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Resource availability influences marine microbial community structure, suggesting that population-
specific resource partitioning defines discrete niches. Identifying how resources are partitioned
among populations, thereby characterizing functional guilds within the communities, remains a
challenge for microbial ecologists. We used proteomic stable isotope probing (SIP) and NanoSIMS
analysis of phylogenetic microarrays (Chip-SIP) along with 16S rRNA gene amplicon and
metagenomic sequencing to characterize the assimilation of six 13C-labeled common metabolic
substrates and changes in the microbial community structure within surface water collected from
Monterey Bay, CA. Both sequencing approaches indicated distinct substrate-specific community
shifts. However, observed changes in relative abundance for individual populations did not correlate
well with directly measured substrate assimilation. The complementary SIP techniques identified
assimilation of all six substrates by diverse taxa, but also revealed differential assimilation of
substrates into protein and ribonucleotide biomass between taxa. Substrate assimilation trends
indicated significantly conserved resource partitioning among populations within the Flavobacteriia,
Alphaproteobacteria and Gammaproteobacteria classes, suggesting that functional guilds within
marine microbial communities are phylogenetically cohesive. However, populations within these
classes exhibited heterogeneity in biosynthetic activity, which distinguished high-activity copio-
trophs from low-activity oligotrophs. These results indicate distinct growth responses between
populations that is not apparent by genome sequencing alone.
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Introduction

It is well established that heterotrophic marine
microbes have a critical role in global carbon cycling,
remineralizing carbon via heterotrophic respiration
and transferring phytoplankton-derived organic car-
bon to higher trophic levels via secondary microbial
production (Whitman et al., 1998; Azam and
Malfatti, 2007). However, models of marine micro-
bial systems have yet to progress substantially
beyond ‘black box’ approaches that quantify whole-
community processes to more complex models of
ecosystem processes, which incorporate community
structure and functional understandings of indivi-
dual microbial taxa (Ducklow, 2000; Yokokawa and
Nagata, 2010). This progress is currently limited by
our understanding of how diverse populations

within marine microbial communities interact and
drive ecological processes.

Parallel lines of inquiry have examined microbial
diversity across environmental gradients (that is,
spatial, temporal and resource gradients) by quanti-
fying community and population-level changes in
16S rRNA gene, metagenomic, metatranscriptomic
and metaproteomic data. Taxonomic surveys have
revealed structural shifts in microbial communities
that correlate with physical and biogeochemical
gradients (Morris et al., 2012; Dinasquet et al.,
2013), as well as annually recurring resource
gradients defined by biotic and abiotic factors,
including vertical stratification, upwelling events
and phytoplankton blooms (Fuhrman et al., 2006;
Treusch et al., 2009; Gilbert et al., 2012). Structural
changes in the functional repertoire of marine
microbial communities have also been identified
across spatial scales, including transitions in carbon
metabolism along depth profiles (DeLong et al.,
2006) and along a transect from higher-nutrient
coastal waters to a more oligotrophic oceanic gyre
(Morris et al., 2010). Placing these results within the
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framework of niche theory (Whittaker, 1972), these
studies suggest that specific adaptations or ecologi-
cal strategies of distinct microbial populations
enable successful exploitation of environmental
niches.

The application of transcriptomic and proteomic
approaches to characterize in situ gene expression
has enabled the development of hypotheses con-
cerning the ecological strategies of these diverse
populations. Analysis of microbial transcriptomes
taken from southeastern US coastal waters identified
gene expression patterns among coexisting popula-
tions, suggesting that ecological strategies fall along a
continuum between slower growth coupled with
metabolic specialization to faster growth and higher
metabolic diversity (Gifford et al., 2013).

