that high expression of S100A2 was associated with poor
prognosis in PC (Table 3). Comprehensive analysis of S100A2
B

C

D E F

A

FIGURE 3 | Construction of a nomogram for predicting 1-, 1.5-, and 2-year survival rate of PC. (A) Forrest plot of univariate Cox regression analysis in training set.
(B) Forrest plot of multivariate Cox regression analysis in in training set. (C) Nomogram integrating nine IRGs-based risk score, age, T stage and N stage.
(D–F) Time-dependent ROC analysis of the nomogram in training set, testing set and entire TCGA set.
November 2021 | Volume 12 | Article 758004

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Chen et al. S100A2 in Pancreatic Cancer
immunohistochemical scores and cl inicopathologic
information revealed that tumor with high S100A2 expression
experienced higher T stage and poorer differentiation
(Figures 5C–E). Collectively, these results indicated that
high S100A2 expression in PC patients was correlated with
unfavorable prognosis.
S100A2 Predicts the Infiltration of Immune
Cells Into PC Microenvironment
Next, in order to investigate the in-depth mechanism of S100A2
leading to poor prognosis of PC, DEGs analysis was performed
Frontiers in Immunology | www.frontiersin.org 9
between the S100A2 high expression group (n = 83) and S100A2
low expression group (n = 83) in TCGA entire set (Figure 6A). As
predicted, S100A2 was the gene with the most significant
difference between the two groups, supporting the accuracy of
the analysis. Then the co-expression network was constructed and
visualized with STRING database and Cytoscape (Figure 6B).

To further elucidate the mechanism of S100A2, GSEA analysis
was conducted on DEGs, in which P <0.05 and q <0.25 was
considered statistically significant. Five representative pathways
for the Kyoto Encyclopedia of Genes and Genomes (KEGG) and
the Gene Ontology (GO) analyses were presented respectively
(Figures 6C, D). Collectively, it was uncovered that part of the
B C

E FD
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A

FIGURE 4 | The correlation of the expression of S100A2 and clinicopathological features of PC patients in TCGA entire set. (A) Screening out the most paramount
gene in risk signature by DEGs analysis between high and low risk groups (the gene in red box). (B) Expression difference of S100A2 between PC tissue and normal
tissue according to the cBioPortal database. (C) Kaplan-Meier analysis of OS between the high S100A2 expression group and low S100A2 expression group. (D–I)
The correlation of S100A2 expression with clinicopathological features, including grade, AJCC_stage, age, T stage, N stage and status. *P < 0.05; ***P<0.001.
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pathways of DEGs enrichment were associated with immune
response and associated signaling pathways.

Therefore, CIBERSORT algorithm was applied to detect the
proportions of 22 kinds of immune cells in TCGA entire set
(Figure 6E). The results showed that relatively higher proportion
of M0 macrophages cells and a lower proportion of resting memory
CD4+ T cells were found in the S100A2 high expression group
compared with the low expression group (Figure 6F). To further
verify this conclusion, the number of macrophages and CD4+ T
cells in the single cell dataset CRA001160 was statistically analyzed,
Frontiers in Immunology | www.frontiersin.org 10
which were divided into S100A2 high-expression group, S100A2
moderate-expression group and S100A2 low-expression group.
Consistent with the previous results, with the increase of S100A2
expression, the proportion of macrophages gradually increased
while that of CD4+T cells declined (Figures S8A–C) and
immunohistochemical images also support these findings, in
which patients with high S100A2 expression exhibited higher
CD68 expression and lower CD4 expression (Figures S8D, E).

Moreover, in order to prove the universality of the results,
GSE71729 dataset (n = 125) was also included for following
B C

ED

A

FIGURE 5 | Validation of high expression of S100A2 in PC cancer cells and its association with poor prognosis. (A) The results of clustering and S100A2
expression distribution in single cell dataset CRA001160. (B) The expression difference of S100A2 between normal and pancreatic cancer cell lines detected by
qRT-PCR. The difference between each PC cell line and HPNE was analyzed. (C) Representative images of low and high expression of S100A2 in PUMCH cohort
(n = 65). (D–E) Correlation between S100A expression and T stage and differentiation status in PUMCH cohort. *P < 0.05; **P < 0.01; ***P < 0.001.
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analysis. It was discovered that the expression of S100A2 had a
significant positive correlation with M0 macrophages and
activated dendritic cells, while a remarkable negative correlation
with CD8+ T cells and activated NK cells (Figure 6G). In addition,
ESTIMATE package was also used to score the immune
microenvironment, which revealed that the immune score of the
group with high S100A2 expression was significantly lower than
that of the group with low S100A2 expression (Figure 6H).
S100A2 Is Associated With Patients’ TMB
and Response to Immunotherapy
The mutation profiles of each PC patients were analyzed and
visualized (Figure S9). For the TCGA dataset, the ten genes with
the highest mutation rate were KRAS, TP53, SMAD4, CDKN2A,
TTN, MUC16, RNF43, GNAS, ARID1A, and PCDH15
(Figure 7A). Meanwhile, we calculated the tumor mutation
burden (TMB) of each sample and found that the TMB was
higher in the group with high S100A2 expression (Figure 7B,
P <0.05). Combined with the fact that patients with high TMB
suffered a worse prognosis (Figure 7C, P <0.05), it was
hypothesized that the effect of S100A2 on the progression of
PC might result from a higher TMB.

