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Abstract: To realize high efficiency, low/no damage and high precision machining of tungsten
carbide used for lens mold, a high frequency ultrasonic vibration cutting system was developed
at first. Then, tungsten carbide was precisely machined with a polycrystalline diamond (PCD)
tool assisted by the self-developed high frequency ultrasonic vibration cutting system. Tool wear
mechanism was investigated in ductile regime machining of tungsten carbide. The cutter back-off
phenomenon in the process was analyzed. The subsequent experimental results of ultra-precision
machining with a single crystal diamond tool showed that: under the condition of high frequency
ultrasonic vibration cutting, nano-scale surface roughness can be obtained by the diamond tool
with smaller tip radius and no defects like those of ground surface were found on the machined
surface. Tool wear mechanisms of the single crystal diamond tool are mainly abrasive wear and
micro-chipping. To solve the problem, a method of inclined ultrasonic vibration cutting with negative
rake angle was put forward according to force analysis, which can further reduce tool wear and
roughness of the machined surface. The investigation was important to high efficiency and quality
ultra-precision machining of tungsten carbide.

Keywords: tungsten carbide; lens mold; single point diamond turning (SPDT); ultrasonic vibration;
Ductile regime; surface quality; wear

1. Introduction

Today, there is an increasing demand for aspheric lenses with the rapid development of the
optical industry. The precision molding technique has become an important method for making
optical components because of its high efficiency and high precision [1,2]. To undergo the process
environment of high temperatures (400–800 ◦C) and large forces (1–10 kN) in the precision molding
technique, the mold material should be heat-resistant and hard [3]. So far, ceramics have become the
most promising material for precision molding, especially superfine tungsten carbide [4–6]. The molds
for precision molding are typically ultra precision ground technique with a subsequent polishing [7–9],
which is a process time-consuming process with low reproducibility. On the other hand, ultra-precision
diamond turning is a mechanical manufacturing process that can achieve sub-nanometer level
surface finishes (below 5 nm Ra) and sub-micrometer form accuracies (below 300 nm) on complex
geometries [10]. Therefore, making optical molds with high efficiency, low/no damage and
high precision can be realized by ultra-precision diamond turning [11]. The ultrasonic assisted
ultra-precision diamond turning has already proved its potential for machining hard-to-cut materials
such as steel [12], Co-Cr-Mo alloy [13], single-crystal silicon [14] and glass [15,16]. These publications
demonstrate that ductile mode processing of tungsten carbide is possible [17–19].
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In this paper, tungsten carbide will be ultra-precision machined using (Single Point Diamond
Turning) SPDT assisted by a self-developed high frequency ultrasonic vibration cutting system. Critical
depth of cut and wear mechanism will be investigated in ductile regime machining of tungsten carbide.
Some phenomena and problems in the process will be analyzed, and then corresponding solutions will
be put forward. This work has the extensive applicability and practical significance for ultra-precision
machining tungsten carbide and optical molding industry.

2. Experimental Preparation

2.1. Ultrasonic Vibration Cutting System

As shown in Figure 1, the ultrasonic vibration cutting system used in this experiment consists
of ultrasonic generator, power amplifier, horn, transducer and its clamping device, cutting tool and
integrated micro height adjustment. A digital-tracking-mode ultrasonic generator with working
frequency scope between 20 and 100 kHz was selected in order to ensure stable frequency and
vibrating amplitude in the cutting process.
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Plane 42 was chosen as the surface element and Solid 95 was chosen as the body element for the 
finite element model. The boundary condition was assumed to be isothermal [20]. Mesh tool was 
selected to control mesh size. Grid partition of the axial section and horn model were shown in 
Figures 2 and 3, respectively. 

 
Figure 2. Axial section and grid partition. 

Figure 1. Schematic diagram of the ultrasonic vibration cutting system used in this experiment.

2.2. Modal Analysis of the Horn Using Finite Element Method

In order to avoid interference with tool setting gauge, ultrasonic horn made of quenched alloy
steel was designed to an upward cutting end and a fixed end with vibration isolation groove. In order
to analyze natural frequencies of the horn before experiment, a finite element analysis was carried out.

In the finite element analysis (FEA), material attributes were set as follows: young modulus
was set to be 206 GPa, poison ratio was set to be 0.27, and mass density was set to be 7900 kg/m3.
Plane 42 was chosen as the surface element and Solid 95 was chosen as the body element for the
finite element model. The boundary condition was assumed to be isothermal [20]. Mesh tool was
selected to control mesh size. Grid partition of the axial section and horn model were shown in
Figures 2 and 3, respectively.
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Figure 3. Horn model and grid partition.