A study of North Sea waters (Teeling et al., 2012)
examined the role of phytoplankton blooms, and, in
turn, the temporal release of different resources, in
shaping microbial community structure with com-
bined taxonomic, functional and environmental
observations. Principal findings included early
bloom abundance and carbohydrate utilization
enzyme expression by Flavobacteriia, mid and late
bloom increases in Gammaproteobacteria popula-
tions, and the post or pre-phytoplankton bloom
dominance of Alphaproteobacteria. Several meso-
cosm studies of induced phytoplankton blooms have
explicitly examined the turnover of bloom-derived
dissolved organic carbon (DOC), which includes
substantial amounts of carbohydrates exuded during
rapid bloom growth, as well as protein, amino acids
and lipids that are released as cellular debris as
blooms collapse (Norrman et al., 1995; Biddanda and
Benner, 1997; Myklestad, 2000; Meon and
Kirchman, 2001). Taken together, the results of these
studies indicate that microbial community structure
is influenced by both the concentration and type of
substrates that are available. Therefore, defining how
substrates are partitioned among discrete popula-
tions is a prerequisite for relating community
structure to biogeochemical cycling.

The use of stable isotope probing has emerged as a
powerful technique for linking biochemical func-
tions to specific populations within complex micro-
bial communities. Traditionally, this technique has
utilized density-based separation of light, unlabeled
and heavy, labeled, RNA and DNA to identify
substrate-assimilating populations (Dumont and
Murrell, 2005). Recently developed techniques uti-
lize mass spectrometry to quantify stable isotope
incorporation into rRNA or newly synthesized
proteins, offering advantages in throughput and
sensitivity. Chip-stable isotope probing (SIP) quanti-
fies isotopic labeling of rRNA hybridized to a
microarray (Mayali et al., 2012, 2013, 2014). Proteo-
mic SIP utilizes exhaustive database searching to
identify peptides and quantify their isotopic enrich-
ment (Pan et al., 2011; Hyatt and Pan, 2012; Wang
et al., 2013; Bryson et al., 2016). In this study we
utilized Chip-SIP and proteomic SIP to describe the

assimilation of six 13C-labeled substrates (glucose,
starch, acetate, lipids, amino acids and protein) of
importance to heterotrophic marine microbes
(Geider and Roche, 2002; Kirchman, 2003; Nagata,
2008) by planktonic microbial populations in surface
sea water sampled in Monterey Bay, CA. By
combining this substrate assimilation data with
metagenomics and 16S rRNA gene amplicon sequen-
cing, we were able to examine the accompanying
shifts in taxonomic composition of this coastal
marine microbial community during these micro-
cosm incubations.

Although previous studies have examined changes
in both microbial community structure (Gómez-
Consarnau et al., 2012) and function (McCarren
et al., 2010) following the addition of high- and low-
molecular-weight DOC substrates, the combination of
SIP and sequencing approaches in this study enabled
direct comparisons between substrate assimilation
and relative abundance shifts, and allowed us to
address several questions concerning how best to
define functional guilds within these communities. In
other words, do related populations assimilate the
same substrates, and are taxonomic assignments
indicative of functional guild membership? Do rela-
tive abundance shifts determined by DNA-sequencing
approaches consistently reflect direct substrate assim-
ilation measurements? And finally, are discrepancies
between substrate assimilation into ribonucleotide
and protein biomass indicative of underlying meta-
bolic mechanisms that differentiate the environmen-
tal growth strategies of populations?

Materials and methods

Sample collection, processing and incubation
Surface water was collected from Monterey Bay (36°
N 53.387′–121°W 57.257′, ~ 10 km from shore;
Supplementary Figure S1) on 14 October 2013 while
on board the R/V Rachel Carson as previously
described (Mueller et al., 2015; Bryson et al., 2016).
The ⩽ 1.5 μm fraction of cells was incubated in acid-
washed and rinsed 10 l polycarbonate carboys
amended with ~1 μM final concentration of 13C-
labeled substrates (498%13C) in triplicate: amino
acids, protein, glucose, starch, acetate and lipids
(Sigma-Aldrich, St Louis, MO, USA, 426199, 642878,
389374, 605336, 282014 and 426202). To determine
the necessary time for quantifying substrate assim-
ilation while also minimizing potential cross-feed-
ing, incubations were carried out for 15 and 32 h.
Because 13C label was detected after 15 h (see
methods below), this study presents data primarily
from the t=0 sample and 15 h incubations. Incuba-
tions were held at constant temperature close to the
ambient water column (19 °C). Cells from replicate
microcosms were concentrated in parallel on 0.2 μm
polyethersulfone membrane filters, which were
transferred to sterile 15ml tubes, immediately frozen
on dry ice and subsequently transferred to a −80 °C
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freezer for long-term storage. Formaldehyde-fixed
and SYBR Green-stained cells were counted with a
Guava Technologies (Hayward, CA, USA) flow
cytometer as previously described (Tripp et al.,
2008; Tripp, 2008).