IPS is a machine learning-based scoring system, which was
able to predict patients’ response to immunotherapy including
anti-PD-1/PD-L1 and anti-CTLA-4 treatment (37). Combined
Frontiers in Immunology | www.frontiersin.org 11
analysis of the expression S100A2 and IPS score proved that
patients with high S100A2 expression had a relative high
probability to respond to anti-PD-1/PD-L1 treatment and anti-
CTLA-4 treatment (Figures 7D, E, P <0.05). These results
indicated that patients with high S100A2 expression are more
suitable for immunotherapy such as anti-PD-1/PD-L1 treatment
and anti-CTLA-4 treatment.
The Expression of S100A2 Was Positively
Correlated With PD-L1 in PC Cells
In addition, it was discovered the expression of S100A2 in tumor
tissues was remarkably positively correlated with the expression
of PD-L1 (Figure 8A, P = 0.001, r = 0.25) and CTLA-4
(Figure 8A, P <0.01, r = 0.23), especially PD-L1. It might
partly explain why samples with high expression of S100A2
experienced fewer CD8+ and CD4+ T cell infiltration, as well as
better therapeutic effect on anti-PD1/PD-L1 therapy and anti-
CTLA-4 therapy.

Since the relationship between S100A2 and PD-L1 was the
most remarkable, PUMCH cohort (n = 65) was used to further
demonstrate the positive correlation between S100A2 and PD-L1
(Figure 8B and Table 3). There was a significantly increased
expression of PD-L1 in patients with high expression of S100A2
according to the immunohistochemical analysis of sequential
sections staining S100A2 and PD-L1 (Figure 8C, P <0.001).
TABLE 3 | Clinical and pathologic information of the PUMCH cohort.

Character Total (n = 65) S100A2 high expressioN (N = 34) S100A2 low expression (n = 31)

Number % Number % Number %

Age
Median 65 64.5 65
Range 38–81 40–81 38–80
S100A2 score
Median 6 9 3
Range 0–12 6–12 0–4
PD-L1 SCORE
Median 8 8 4
Range 1–12 2–12 1–12
gender
Male 28 43.08 17 50.00 11 35.48
Female 37 56.92 17 50.00 20 64.52
differentiation
POORLY 25 38.46 18 52.94 7 22.58
MODERATELY 27 41.54 13 38.24 14 45.16
WELL 11 16.92 2 5.88 9 29.03
UNknown 2 3.08 1 2.94 1 3.23
T stage
T1 9 13.85 2 5.88 7 22.58
T2 37 56.92 18 52.94 19 61.29
T3 17 26.15 13 38.24 4 12.90
T4 2 3.08 1 2.94 1 3.23
N stage
N0 28 43.08 17 50.00 11 35.48
N1 30 46.15 15 44.12 15 48.39
N2 7 10.77 2 5.88 5 16.13
M stage
M0 63 96.92 32 94.12 31 100.00
M1 2 3.08 2 5.88 0 0
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Meanwhile, the expression profiles of 51 pancreatic cancer cell
lines in Cancer Cell Line Encyclopedia (CCLE) database also
supported above results (Figure 8D, P <0.05).
DISCUSSION

