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Abstract: Pancreatic cancer (PC) is one of the most lethal forms of cancer, characterized by its
aggressiveness and metastatic potential. Despite significant improvements in PC treatment and
management, the complexity of the molecular pathways underlying its development has severely
limited the available therapeutic opportunities. Toll-like receptors (TLRs) play a pivotal role in
inflammation and immune response, as they are involved in pathogen-associated molecular patterns
(PAMPs) and danger-associated molecular patterns (DAMPs). Activation of TLRs initiates a signaling
cascade, which in turn, leads to the transcription of several genes involved in inflammation and
anti-microbial defense. TLRs are also deregulated in several cancers and can be used as prognostic
markers and potential targets for cancer-targeted therapy. In this review we discuss the current
knowledge about the role of TLRs in PC progression, focusing on the available TLRs-targeting
compounds and their possible use in PC therapy.
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1. Introduction

Pancreatic cancer (PC) is a lethal malignancy with a high mortality rate that is pro-
jected to become the second leading cause of cancer death in the next ten years [1]. Based
on the GLOBOCAN 2020, it has been estimated that pancreatic cancer causes more than
466,000 deaths per year worldwide, ranking as the seventh cause of cancer death in males
and females [2]. Because of the lack of early diagnosis, about 80% of patients show un-
resectable tumor or metastases with a 5-year survival rate of about 10%. This parameter
can increase to 58% in a small percentage of patients in which tumor is detected at early
stages [3]. The standard treatment for patients affected by PC is surgical resection followed
by chemotherapy. This strategy, supported by different studies, results in the improvement
of survival outcome. In particular, the CONKO-001 study shows that the addition of gemc-
itabine treatment after tumor resection results in an increased 5-years survival rate with a
slight increase in the overall survival [4]. Other clinical trials are carried out in order to
identify the best therapeutic regime that improves patient survival. For example, dual treat-
ment with capecitabine and gemcitabine after tumor resection results in the amelioration of
the median overall survival [5]. Another therapeutic approach that is often applied to PC
patients is the administration of FOLFIRINOX (5FU, leucovorin, irinotecan and oxaliplatin).
This latter strategy appears to lead to a higher overall survival, progression-free survival
and response rate when compared to gemcitabine single treatment [6]. However, due
to its toxicity, this therapeutic regime is not suitable for all patients making gemcitabine
the standard drug used in the PC treatment [6]. Despite the advances in the understand-
ing of pancreatic cancer pathogenesis, the causes of the insurgence of this neoplasia still
remain unknown. Environmental factors, such as smoking, obesity, diabetes mellitus and
chronic pancreatitis, represent a potential risk for the PC insurgence [7]. Moreover, several
studies demonstrated that hereditary germline or somatic mutations are responsible for
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tumor progression. Particularly, mutations in genes that are associated with cell death and
proliferation as well as mutations in genes associated with telomerase shortening result in
PC insurgence and metastasis [8,9]. Apart from the alteration of tumor suppressor genes
and of the ones involved in the cell cycle regulation, cytokines have been shown to have
a role in the malignant transformation [10]. Chronic inflammation, indeed, can lead to
the production of several cytokines that activate different signaling pathways. This cas-
cade results in the upregulation of other proinflammatory cytokines, such as interleukin-6
(IL-6) which affect the progression of the pancreatic cancer [11]. Among these pathways,
Toll-like receptors (TLRs) seem to be activated during pancreas inflammation in response
to damage-associated molecular patterns (DAMPs) [12]. Upon activation, TLRs, through
different pathways, lead to the transcriptional factor NF-κB which supports the inflamma-
tory microenvironment [13]. Several studies demonstrated that TLRs are upregulated in
different neoplasia such as breast, lung and colon cancer where they are associated with a
favorable or with a poor prognosis [14]. Recent reports demonstrated that TLRs are highly
expressed also in pancreatic cancer where they are involved in the regulation of cancer
physiology and therefore, they may represent a novel target for the cancer therapy [15–17].
In this review, we report the current knowledge about the role of TLRs in PC progression
and we describe the compounds that may be implied in = PC treatment.