16S rRNA gene amplicon analysis
PCR amplicon libraries of the v4 rRNA gene region
were amplified from DNA extracts of all microcosms
(Mueller et al., 2015) using dual-indexed 16S primers
(Kozich et al., 2013). Resulting amplicons were
sequenced on the Illumina (San Diego, CA, USA)
MiSeq platform at Oregon State University’s Center for
Genome Research and Biocomputing as previously
described (Bryson et al., 2016). A more detailed
protocol is available in the Supplementary Methods.

Metagenome sequencing, assembly and annotation
DNA extraction, metagenome library construction
and sequencing were previously described (Mueller
et al., 2015; Supplementary Methods). Metagenome
abundances for predicted coding sequences (CDS)
were determined by mapping non-redundant
sequencing reads back to the contigs using Bowtie
2 (Langmead and Salzberg, 2012) with default
settings and calculating the average coverage for
each locus using the bedtools coverage tool (Barnett
et al., 2011). Relative abundances of operational
taxonomic units (OTUs) detected in the 16S rRNA
amplicon libraries were highly correlated with 16S
rRNA gene abundances that were assembled using
EMIRGE (Miller et al., 2011) from the metagenomes
(data not shown).

Peptide mass spectrometry, identification and database
construction
Protein extraction, digestion and mass spectrometry
analysis followed previously reported protocols
(Bryson et al., 2016; Supplementary Methods). This
procedure utilized SDS lysis and trichloroacetic acid
precipitation of proteins, followed by cleanup and
trypsin digestion on centrifugal filters, and finally
Multidimensional Protein Identification Technology
was used for the liquid chromatography tandem
mass spectrometry measurements using an LTQ
Orbitrap Elite mass spectrometer (Thermo Scientific,
Waltham, MA, USA) (Washburn et al., 2001).
Peptide identifications are available under the PRIDE
archive PXD002641.

The final database used for SIP searches (60 006
CDS) was constructed from all CDS with at least one
peptide identification in regular (that is, unlabeled
search mode) Sipros searches of each metaproteome
against the 391 847 CDS from the full metagenome
assembly and a reduced database consisting of
181 704 CDS from only high metagenome coverage
contigs. To ensure support for our reduced database
selection approach, test Sipros searches in labeled
mode were performed comparing subsets of the

spectra data against the non-reduced metagenome
database. Under these conditions all labeled proteins
identified were also identified in unlabeled searches,
suggesting a low rate of missed protein detections by
using a reduced database (data not shown).