PC is one of the leading causes of cancer-related death
worldwide, which is expected to become the second most
common cause of cancer-related death by 2030 after lung
cancer (40). There are a number of crucial reasons for this
Frontiers in Immunology | www.frontiersin.org 12
dismal status, and one of them is the lack of effective risk
predict ion models and biomarkers , which hinders
individualized treatment of PC. Herein, due to the critical role
of tumor microenvironment in the carcinogenesis and
progression of PC (41, 42), we explored an IRGs-based
predictive model to evaluate the prognosis of PC patients. Nine
prognosis-specific IRGs were identified by a series of
bioinformatics analysis: S100A2, AREG, CXCL10, MET, OAS1,
PI3, PLAU, S100A14, and SPP1. Among them, AREG, CXCL10,
MET, PLAU, S100A14, and SPP1 have been reported to be
involved in the carcinogenesis and progression of PC (43–48),
implying that our risk signature has considerable prognostic
B C
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FIGURE 6 | Differential gene analysis, co-expression network construction and functional enrichments analysis between S100A2 high and low expression groups, as
well as the correlation analysis of the expression of S100A2 and immune cell infiltration. (A) Heatmap of top 50 DEGs in PC between S100A2 high and low
expression groups. (B) Co-expression network of DEGs constructed and visualized with STRING database and Cytoscape. (C, D) Gene Set Enrichment Analysis
between S100A2 high and low expression groups. The representative 5 KEGG enrichments (C) and GO enrichments (D) were displayed respectively. (E) The
abundance ratio of the 22 types of immune cells in TCGA entire set. (F) Differential immune cell type abundance between S100A2 high and low expression groups.
(G) Correlation analysis between the expression of S100A2 and the proportion of immune cells in GSE71729 dataset. Immune cell types with P < 0.05 were shown.
(H) Differences in immune scores between high and low S100A2 expression groups. *P < 0.05; **P < 0.01.
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value. The remaining three genes, including S100A2, OAS1, and
PI3, have not been well documented for their participation in PC
development. Since S100A2 occupied the most paramount
position in the risk signature-based DEGs analysis, and
Frontiers in Immunology | www.frontiersin.org 13
S100A2 accounted for a relatively high proportion in the risk
signature, we tended to consider that S100A2 occupied the core
position in the risk signature. Therefore, we gave special
attention to S100A2 in the following exploration.
B C

D

E

A

FIGURE 7 | Figure 7. The mutation profile, TMB and relative probabilities to respond to immunotherapy in S100A2 high and low expression groups. (A) Mutation
profile of PC patients in TCGA dataset. (B) The difference of TMB between S100A2 high and low expression groups. (C) Kaplan-Meier analysis of OS between the
high TMB group and low TMB group. (D, E) The association between S100A2 expression and the relative probabilities to respond to immunotherapy, including anti-
PD-1/PD-L1 therapy and anti-CTLA-4 therapy. *P < 0.05.
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S100A2 is an important member of the S100 protein family,
which is a group of highly conserved elongation factor (EF)-hand
calcium-binding proteins (49, 50). Aberrant expression of
S100A2 affects a range of cellular physiological functions, such
as calcium homeostasis, enzyme activities and protein
phosphorylation (51, 52). Notably, the role of S100A2 in
tumors appears to be dual (53). Li et al. have reported that
S100A2 activated the PI3K/AKT signaling pathway and
upregulated GLUT1 expression in colorectal cancer, which
induced glycolytic reprogramming and consequently increased
tumor proliferation (54). Conversely, S100A2 was also identified
to be one of the crucial tumor suppressor genes involved in the
Frontiers in Immunology | www.frontiersin.org 14
lung carcinogenesis (55). And our results supported its
deteriorating effect in PC development. Previous clinical
studies have proved S100A2 to be an independent poor
prognostic factor and an indicator of less benefit to
pancreatectomy for PC (56, 57). However, the underlying
mechanism by which S100A2 promotes the progression of PC
has not been fully revealed, which is also the main content of this
study, especially the relationship between S100A2 and the tumor
immune microenvironment. GSEA analysis revealed that the
high expression of S100A2 was closely associated with the tumor
immune microenvironment and corresponding pathways,
enhanced interleukin-17 (IL-17), and tumor necrosis factor
B
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A

FIGURE 8 | Correlation between S100A2 expression and PD-L1 expression in PC. (A) Correlation analysis between the expression of S100A2 and immune
checkpoint, including PD-L1, PD-1 and CTLA-4. (B) Representative images of positive correlation between S100A2 and PD-L1 expression in sequential sections of
PUMCH cohort. (C) Expression difference of PD-L1 in high and low S100A2 expression groups in PUMCH cohort (n = 65). (D) Expression difference of PD-L1 in
pancreatic cancer cell lines with high and low S100A2 expression. *P < 0.05; ***P < 0.001.
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(TNF) signaling pathways, and also weakened adaptive immune
response, which have been widely reported to participate in
tumor progression (58–62).