2. Toll-like Receptors

Toll-like receptors (TLRs) belong to the pattern recognition receptors (PRRs) family,
which is involved in the activation of the innate immune response [18]. The PRRs family is
able to recognize several pathogen-associated molecular patterns (PAMPs) deriving from
pathogenic bacteria or fungi, viruses and protozoa [19]. TLRs consist of type I integral
membrane glycoproteins with an extracellular N-terminal domain, that contains leucine-
rich repeats (LRRs), and an intracellular C-terminal domain defined Toll/IL-1 receptor
(TIR) domain [20,21]. TLRs family includes ten members: TLR1, TLR2, TLR4, TLR5, TLR6,
TLR10, which are expressed extracellularly and TLR3, TLR7, TLR8, TLR9, that are expressed
in the endosomes [22,23]. Furthermore, TLRs are classified according to the PAMPs that
they are able to bind to: TLR1, TLR2, TLR4 and TLR6 recognize lipids, TLR5 and TLR10
detect proteins and TLR3, TLR7, TLR8 and TLR9 bind nucleic acids (Table 1) [24]. Upon
stimulation, most of these receptors activate a signaling cascade that includes Myeloid
differentiation primary response protein 88 (MyD88). This pathway, through the activation
of several intermediates such as tumor necrosis factor (TNF) receptor-associated factor 6
(TRAF-6), IL-1R-associated kinases (IRAK) and mitogen-activated kinases, leads to the
activation of the transcriptional factor NF-κB [25], a pleiotropic factor involved in the
activation of pro-inflammatory genes [26] (Figure 1). In addition, TLRs, in particular TLR3
and TLR4, are able to activate a non-MyD88-dependent pathway that involves TIR-domain-
containing adapter-inducing interferon-β (TRIF) protein and is responsible for the synthesis
of interferon (IFN) and/or NF-κB activation [27,28]. Defects in the activation of TLRs result
in the alteration of immune homeostasis that is sustained by the upregulation of NF-κB
and the production of pro-inflammatory cytokines. This contributes to the development
and progression of several diseases including cancer, diabetes type 1 and autoimmune
diseases [29–31] (Figure 1).
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Table 1. Toll-like receptors expressed in human pancreatic cancer cell lines.

TLRs Localization PAMPs Adaptor Pancreatic Cancer Cell Line Refs.

TLR1 Plasma membrane Triacyl lipopeptides Myd88/TIRAP Not reported [19,32]

TLR2 Plasma membrane
Lycolipids, lipoprotein,

lipoteichoic acid, peptidoglycan,
zymosan

Myd88/TIRAP BxPC-3; MIA PaCa-2, MDA Panc-28, SU
8686, SW-1990, AsPC-1, Panc-1 [19,33–35]

TLR3 Endosome Double-stranded RNA TRIF AsPC-1, Colo357, Panc-89, PancTu-1,
Pt45P1 [36–38]

TLR4 Plasma membrane Lipopolysaccharide (LPS), heat
shock proteins Myd88/TIRAP AsPC-1, BxPC-3, CFPAC, MIA PaCa-2,

MDA Panc-28, Panc-1, Sw-1990 [34,35,39]

TLR5 Plasma membrane Flagellin Myd88 Not reported [32]

TLR6 Plasma membrane Diacyl lipopeptides,
lipoteichoic acid Myd88/TIRAP Not reported [32]

TLR7 Endosome Single-stranded RNA Myd88
Colo357, MIA PaCa-2, MDA Panc-28,
Panc-1, Sw-1990, Panc-89, PancTu-1,

BxPC-3
[38,40–42]

TLR8 Endosome Single-stranded RNA Myd88 Panc-1 [41]

TLR9 Endosome DNA (CpG) Myd88 GER, MIA PaCa-2, MDA Panc-28,
Panc-1, Sw-1990, T3M4 [34,43,44]

TLR10 Endosome Unknown Unknown Not reported [32]
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Figure 1. Localization and ligands of toll-like receptors (TLRs). The surface-expressed TLRs recognize bacterial compounds
while the intracellular receptors recognize virus-associated nucleic acids. Almost all these receptors activate a signaling
pathway that, through Myd88, leads to the activation of the transcriptional factor NF-κB. TLR3 and TLR4 activate a
Myd88-independent signaling which culminates in the activation of transcriptional factor IRF3.

3. Toll-like Receptor 1

TLR1 is expressed on the membrane of several lymphoid cell lines, including mono-
cytes and lymphocytes and neuronal cells, such as CHP-212 and NT2-N [45,46]. This
receptor is able to form a heterodimer with other TLRs acquiring the ability to recognize a
broad range of antigens, such as bacterial proteins upon binding to TLR2 [47], and fungi
upon binding to TLR6 [48]. Little is known about the role of this receptor in pancreatic can-
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cer. Recently, a multivariate analysis has reported a positive correlation between the higher
TLR1 expression and a better prognosis in pancreatic cancer patients who had received no
post-operative adjuvant chemotherapy [49].