Proteomic SIP analysis
Label frequency and average enrichment values were
calculated for each set of proteins assigned to a taxon
at a specific rank, as previously described (Bryson
et al., 2016). We considered substrate incorporation to
be detected if a peptide spectral match (PSM) was
labeled, that is, if it was identified with ⩾2% 13C
content. Label frequency was defined as the relative
frequency of labeled PSM to total PSM for a set of
protein identifications assigned to a specific popula-
tion, that is, the proportion of identified mass spectra
that were labeled. Accordingly, this metric quantifies
the extent of de novo protein synthesis for the
population. Average enrichment was defined as the
average % 13C content of all labeled PSM that were
detected for a set of proteins assigned to a specific
population. As such, this metric quantifies substrate
specialization. Relative substrate assimilation values
for taxonomic bins were calculated as the proportion
of labeled PSM multiplied by the average % 13C
enrichment for PSM of a bin divided by the sum of
this value for all bins in a sample, that is, the
proportion of total detected substrate assimilation
within a replicate. To enable comparisons across
substrates, it was necessary to standardize to the mean
and s.d. of the observed average enrichment values for
sets of proteins assigned to different genera (or higher
taxonomic levels if genus level assignments were not
available) within each treatment. Hierarchical cluster-
ing and heatmaps of standardized average enrichment
and label frequency metrics (data in Supplementary
Tables S1 and S2) were performed in MeV (Howe
et al., 2010). Significant levels of average enrichment
were determined by comparing the observed average
enrichment for a population to the values obtained
from 1000 random samples of labeled spectra from
the entire set of labeled PSM obtained for a
metaproteome. Values were determined to be sig-
nificant if they were equal or more extreme than 95%
of values obtained from the randomization test.
Significant average enrichment values are identified
with ‘*’ in Supplementary Table S1. Other statistical
tests were performed with the scipy stats and skbio
python libraries.

Chip-SIP analysis
Probes were designed for 16S rRNA gene OTUs
commonly found in coastal Pacific Ocean samples
(Supplementary Table S3) using ARB (Ludwig et al.,
2004), as previously described (Mayali et al., 2012).
Duplicate RNA samples were extracted, fluores-
cently labeled, fragmented and hybridized as
previously described (Mayali et al., 2014), and
secondary ion mass spectrometry analysis of
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microarrays hybridized with 13C rRNA was per-
formed at LLNL with a Cameca NanoSIMS 50
(Cameca, Gennevilliers, France). A more detailed
protocol is available in the Supplementary Methods.
OTUs were considered significantly isotopically
enriched if the slope minus two calculated s.e.’s
was 40 and if the slope was significant based on a t-
score statistic (t= slope/s.e.) with a P-value of o0.05.
Data are presented for the average slope from two
biological replicates. The phylogenetic tree for
representative 16S rRNA genes was generated by
aligning sequences with Muscle (Edgar, 2004),
selecting conserved sites with Gblocks (Talavera
and Castresana, 2007) and constructing the tree in
FastTree (Price et al., 2010) with default settings.

Results

Substrate-specific shifts in microbial community
structure
High-throughput sequencing of 16S rRNA gene
amplicon libraries and whole-community DNA
facilitated comparisons between the initial microbial
community in the sampled surface water (t=0) and
end-point communities (t=15 h), allowing us to
determine how the six substrate amendments influ-
enced community structure. Total cell counts
increased by an average of 2.6-fold across all
treatments, with the highest increases in the starch
and glucose treatments, 3.9- and 2.9-fold increases,
respectively (Supplementary Table S4). Principal
coordinate analysis of pairwise community distances
between rarefied sample OTU counts from 16S
amplicon data (Figure 1a) indicated reproducible
population shifts for each substrate addition; within

treatment group distances were significantly differ-
ent from random (permutational analysis of variance,
pseudo-F =14.0, P-value ⩽ 0.001). Replicates from
both the acetate and lipids treatments were the most
structurally similar to the original community,
whereas the remaining treatments were more distant
from the t=0 community.

In addition to serving as the basis for a metapro-
teome search database, analysis of metagenomes
from pooled replicates from each treatment group
revealed the underlying taxonomic composition of
the initial and end-point communities (Mueller
et al., 2015; Bryson et al., 2016) complementing the
analysis of 16S rRNA gene amplicon libraries.
Assessment of relative abundances for dominant
taxonomic lineages (Figure 1b) was based on both
the recruitment of metagenomic reads to the
assembled protein-coding sequences (CDS) and
rarefied OTU counts (Supplementary Table S5;
Supplementary Figure S2). Whole-community pro-
files showed that the acetate and lipid treatments
most closely resembled the original sampled com-
munity, whereas communities from the glucose and
starch treatments and the amino acids and protein
treatments were most similar to each other, respec-
tively (Figure 1b).