Therefore, CIBERSORT algorithm was applied to further
elucidate the abundance ratios of 22 types of immune cells in
each PC patients from TCGA entire set. It was found that
compared with S100A2 low expression patients, S100A2 high
expression patients experienced significantly higher proportions
of M0 macrophages cells and activated dendritic cells, as well as
remarkable lower proportions of CD8+ T cells, resting memory
CD4+ T cells and activated NK cells. Among them, CT8+T cells,
the immune cell with the most prominent tumor killing ability
(63, 64), were significantly reduced in S100A2 high expression
group, which partially explained the poor prognosis of patients
with high S100A2 expression. Meanwhile, NK cells, another
major tumor killer cells (65, 66), showed a similar trend in
S100A2 high expression group. In addition, M0 macrophages
have been demonstrated to be associated with worse prognosis of
PC (67), but some other researches reached the opposite
conclusion (68). In our analysis, the high expression of S100A2
was associated with the increase of M0 macrophages, but
whether this is related to the mechanism of S100A2 leading to
PC progression remained to be explored. It was also possible that
the increase of M0 macrophages is a precursor to the increase of
tumor-associated macrophages (TAMs), and the immune
profiles reflected in the TCGA and GSE71729 datasets were
both prior to the differentiation of M0 macrophages. In addition,
it was worth noting that the expression of S100A2 was positively
correlated with the activation of dendritic cells, which played a
pivotal role in anti-tumor immunity (69). For this phenomenon,
we suspected that it might be due to the negative feedback effect
caused by the decrease and functional deficiency of T cells.

In recent years, immunotherapy has been proved to be one of
the most promising therapies for cancer therapy and has made a
profound progress in prolonging the survival time of patients
with of various types of tumors (70, 71). However, the
immunotherapy is almost ineffective for pancreatic cancer (72,
73). Promisingly, a small subset of patients who exhibited high
effector T-cell infiltration in tumor had longer overall survival
(15, 16), implying that immunotherapy still had certain
application value for PC patients.

Since we have previously explored the role of S100A2 in
predicting tumor immune microenvironment, we wondered
whether S100A2 has any predictive effect in predicting the
efficacy of immunotherapy for PC. In the past years, studies
have revealed that tumor mutation burden is positively related to
the efficacy of immunotherapy (74, 75). Specifically, the more
TMB a tumor has, the more neoantigens it is also likely to form
and T-cells released by immune checkpoint inhibitors are more
likely to recognize the neoantigens and thus attack the tumor cell.
Therefore, we explored the relationship between the expression
level of S100A2 and TMB. The results showed that patients with
high S100A2 expression had higher TMB, which indirectly
indicated that patients with high S100A2 expression might
have better therapeutic effect on immunotherapy. Apart from
that, according to the IPS algorithm (37), it was estimated that
Frontiers in Immunology | www.frontiersin.org 15
patients with high expression of S100A2 displayed relatively
significant anti-PD1/PD-L1 and anti-CTLA-4 therapeutic
effects. Moreover, the expression of S100A2 was remarkably
positively correlated with the expression of PD-L1 and CTLA-
4, especially with the expression of PD-L1. It has been reported
that PD-L1 was able to inhibit the activation of T cells by binding
to PD-1 receptor on the surface of T cells (76). In our study, we
found that the expression of PD-L1 was significantly increased in
patients with high S100A2 expression, suggesting that patients
with high S100A2 expression may have fewer T cells infiltration
in tumor microenvironment. Meanwhile, the results obtained by
CIBERSORT algorithm also showed that patients with high
S100A2 expression had fewer CD8+ T cells, which was exactly
consistent with the previous speculation. To further verify the
correlation between the expression of S100A2 and PD-L1,
immunohistochemistry was performed on sequential sections
of PUMCH cohort (n = 65) for S100A2 and PD-L1 respectively.
According to comprehensive analysis of immunohistochemical
scores, it was confirmed that patients with high S100A2
expression had higher PD-L1 expression in tumor tissues. In
addition, expression profile of S100A2 and PD-L1 in all
pancreatic cell lines was integrated from the CCLE database,
and similar results were obtained. Regarding the co-expression of
S100A2 and PD-L1, studies have shown that overexpression of
S100A2 in A549 lung cancer cells enhanced Akt phosphorylation
(77). Meanwhile, numerous studies have revealed that Akt
activation could increase the expression of PD-L1 (78, 79). On
this basis, we hypothesized that the co-expression of S100A2 and
PD-L1 in pancreatic cancer might be based on the activation of
the S100A2-Akt-PD-L1 signaling pathway.