4. Toll-like Receptor 2

TLR2 expression profile varies among cell types with higher expression levels found
on the plasma membrane of immune cells. Besides its role in inflammatory diseases,
TLR2 plays, also, an antitumor activity that is exerted by several mechanisms such as
enhancement of T-cell immunity, induction of apoptosis in TLR2-positive tumors and
enhancement of the innate immunity [50]. In pancreatic cancer, increased TLR2 expression
has a controversial role in the regulation of the pathophysiology of this neoplasia (Table 2).
In particular, in pancreatic cancer cells, upon the binding of HMGB1 (High mobility group
box1) to TLR2, the PI3K/pAKT pathway is activated with subsequential induction of
the epithelial-mesenchymal transition necessary for the metastatic phenotype [33,34]. Fur-
thermore, previous reports also described a role of TLR2 in the maintenance of stemness
in ovarian and breast cancer cells Lately, a recent study demonstrated that, in pancreatic
cancer cells, the interaction HMGB1 with TLR2 leads to the activation of Wnt/β-catenin
in CD133+ cancer cells and it is responsible for the activation of stem cell genes, such as
NANOG, OCT4 and SOX2 [35]. Leppanen et al. further discussed TLR2 expression in
the pancreatic intraepithelial neoplasia (PanIN), a precursor of pancreatic cancer. Particu-
larly, TLR2 expression varies among the different grades of severity of these lesions with
lower expression in PanIN1 and higher TLR2 expression in PanN3 [51].

Table 2. Association between TLRs expression and pancreatic cancer prognosis.

TLRs Expression Pancreatic Cancer Prognosis Refs.

TLR1 High Favorable [49]

TLR2 High Favorable [15]
Unfavorable [33–35,51]

TLR3 High Unfavorable [36]

TLR4 High Favorable [15]
Unfavorable [39,52–54]

TLR5 High Unfavorable [55,56]
TLR7 High Unfavorable [16,41,57]
TLR8 High Unfavorable [41,57]

TLR9 High Favorable [43,58–60]
Unfavorable [44,61]

5. Toll-like Receptor 3

TLR3 is an endosomal receptor expressed in monocytes and dendritic cells with
the ability to recognize double-stranded RNAs. Upon stimulation, this receptor activates a
signaling pathway that ends up either in the activation of NF-κB or in the interferon-beta
(IFNβ) production upon IRF3 activation. Previous evidence demonstrated the interplay
between TLR3 and Wnt5a signaling in pancreatic cancer (Table 2). Particularly, PC cells
show high expression levels of TLR3 associated with increased cancer cell proliferation and
with constitutive activation of the Wnt5a signaling [36]. However, despite TLR3 expression
in PC cells, it is still unclear which role it plays in pancreatic cancer pathophysiology.

6. Toll-like Receptor 4

TLR4 is a surface receptor, expressed either as homodimer or heterodimer together
with TLR6 on the membrane of many immune cells, that recognizes the lipopolysaccha-
ride (LPS), the major component of Gram-negative bacteria. Upon stimulation, TLR4
activates a downstream cascade which involves several adaptor molecules and culminates
in the activation of the transcription factor NF-κB [62–64]. TLR4 expression is linked to
several diseases. It has been reported that high TLR4 activation, upon LPS stimulation, is
involved in the alteration of cytosolic Ca2+ and in cell death promotion, thus contributing
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to Alzheimer’s disease pathogenesis [65,66]. Moreover, PAMPs-induced TLR4 activation
plays also a crucial role in inflammatory skin diseases [67,68]. Particularly, TLR4 stimula-
tion activates a signaling that, through the recruitment of members of the CBM complex,
leads to the activation of NF-κB-induced genes necessary for the maintenance of the inflam-
matory state [69,70]. Furthermore, TLR4 activation is involved in the promotion of several
cancers, such as cervical [71], colorectal [72], and prostate cancer [73]. TLR4 upregulation
has been found also in pancreatic cancer where it plays a central role in tumor progression.
It has been demonstrated that stromal leukocytes from pancreatic cancer patients show
high TLR4 expression levels. These data were confirmed by in vivo experiments in which
KRAS mutated mice show upregulated levels of TLR4 both in stromal and epithelial cells
while, on the other hand, TLR4−/− mice had a reduction in tumor growth. Moreover,
the high expression of TLR4 results in the activation of several NF-κB-induced genes, such
as matrix metalloproteinases 2 and 9 (MMP2 and MMP9). Previous evidence reported
that the proteolytic activity of these metalloproteinases is increased in pancreatic cancer
cells co-cultured with M2-polarized macrophages in which the epithelial-mesenchymal
transition (EMT) program is activated by TLR4/IL10 signaling pathway [52].

TLR4 upregulation is also involved in pancreatic cancer angiogenesis. It is well
known that hypoxia upregulates different pro-angiogenic pathways that promote vessel
growth [53]. Among these, the induction of TLR4 receptor by hypoxia-inducible tran-
scription factor 1 alpha (HIF-1α) may facilitate pancreatic cancer growth as demonstrated
in vitro by the exposure of PANC1 cells to hypoxic stress. Moreover, the regulation of TLR4
mediated by HIF-1α has been confirmed by knockdown experiments in which HIF-1α
depletion is associated with inhibition of hypoxia-induced TLR4 overexpression and to
pancreatic cancer regression [39].

Recently, a new role for TLR4 in pancreatic cancer progression has been reported.
Specifically, the stimulation of TLR4 and CAP1 receptors with Resistin, a hormone released
by macrophages in the cancer microenvironment, activates the STAT3 pathway that confers
to pancreatic cancer cells the ability to resist cancer therapy [54]. Lately, Lanki et al.
described a positive correlation for TLR2 and TLR4 in pancreatic cancer regression. In
particular, they showed that the expression of these TLRs correlates with a favorable
prognosis in patients with small tumor size and lymph-node-negative disease [15].