Modal analysis was set for the FEA and subspace was set for the extraction method. The extraction
scope of frequencies was 30–90 kHz and the modal order number was set to be 10. Displacement
constraints were imposed on upper-end of the horn spatial model, as shown in Figure 4.
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Figure 4. Imposing constraints on upper-end of the horn.

Corresponding natural frequencies of the horn between 30 kHz and 90 kHz when resonance
occurred are shown in Table 1. By observing vibration mode shapes of the horn, we know that axial
resonance occurred at a frequency of 67.533 kHz. Vibration mode shape of the horn at frequency of
67.533 kHz is shown in Figure 5. No axial resonance occurred at other frequencies. The vibration mode
shape of the horn at a frequency of 38.198 kHz is shown in Figure 6.

Table 1. Natural frequencies of the ultrasonic horn.

Order Natural Frequencies (kHz)

1 35.454
2 38.198
3 38.198
4 67.553
5 79.864

A sandwich transducer was fabricated using PZT8 piezoelectric ceramics, and the electrode slices
was fabricated using beryllium copper.
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2.3. Performance Testing of the Ultrasonic Vibration Cutting System

The no-load test results of the developed ultrasonic vibration cutting system showed that the cutting
end reached resonance at a frequency of 64.769 kHz. The experimental result is in good agreement with the
FEA result. The laser interference vibration measuring system (SIOS, SP-S, SP-S 120/500, SIOS MeBtechnik
GmbH, Ilmenau, Germany) was adopted to track the amplitude of the cutting end. The corresponding
amplitude between 1 and 14µm was measured at the voltage range of 0–400 V.

2.4. Experimental Condition and Plan

J05 tungsten carbide with a diameter of 16 mm was used in this experiment. Material properties of
J05 were shown in Table 2. A precision cutting process with PCD tool (tip radius 1 mm, Shenzhen Yuhe
Diamond Tools Co., Ltd., Shenzhen, China) was arranged at first due to lower surface smoothness of
the specimen. Then, a natural single crystal diamond tool was used to ultra-precision cutting from the
operator to the center of the workpiece along the X-axis direction. Both processes were performed
with lubrication of light mineral oil (isopar H).

Table 2. Material properties of tungsten carbide.

Name Chemical Composition
(Weight Percentage %) Hardness Grain Size (µm) Density (g/cm3)

J05 WC: 90 (±0.5%)
Co.: 10 (±0.5%)

HRA:91.2–92.0
HRC:76.4–77.2 0.6 14.65

As shown in Figure 7, the self-developed high frequency ultrasonic vibration cutting system was
amounted on an ultra-precision lathe (Nanotech 250UPL, Moore Nanotechnology System, LLC, Keene,
NH, USA). The tool setting and cutting processes were assisted by a real time monitoring system.
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2.5. Test Method

A white light interferometer was used to measure the surface topography and roughness of
the machined workpiece. A 3D digital microscope was used to observe the topography of diamond
tool wear.

3. Results and Analysis

3.1. Precision Machining Using PCD Tool and Results

The selected process parameters were as follows: the spindle rotation speed was set to be 100 rpm,
the feed rate was set to be 1 mm/min, the depth of cut was set to be 3 µm, the frequency for ultrasonic
vibration cutting system was set to be 65 kHz and the vibrating amplitude adjusted by power amplifier
was set to be 2 µm.

The surface roughness of the machined workpiece is 173.56 nm and the surface topography,
which reached the requirement for ultra-precision machining, is shown in Figure 8.
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3.2. Ultra-Precision Machining Using Natural Single Crystal Diamond Tool

To obtain nano-scale surface roughness, a diamond tool with a larger tip radius of 1.5 mm
was adopted according to the geometrical factor. The selected process parameters were as follows:
the spindle rotation speed was set to be 50 rpm, the feed rate was set to be 0.01 mm/min, the depth of
cut was set to be 3 µm, the frequency for ultrasonic vibration cutting system was set to be 65 kHz and
the vibrating amplitude adjusted by power amplifier was set to be 2 µm.

To ensure cutting in the ductile region, the trial cutting method was adopted to decide the cutting
depth. As shown in Figure 9, a continuous and ribbon-like chip appeared at the cutting depth of
200 nm. Thus, the optimal cutting depth was determined.
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A back-off phenomenon happened when displacement distance of the diamond tool is 2 mm
along X-axis. The corresponding surface topography of the machined workpiece is shown in Figure 10.
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Figure 10 showed that surface roughness of 4.72 nm was obtained near the edge of the workpiece
when the diamond tool cut into the workpiece. Then, the roughness was changed to 9.85 nm after
a longer cutting distance. Subsequently, the cutting process cannot proceed after back-off phenomenon
occurred, as shown in Figure 10c,d.