In spite of the positive results, several limitations in our study
should also be acknowledged. Firstly, due to the extremely poor
prognosis of PC, the survival time of patients rarely exceeds three
years, which may bring some imprecise results when we want to
predict long-term prognosis. Besides, IPS algorithm is applied to
mimic patients’ response to immunotherapy. Although the
prediction of immunotherapy efficacy by IPS algorithm has
been verified in several independent datasets, it still cannot
completely replace the actual therapeutic effect.

In summary, a risk signature consisting of nine immune-
related genes was constructed through a series of bioinformatics
analysis, which was validated in TCGA training set, TCGA
testing set, TCGA entire set, GSE78229 set and GSE62452 set.
Subsequently, a nomogram was also developed to establish a
more accurate prognostic prediction model for PC. Furthermore,
S100A2 was identified as the gene occupying the core position in
risk model, which was demonstrated to be significantly
associated with the progression of tumor grade, AJCC_stage,
age and T stage. Mechanically, GSEA, ESTIMATE and
CIBERSORT algorithm analysis revealed that the deteriorating
effect of S100A2 was associated with dysfunctional tumor
immune microenvironment, mainly related to lower
proportion of CD8+T cells and activated NK cells and higher
proportion of M0 macrophages. Meanwhile, the results of IPS
algorithm revealed that patients with high expression of S100A2
might get more benefit from immunotherapy. Finally, our
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independent cohort was applied to demonstrate a remarkably
positive correlation between the expression of S100A2 and PD-
L1, as well as the positive relationship between S100A2
expression and unfavorable prognosis of PC patients. Our
findings demonstrate S100A2 might be responsible for the
preservat ion of immune-suppress ive sta tus in PC
microenvironment, which contributes to accurate assessment
of the prognosis of PC patients and optimization of the clinical
decision-making.
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Supplementary Figure 2 | The copy number variation information of the nine hub
IRGs in TCGA dataset.

Supplementary Figure 3 | Representative images of hub IRGs expression status
except CXCL10 in normal pancreas and PC tissues. (The expression information of
CXCL10 was unavailable in HPA database)

Supplementary Figure 4 | Independence of the risk signature and the other
clinical variables, including gender, age, AJCC_stage and grade. (A, C, E)
Univariate Cox regression analyses in the training set, testing set and entire set.
(B, D, F) Multivariate Cox regression analyses in the training set testing set and
entire set.

Supplementary Figure 5 | Stratification analyses of all patients using the risk
signature. (A–C) The Kaplan-Meier analysis of the younger stratum (age ≤ 65,
n=88), older stratum (age >65, n=78) and all patients with PC (n=166). (D–F) The
Kaplan-Meier analysis of the male stratum (n=90), female stratum n=76) and all
patients with PC (n=166). (G–I) The Kaplan-Meier analysis of the Grade I/II stratum
(n=117), Grade III/IV stratum (n=49) and all patients with PC (n=166). (J-L) The
Kaplan-Meier analysis of the T1+T2 stratum (n=27), T3+T4 stratum (n=139) and all
patients with PC (n=166).

Supplementary Figure 6 | Validation of the nomogram in training set, testing set
and entire set. (A–I) The calibration plot of the nomogram for agreement test
between 1-, 1.5- and 2-year OS prediction and actual outcome in the training set,
testing set and entire set.

Supplementary Figure 7 | A pan-cancer analysis of S100A2 on 33 types of
tumors. Red represented a significant increase in tumor, green represented a
significant decrease in tumor, and black meant no significant change.

Supplementary Figure 8 | The change of macrophages and CD4+ T cells with
the increase of S100A2 expression. (A) The expression of S100A2 in cancer cells
from 24 PDAC patients in single cell dataset CRA001160 (From high to low). (B, C)
The proportion of macrophages and CD4+ T cells in high S100A2 expression
group, moderate S100A2 expression group and low S100A2 expression group.
(D, E) Representative images of S100A2 and CD68/CD4 expression by
immunohistochemistry in HPA database.

Supplementary Figure 9 | The mutation profiles of patients in TCGA dataset.

Supplementary Table 1 | Detailed clinical and pathologic information of TCGA
entire set.

Supplementary Table 2 | Detailed clinical and pathologic information of
GSE62452 dataset.

Supplementary Table 3 | Detailed clinical and pathologic information of
GSE78229 dataset.

Supplementary Table 4 | Immune-related genes obtained from the ImmPort
database.

Supplementary Table 5 | Prognosis-related genes obtained by differential
expressed gene analysis and univariate Cox regression analysis.
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