However, further investigation should be performed to shed light on the role of these
receptors in pancreatic cancer pathogenesis.

7. Toll-like Receptor 5

TLR5 is expressed on the surface of several cell lines, such as adipocytes, leukocytes,
intestinal and lung epithelial cells and in some tumor cells. Upon stimulation with flagellin,
from mobile bacteria, TLR5 activates a signaling pathway that regulates several processes
including insulin resistance, maintenance of lung and intestinal homeostasis and cancer [74].
Little is known about the role of TLR5 in pancreatic cancer. However, it has recently been
shown that ligands within the gut microbiome of pancreatic cancer patients are recognized
by TLR5, which, upon interaction with TLR2, activates a signaling cascade that leads to
the cancer growth enhancement and to the suppression of innate and adaptive immune
response [55,56].

Furthermore, in other cancers, polymorphisms in TLR5 receptor drive a differential
cancer-promoting inflammation that is responsible for different clinical outcomes of cancer
patients. Indeed, in breast cancer, deficiency in TLR5 activity is associated with an increased
cancer progression while, on the other hand, TLR5 upregulation in ovarian cancer has a
negative effect on long-term survival [75].

8. Toll-like Receptor 7

TLR7 is an endosomal receptor whose activation leads to an immune response upon
the recognition of viral ssRNA. This sensor is predominantly expressed in specific im-
mune cells such as plasmacytoid dendritic cells (pDCs) and B cells and in lower levels in
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keratinocytes, hepatocytes and epithelial cells [76]. The role of TLR7 and its agonists in
cancer insurgence and progression is currently still controversial and further investigation
is required to shed light on TLR7 function in cancer pathogenesis. Indeed, in renal and
bladder cancer, upon activation with selective agonists, TLR7 shows anti-proliferative and
apoptosis-inducing effects that result in reduced tumorigenesis. On the other hand, an
opposite role has been described for TLR7 agonists in cell chronic lymphocytic leukemia
cells where TLR7 stimulation acts as a pro-survival factor [40].

In pancreatic cancer, TLR7 expression was markedly increased in the progression from
PanINs to metastatic cancer both in humans and mice. In particular, stimulation of TLR7
receptor increases cancer progression through the downregulation of cell cycle members
such as cyclin D1 and p16, the downregulation of phosphatase and tensin homolog deleted
on chromosome (PTEN) and the upregulation of p27, p53, p21, cyclin B1, PPARγ and
TGF-β [16]. Furthermore, in epithelial cells, TLR7 stimulation leads to multiple signaling
activation, such as STAT3, Notch, MAP kinase and NF-κB in epithelial cells, confirming
that pancreatic cancer is driven by stromal inflammation [16].

Recent studies described a stage-dependent expression of TLR7 and TLR8 in the duc-
tal pancreatic cancer [41]. A functional analysis performed in pancreatic cancer cells,
PANC1, showed that increased chronic inflammation due to higher NF-κB activation and
COX-2 expression is responsible for the increased cancer cell proliferation and chemoresis-
tance [41]. Furthermore, it has been demonstrated that TLR7 and TLR8 activation is linked
to Notch-2 receptor stimulation which results in the insurgence of chemoresistance against
5-fluorouracil in PANC-1 cells 10 [57].

9. Toll-like Receptor 9

Like TLR3 and TLR7, TLR9 is an endosomal receptor that recognizes unmethylated
CpG-DNA and viral DNA [77,78]. This receptor shows a different expression profile with
high expression in immune cells, such as plasmacytoid dendritic cells (pDCs), mono-
cytes/macrophages, T and B cells and in non-immune cells, such as respiratory epithelial
cells and keratinocytes [79,80].

Furthermore, TLR9 expression is associated with unfavorable prognosis in several
cancers including squamous cell carcinoma of the tongue, esophageal adenocarcinoma
and prostate cancer [81–83] and with a favorable prognosis in renal cell carcinoma and in
triple-negative breast cancer [84,85]. It has been reported that, in pancreatic cancer, high
TLR9 expression is associated with the increase of patient survival up to 15 months [58].
In particular, the stimulation of TLR9 plays an inhibitory role in pancreatic cancer cell
proliferation. This effect was confirmed by in vivo studies in which the stimulation of TLR9
receptor with a synthetic agonist leads to pancreatic cancer regression through the inhibi-
tion of cancer cells growth and the enhancement of the immune response [43,59,60]. On
the other hand, the activation of TLR9 is responsible for the fibrotic phenotype of pancre-
atic stellate cells and for the promotion of epithelial cell proliferation, and this confers to
TLR9 a cancer-promoting role in the pancreatic cancer [44]. Recently, it has been reported
that TLR9 expression is associated with microenvironmental pathogens. Indeed, during
the pancreatic transformation, the gut microbiome may act as a source of TLR9 ligands
which are responsible for the increased expression of TLR9 [61]. Nevertheless, further
evidence is required to better define the association between TLR9 prognostic effect and
microenvironment pathogens.