Comparisons of relative abundances for OTU
counts summed at the order-level taxonomy indi-
cated significant differences for 35 orders across all
treatments (Supplementary Table S5). Examination
of the relative abundance shifts for specific popula-
tions within the six treatments allowed subsequent
comparisons between these community dynamics
(Figure 1b) and substrate assimilation, as measured
by the SIP approaches. Metagenomic and 16S rRNA
amplicon data showed that Rhodobacterales

Figure 1 (a) Principal coordinate analysis plot of pairwise distances between rarefied sample OTU counts. (b) Stacked bar charts depict
the relative coverage of predicted coding sequences (CDS) by metagenomes from the T=0 and each substrate amendment. The taxonomy
color key indicates the order-level classification or class level, if the order was unclassified. ‘Other’ refers to low-coverage or
unclassified CDS.
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generally decreased in relative abundance across all
treatments, except for the amino acids and acetate
treatments (Supplementary Figure S2). The Alter-
omonadales order increased in coverage across all
treatments (Supplementary Figure S2), indicating a
general rapid growth response to incubation condi-
tions as has been previously reported (Pedler et al.,
2014). Notably, these observed relative abundance
increases were highest in the protein and amino
acids treatments, both of which contain organic
nitrogen. Conversely, oligotrophic marine Gamma-
proteobacteria (Cho and Giovannoni, 2004), includ-
ing SAR86, SAR92 and other Cellvibrionales
populations generally declined in relative abun-
dance across all treatments (Supplementary
Figure S2). The Flavobacteriales order generally
increased in relative abundance in all treatments
and increased significantly in the starch and glucose
treatments (Supplementary Figure S2).

Substrates differ in whole-community assimilation
As amplicon sequencing revealed significantly
reproducible substrate-specific population shifts,
we hypothesized that community structure may
have been shaped by population-specific substrate
utilization, and further evaluated this using SIP
enrichment of peptides and rRNA. We identified an
average of 22 915 peptides and 4087 proteins in each
of the 21 metaproteomes (Supplementary Table S4).
Detection of labeled peptides in each of the six
treatments produced distinct % 13C enrichment
profiles (Figure 2) with significantly different aver-
age enrichment values for the whole-community
metaproteomes (analysis of variance, F= 15.75,

Po0.001). The average % 13C enrichment of labeled
peptides detected in the amino-acid treatment was
significantly higher than the other five treatments
(t-test, Po0.01; Figure 2; Supplementary Table S4).
Thirty-one populations (defined at the genus or
broader level of taxonomy) assimilated substrate in
all six treatments, suggesting a broad ability of the
dominant members of the community to assimilate
the classes of DOC substrates tested. This was
evident by the similar richness of community
members with detected substrate assimilation across
all treatments (Supplementary Figure S3). Although,
the number of taxa for which substrate assimilation
was detected above background levels indicated
widespread utilization of the added substrates, a
comparison of relative substrate assimilation
indicated substantial differences between individual
taxa (Supplementary Figure S4). These relative
substrate assimilation data are based on the combi-
nation of two factors: the % 13C enrichment of
labeled peptides per taxa (average enrichment, an
indicator of resource specialization) and the propor-
tion of labeled peptides (label frequency, an
indicator of de novo protein synthesis activity). For
example, of all the detected label in the metapro-
teome for the starch treatment, nearly 70% was
accounted for by Flavobacteriaceae proteins
(Supplementary Figure S4). In the acetate treatments,
nearly 60% of the total detected label was found in
Rhodobacteraceae proteins.