The reason for the back-off phenomenon was assumed to be the hardness of tungsten carbide
and the tool tip radius. The stress put on the diamond tool was so strong that the screw was loosened
due to the longer contact between tool tip and workpiece. To reduce the stress, a diamond tool with
a tip radius of 0.5 mm and lower spindle rotation speed were adopted. Figure 11a showed an obvious
chipping on the tool edge (in the red elliptic mark). In Figure 11b, some small grooves were found in
the wear land. So, wear mechanisms of the single crystal diamond tool were mainly abrasive wear
and micro-chipping according to Figure 11 as well as surface topography of the machined workpiece,
as shown in Figure 12. The surface roughness of the machined workpiece was Ra 2.55 nm when
diamond tool cutting in a very short distance, but gradually rose to Ra 8.85 nm due to the longer
cutting distance and tool wear. Surface quality was so good that no micro crack was found in the
surface topography of the machined workpiece.
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3.3. Discussion

From the above experimental results, the strong stress and friction between tool tip and workpiece
easily gave rise to an inclined angle δ of ultrasonic horn, which changed 0◦ of rake angle to a positive
rake angle, as shown in Figure 13. In the cutting direction, cutting force F1 and friction force f 1 existed
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between flank surface of diamond tool and machined surface of workpiece at the stage of withdraw of
the diamond tool from the chip. At the same time, in the feed direction, cuttingforce F2 and friction
force f 2 existed between the flank surface of the diamond tool and the transitional surface of the
workpiece when the diamond tool left the chip (Figure 14). Therefore, diamond tool micro-chipping
happened very easily due to the impact and alternating stress between the diamond tool and the
workpiece [21].
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In the inclined ultrasonic vibration cutting with negative rake angle, the diamond tool vibrated
along the direction, as shown in Figure 15. On one hand, not only inclined cutting can decrease the
impact force between diamond tool and workpiece, but also cutting with negative rake angle can
enhance the strength of diamond tool. On the other hand, inclined cutting can avoid the contact and
friction between the rear face of the diamond tool. At the same time, the separation between the
diamond tool and the workpiece can help the cutting fluid reach the tool tip region, which can cool
and lubricate the diamond tool completely. In this method, the size of both negative rake angle and
included angle between vibrating direction and cutting direction had a great influence on surface
roughness and tool wear.
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view; (b) Top view.

To validate the proposed method and raise machining efficiency, an experiment was conducted
under the following conditions: tip radius was 0.5 mm, light mineral oil (isopar H) was selected as
lubrication, the spindle rotation speed was set to be 400 rpm, the feed rate was set to be 1 mm/min,
the depth of cut was set to be 3 µm, the frequency for ultrasonic vibration cutting system was set to
be 65 kHz and the vibrating amplitude adjusted by power amplifier was set to be 2 µm, inclination
between rake face and XOZ plane was set to be about −5◦, inclination between the center line of
diamond tool and Z-axis was set to be about 5◦.

Figure 16 showed surface topography of the machined workpiece using the proposed method.
Surface roughness of the machined workpiece has been improved (Ra 1.82–6.2 nm) compared to that
of conventional ultrasonic vibration cutting (Ra 2.55–8.85 nm, within a distance of 1 mm).
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Figure 17 showed wear of the diamond tool using the proposed method. Wear has been improved
(wear land width 0.78 µm, wear land length 41.47 µm) compared to that of conventional ultrasonic
vibration cutting (wear land width 3.05 µm, wear land length 44.61 µm). Tool wear land of single
crystal diamond tool was smaller and no obvious chipping was found on the tool edge.
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4. Conclusions

(1) A high frequency ultrasonic vibration cutting system was developed, and a tungsten carbide
was precisely machined with a PCD tool assisted by the cutting system. Tool wear mechanism was
investigated in ductile regime machining of tungsten carbide. The cutter back-off phenomenon in the
process was analyzed.

(2) Tool wear mechanisms of both PCD and single crystal diamond tool were mainly abrasive
wear and micro-chipping under the condition of high frequency ultrasonic vibration. The surface
roughness of the machined workpiece gradually increased with the increased diamond tool wear.
The size of tip radius had a great influence on diamond machinability of tungsten carbide. A nano-scale
surface roughness can be obtained by using diamond tool with smaller tip radius and no defects were
found on the machined surface.

(3) A method of inclined ultrasonic vibration cutting with negative rake angle was put forward
according to force analysis, which can further reduce tool wear and roughness of machined surface.
The above investigation is important to high efficiency and quality ultra-precision machining of
tungsten carbide.
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