10. TLRs Agonists

TLR agonists play a fundamental role in activating innate and adaptive immune
responses, and are, therefore, considered to be potent immunomodulators. For this reason,
their use is being explored in cancer treatment both as monotherapy or in combined thera-
peutic strategies [86]. It has been suggested that TLR agonists could enhance the sensitivity
of cancer cells to chemotherapy, radiation, and immunotherapy as well as improve the im-
munogenicity of ex vivo dendritic cells (DC) vaccines [87]. While the use of TLR agonists
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for the prevention and/or treatment of several disorders is a promising approach, many
of these compounds were withdrawn from further studies due to limited efficacy or for
the presence of side effects [88,89]. In this section, we will discuss the use of TLR agonists
in PC treatment, while a more comprehensive list of the main TLR agonists is present in
Table 3.

Macrophage activating lipopeptide-2 (MALP-2) is a synthetic lipopeptide capable
of inducing immune responses through TLR2 and TLR6 activation [90,91]. It has been
shown that MALP-2 can reduce tumor growth, prolong survival and increase the effi-
cacy of gemcitabine treatments in murine in vivo models of pancreatic adenocarcinoma
(PDAC) [92].

Since the cell line (Panc-2) used to generate those data do not express TLR2, the authors
hypothesized that the MALP-2 effect could be through CD8+ lymphocytes and NK cells.
Indeed, it has been shown that MALP-2 can activate DC through TLR2/TLR6 [93], even if,
a later study described that this lipopeptide is unable to induce DC-TLR2 mediated NK cell
activation [94]. However, results of a phase I/II trial that include MALP-2 treatment were
encouraging [95]. In particular, ten patients who underwent laparotomy with incomplete
or no resection of pancreatic adenocarcinoma were treated intraoperatively with MALP-2.
The trial showed that the drug was well tolerated with a median survival of 9.3 months and
mean survival of 17.1 months. An increase in the expression of co-stimulatory molecules
on lymphocytes, and cytotoxic T and NK cells infiltrating the tumor was observed, lead-
ing to the hypothesis that MALP-2 could increase the activation of both the innate and
the adaptive immune system. Currently, no other clinical trials were reported.

Another TLR2 agonist is protein-bound polysaccharide-K (PSK) that has been shown
to enhance apoptosis and inhibit tumor growth in human PDAC cell lines [96]. More
recently, evidences showed that PSK also inhibits hedgehog signaling by downregulating
the expression of mastermind-like 3 (MAML3) and recombination signal binding protein
for the immunoglobulin-kappa-J region (RBPJ) under hypoxia, inhibiting Smoothened
(SMO) transcription and, thus, suppressing the malignant phenotype of PDAC cells [97,98].

Pancreatic adenocarcinoma upregulated factor (PAUF) is a protein overexpressed
in the human PDAC [99] and other cancers [100–102]. PAUF promotes metastasis by
regulating the TLR/CXCR4 activation [103].

PAUF has been shown to be an endogenous ligand for TLR2 and TLR4, it activates the
canonical signaling pathways of TLR2-tumor progression locus 2 (TPL2)/mitogen-activated
ERK kinase (MEK)/extracellular signal-regulated kinase (ERK), but it fails to mediate TLR2-
induced NF-κB activation [103]. Recently, it has been demonstrated that PAUF can enhance
the antigen-specific CD8+ T cell antitumor immunity of DC vaccines [104].

Polycytidylic acid (Poly I:C) is a TLR3 agonist capable of enhancing the cytotoxic
activity and granzyme A/B production of γδ T cells in vitro [38]. Cell lines from pancre-
atic adenocarcinomas, squamous cell carcinomas of head and neck and lung carcinomas
expressing TLR3 and TLR7 were pretreated with Poly I: C before co-culture with γδ T cells.
The authors hypothesized that the observed effect on cytotoxicity was a consequence of the
upregulation of CD54 on the tumor cells, and its consequent interaction with CD11a/CD18
expressed on γδ T cells.

Although it was also reported that Poly I:C can accelerate pancreatic carcinogenesis
in KRAS-mutated mice [16] more recent evidence still supports its possible use as an
adjuvant [37,105,106].

Metzger et al. provided evidence that Poly I:C can functionally reprogram myeloid-
derived suppressor cells (MDSC) in orthotopically implanted KrasG12D p53fl/R172H Ptf1a-
Cre (KPC) pancreatic tumors. Whole transcriptomic analysis of MDSC populations showed
an IFN pathway-enriched gene signature together with a shift from an M2/G2- towards
an M1/G1-polarized phenotype. The authors showed that the suppressive phenotype is
promoted by IFN receptor 1 (IFNAR1), however, it is not clear if the effect of Poly I:C is
mainly through TLR3 or RIG-I-like helicases (RLH) [107].
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The effect of Poly I:C on macrophage polarization could make this compound attrac-
tive in combination with hypomethylating agents and immunotherapy.

It has been recently shown, using the KPC mouse model (KrasLSL.G12D/+; P53LSL.R172H/+;
Pdx1-Cretg/+), that low dose treatment with the hypomethylating drug decitabine (DAC)
can increase the efficacy of immune checkpoint inhibitors (ICI) therapy. However, the au-
thors also reported an increase of M2 macrophages, following DAC treatment, that are
predicted to antagonize ICI antitumor effects [108]. Therefore, it is tempting to speculate
that adding Poly I:C to the sequential therapy DAC+ICI could further improve the efficacy
of this combination by promoting the M1 polarization of TAMs.

Finally, administration of a formulation of Poly I:C with polyethylenimine ([Poly
I:C]PEI) induced apoptosis in PDAC cells but not in normal pancreatic epithelial cells [109].
Specifically, [Poly I:C]PEI, on one hand, repressed XIAP and survivin expression and, on
the other hand, it is responsible for the immune response activation through MDA-5, RIG-I
and NOXA induction and inhibition of AKT phosphorylation. In vivo administration
of [Poly I:C]PEI inhibited tumor growth via AKT-mediated XIAP degradation in both
subcutaneous and quasi-orthotopic models of PDAC [107].

Phenylmethimazole (C10) is a derivative of methimazole with anti-inflammatory
properties. Specifically, its inhibitory effect on TLR3 leads to suppression of the dsRNA
induced, TLR3-mediated IRF3/IFN-pathway. The administration of C10 was effective in
inhibiting growth and migration of cancer cell lines, as well as in inhibiting tumor growth
in vivo in nude or severe combined immunodeficient mice both for human pancreatic
cancer and malignant melanoma [36]. Several studies described a negative role of the TLR7
agonist, gardiquimod, in pancreatic cancer progression. In particular, the stimulation
with this agonist inhibits cell proliferation and activates the apoptotic program through
the downregulation of B-cell lymphoma 2 (BCL2), cyclin B1 and cyclin E and through
the upregulation of B-cell-associated X protein. Furthermore, upon stimulation with
gardiquimod, TLR7 induces the expression of anticancer genes such as PTEN and tissue
inhibitor of metalloproteinase 1 (TIMP-1) and it downregulates the expression of VEGF in
BxPC-3 pancreatic cancer cells [42]. Another reported TLR7/8 agonist is Resiquimod (R848),
which plays a role in the remodeling of pancreatic cancer immune microenvironment and
is responsible for the activation of an anti-tumor response. In particular, R848 exerts an
anti-cancer activity through the increasing of CD8+ T-cell infiltration, the formation of
tertiary lymphoid structures and decreased Treg concentration, all events associated with a
better prognosis in the human neoplasia [110].

Recently, a polysaccharide isolated from Strongylocentrotus nudus eggs (SEP) has been
shown to inhibit pancreatic cancer growth through TLR4/MAPKs/NF-κB pathway signals
and activate NK cells in vitro and in vivo. Moreover, the same compound also increased
gemcitabine anti-tumor activity by up-regulating NKG2D/MICA while reducing its side
effects through the suppression of ROS release in vitro and in vivo [111]. Interestingly,
these findings seem to contradict previous reports suggesting that TLR4 inhibition by
triptolide can enhance the sensitivity of pancreatic cancer cells to gemcitabine by inhibiting
the TLR4/NF-κB signaling [112]. These discrepancies although not totally unexpected
in pre-clinical models, highlight the complexity of successfully translating TLR-targeting
compounds to the clinic.

Similar to TLR3 and TLR7, TLR9 is expressed on endosomal membranes of several
immune cells [113], and it has been linked to acute pancreatitis and cancer [12,114].

Synthetic TLR9 agonists are oligodeoxynucleotides containing immunostimulatory
CpG motifs (CpGODNs) and are used as vaccine adjuvants or as antiallergic agents [115].

The addition of low-dose CpGODNs targeting TLR9 to a vaccine based on immune
stimulatory complexes (ISCOM) inhibited the tumor immune evasion in an orthotopic
model of pancreatic carcinoma inducing an effective CTL-mediated tumor cell killing
and prolonging mice survival [59]. Moreover, CpG-ODNs treatment showed synergy in
combination with gemcitabine in an orthotopic human pancreatic carcinoma xenograft
mouse model, reducing metastasis and overall survival compared with monotherapy
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alone [60]. Immunomodulatory nucleotides (IMO) are second-generation CpG-ODNs
with higher metabolic stability. It has been shown that IMO administration can synergize
with the anti-EGFR monoclonal antibody cetuximab by interfering with EGFR-dependent
signaling both in vitro and in vivo systems of pancreatic carcinoma [116,117].

Another CpG-ODN (ODN2216) has been reported to be able to reduce proliferation
and migration ability in PANC-1 cells in vitro [43]. Additionally, more recently, intratu-
moral injection of IMO-2155 has been shown to trigger a potent immune reaction, especially
in combination with systemic anti-PD1 therapy in pancreatic cancer orthotopic model [118].
The authors hypothesize that IMO-2125 local treatment recruited antigen-presenting cells
(APCs) into the tumor thus leading to a more effective immune response [118].

Table 3. List of agonists of Toll-like receptors.

Drug Name Target Drug Class Refs.

Pam3CSK4 TLR1/2 Synthetic triacylated lipopeptide [119]
MALP-2 TLR2/6 synthetic lipopeptide [90,91]

PSK TLR2 Protein-bound polysaccharide [96]
PAUF TLR2/4 Peptide [103,120]

SMP-105 TLR2 Components of cell wall skeleton isolated from Mycobacterium Bovis [121]
CBLB612 TLR2/6 Synthetic derivative of mycoplasma lipopeptide [122]

Phenylmethimazole
(C10) TLR3 Methimazole derivative [36]

Poly I:C TLR3 Synthetic analog of viral dsRNA (polyinosinic-polycytidylic acid) [123,124]

PolyICLC TLR3 Polyinosinic-polycytidylic acid mixed with the stabilizers
carboxymethylcellulose and polylysine [125]

Poly-IC12U TLR3 Poly I:C derivative with shorter half life and less toxicity [126]
IPH 3102 TLR3 Synthetic dsRNA agent [127]
ARNAX TLR3 Synthetic DNA/RNA hybrid molecule [128]
MPLA TLR4 Lipid A derivative [129]
OK-432 TLR4 Lyophilized mixture of group A Streptococcus pyogenes [130]

AS04 TLR4 Combination of MPLA and aluminum salt [131]
GLA-SE (G100) TLR4 Glucopyranosyl lipid-A oil-in-water emulsion [132]

CBLB502 TLR5 derivative of Salmonella flagellin [133]

M-VM3 (Mobilan) TLR5
Recombinant non-replicating adenovirus that directs expression of

human Toll-like receptor 5 and of a flagellin derivative that acts as a
selective agonist of TLR5

[134]

ssRNA40 TLR7 20-mer phosphorothioate protected single-stranded RNA oligonucleotide
containing a GU-rich sequence [16]

Gardiquimod TLR7 Imidazoquinoline compound [42]
Resiquimod (R848) TLR7 Imidazoquinoline compound [110]

Bistriazolyl TLR7 Small Molecule [135]
VTX1463 TLR8 Small Molecule [136]
CpG-1826 TLR9 Oligodeoxynucleotide containing immunostimulatory CpG motifs [122]
CpG-7909 TLR9 Oligodeoxynucleotide containing immunostimulatory CpG motifs [137]
IMO-2155 TLR9 Oligodeoxynucleotide containing immunostimulatory CpG motifs [138]
MGN1703 TLR9 Covalently closed natural DNA molecule [139]

dSLIM TLR9 MGN1703 derivative [140]
SD-101 TLR9 Oligodeoxynucleotide containing immunostimulatory CpG motifs [141]

KSK-CpG TLR9 Oligodeoxynucleotide containing immunostimulatory CpG motifs [142]
ODN2216 TLR9 Oligodeoxynucleotide containing immunostimulatory CpG motifs [143]

ODN M362 TLR9 Oligodeoxynucleotide containing immunostimulatory CpG motifs [144]

Currently, for pancreatic cancer, combination therapy including TLR9-activating CpGs
is being evaluated in two clinical trials (Clinicaltrials.gov accessed on 28 October 2021:
# NCT04612530 and # NCT04050085). At this time both studies are still recruiting and no
result has been posted. However, they will help to shed light on whether TLR9 agonists
could represent a valid strategy to potentiate immunotherapy as well as chemotherapy
in PC.

11. TLRs Antagonists

TLR antagonists are compounds able to reduce or inhibit activation of TLRs signaling,
therefore acting as modulators of the native immunity.

They can generally be divided into two families: direct and indirect TLR antagonists.

Clinicaltrials.gov
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Direct TLR antagonists are mostly compounds that competitively bind to the TLRs but
fail to induce the conformational change necessary for the signal propagation. On the other
hand, indirect TLR antagonists block TLR-associated signaling without competing with
their ligands [145,146].

The potential use of TLRs inhibitors in the treatment of human cancers has been
evaluated in both pre-clinical and clinical studies.

Given the importance of the TLR4 pathway in cancer progression, it’s not surprising
that currently most of the inhibitors developed are directed against TLR4 (Table 4).

E5564 (also known as Eritoran) is a structural analog of the lipid A portion of LPS
which competitively binds to TLR4/MD-2, thus resulting in inhibition of LPS-induced
inflammatory responses. Although originally developed for the treatment of severe sep-
sis [147] there is evidence supporting its use in the cancer therapy [147]. In 2016, in fact,
Deguchi et al. found that Eritoran inhibited lung cancer progression in vivo, likely due to
reduced tumor angiogenesis, lower levels of TAMs and CD11b+Ly6C++Ly6G– myeloid-
derived cells infiltration with a consequent increase in CD8+ T-cell tumor infiltration [148].
Moreover, Kuo et al. showed that treatment with Eritoran in murine models of colorectal
carcinoma was able to inhibit the progression of bacterial LPS-induced colon cancer through
induction of CD14/Src/PKCζ-mediated apoptosis and the blockade of TLR4-dependent
proliferation [149].

TAK-242 (also known as Resatorvid) is a small molecule inhibitor developed by
Takeda. Its inhibitory effect is a consequence of the selective binding to TLR4 TIR-domain,
therefore preventing its interaction TRAM or TIRAP [150].

Reports from different groups show this compound as negatively affecting prolifera-
tion and invasiveness of different cancer cell lines while enhancing the anti-cancer effects of
chemotherapeutic agents [151–154]. Moreover, topical TAK-242 administration was shown
to suppress solar UV-induced skin tumorigenesis in SHK-1 mice antagonizing chronic
UV-induced inflammatory signaling [155].

Surfactant protein A-derived (SPA4) is a peptide inhibitor derived from the TLR4-
interacting region of the SP-A [156]. It has been shown that it can inhibit LPS-stimulated
inflammatory responses, migration and invasion of colon cancer SW480 [157]. Similar
results were also reported in the lung cancer [158,159].

CRX526 (also known as an aminoalkyl-glucosaminide-phosphate) is a synthetic
molecule that mimics the active component of LPS that binds to TLR4 (lipid A) [160,161].
CRX-526 was reported to significantly reduce the tumor volume of colon cancer xenograft
mice models likely through the suppression of the TLR4/NF-κB p65 axis [162].

CX-01 is a heparin-derived polysaccharide with a low anticoagulant activity that
targets the interaction of TLR4 and its ligand high mobility group 1 protein (HMGB1) [163].

The use of this TLR4 inhibitor has been evaluated in clinical trials for the treatment of
refractory acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS). Remark-
ably, it has shown promise in combination with chemotherapy or with epigenetic therapy
(Azacitidine) [163,164].

CXC195 is an indirect TLR4 antagonist that inhibits the interactions of TLR4, MyD88
and NF-κB. It also inhibits the translocation of NF-κB to the nucleus, as well as its DNA bind-
ing activity. It has been shown that CXC195 can induce apoptosis and inhibits proliferation
in cellular models of hepatocellular carcinoma cells [165,166] and bladder carcinoma [167].
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Table 4. List of antagonists of TLRs.

Drug Name Target Drug Class Refs.

TAK-242 (Resatorvid) TLR4 Small molecule inhibitor [150]
CRX-526 TLR4 Synthetic lipopolysaccharide [163]

CX-01 TLR4 heparin-derived olysaccharide [164]
CXC195 TLR4 tetramethylpyrazine analogue [165]

Eritoran (E5564) TLR4 Synthetic lipopolysaccharide [168]
Atractylenolide-1 TLR4 sesquiterpene compound [169]

Triptolide TLR4 diterpenoid epoxide [170]
Paeonol TLR4 Small molecule inhibitor [171]
NI-0101 TLR4 Monoclonal antibody [172]

Nalmefene (JKB-121) TLR4 Small molecule inhibitor [173]
Ibudilast (AV-411, N-166) TLR4 Small molecule inhibitor [174]

Polymyxin B (PMB) TLR4 Cyclic polypeptide antibiotic [175]
OPN305 TLR2 Monoclonal antibody [176]

Hydroxychloroquine TLR7,9 Quinolone [177]

12. Conclusions

Despite the progress made in translational research and therapy, pancreatic cancer
still remains a lethal disease. Emerging evidence demonstrates that inflammation and
pancreatic cancer are strongly associated. In this scenario, TLRs play a crucial role by
activating the pro-inflammatory pathways responsible for the production of cytokines ad
chemokines necessary to create a favorable microenvironment for tumor growth. Since
these receptors play a dual role, as they activate pathways that lead to immunosuppressive
cytokines production, the employments of TLR agonists and antagonists in cancer therapy
may represent a potential strategy to improve the survival rate of patients with pancreatic
cancer. Furthermore, a better comprehension of the molecular adaptors and their role in
the TLRs signal transduction may help for the modulation of TLRs response in therapeutic
treatments. Here we summarized the current knowledge about the implication of TLRs in
PC, but despite the encouraging results, further studies are needed to better comprehend
the molecular signature of pancreatic cancer and successfully employ TLRs modulation in
a clinical setting.
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