Substrate specialization is taxonomically conserved
Our observation of clear biases in substrate assimila-
tion patterns by diverse taxa across all treatments
(Supplementary Figure S4) prompted us to investi-
gate whether trends in resource partitioning were
more similar among related populations than
expected under a random null model. Correlation
scores for pairwise comparisons of average enrich-
ment values were significantly higher among related
taxa at the class rank than would be expected for
random taxonomic assignments (permutational
analysis of variance, Pseudo-F = 14.4, P-value
⩽0.001). This correlation analysis also demonstrated
significantly different variances between classes
(Levene’s test, statistic = 6.2, P-value =0.003), with
less variance within the Alphaproteobacteria than
within the Flavobacteriales and the Gammaproteo-
bacteria populations (Figure 3b).

As previously shown in Figure 2, the six substrates
were assimilated at different levels of % 13C enrich-
ment, potentially due to existing substrate in the
samples or biological differences in assimilation
efficiency. Thus, to compare substrate assimilation
by individual taxa, relative to other taxa, regardless
of individual treatment effects, it was necessary to
standardize average enrichment values within each
sample (see Materials and Methods). Hierarchical
clustering of these standardized enrichment values
divided taxa into four groups based on average

Figure 2 (a) Histogram of highly labeled (% 13C ⩾4) PSM. Total
area of bars represents the average proportion (n=3, error bars ± s.
d.) of all labeled PSM within each bin. The range is from 4 to 99%
enrichment in 3% increments.
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enrichment trends (Figure 3a). In addition to identi-
fying significant trends in substrate assimilation
across all treatments, the quantified average enrich-
ment values for individual populations were com-
pared to the expected values from random samples
of labeled PSM from the whole-community meta-
proteomes. These analyses revealed how these
substrates are partitioned in these communities and
the interpopulation variation for the three dominant
class level taxonomies found in these samples.

Proteins assigned to genera or higher taxonomies
within the Flavobacteriales order formed a highly
correlated cluster with average enrichment values
among the highest of the starch treatment commu-
nity (Figure 3a). These included proteins assigned to
Formosa, Myroides and Flavobacterium that had
significantly high average enrichment values
(Po0.05; Supplementary Table S1) in at least one
replicate from starch treatment. The exception to this
trend was proteins assigned to Owenweeksia, which
had significantly high average enrichment in one

protein treatment and accounted for most of the
variability seen in pairwise correlation scores for the
Flavobacteriales (Figure 3b).

Gammaproteobacteria populations demonstrated
less highly correlated average enrichment values than
the other two abundant classes suggesting divergence
of resource utilization strategies within this broad
taxonomic group (Figure 3b). Oligotrophic marine
Gammaproteobacteria clades, consisting of SAR92
and OM60/NOR5 clades of the Cellvibrionales order
along with SAR86 and other unclassified Gammapro-
teobacteria, were among the populations with
significantly high % 13C enrichment in at least one
lipids treatments (Supplementary Table S1), averaging
3.9%, 8.0%, 5.6% and 4.8%, respectively, compared
to the whole-community average enrichment
(3.3±0.19%). In comparison, Glaciecola, Pseudoalter-
omonas and Colwellia genera from the Alteromona-
dales order assimilated amino acids at significantly
high average enrichment (Po0.05; 35.7%, 41.3% and
23.6% respectively) in addition to lipids.

Figure 3 (a) Clustering of taxa by relative incorporation of labeled substrate into proteins. The heatmap depicts standardized % 13C
enrichment, indicating a population’s average enrichment relative to the other populations in each treatment. The color scale indicates
z-scores: −2 (blue); 0 (black); and 2 (yellow). The distance scale for hierarchical clustering indicates Pearson’s correlation scores for
standardized values. Taxonomy of protein bins is assigned up to genus level when possible. Class-level taxonomy is indicated by the
following colors: Alphaproteobacteria (red); Gammaproteobacteria (green); Flavobacteriia (blue); and others (white). (b) Pairwise Pearson’s
correlation coefficients of average enrichment values for populations within the three most abundant classes represented in a.
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The third dominant order, comprised of Rhodo-
bacterales populations, was among the most abun-
dant at the time of sampling and had significantly
high average enrichment in the glucose, amino-acid
and acetate treatments. However, some intra-order
variability was observed as proteins assigned to the
Loktanella and Roseobacter had significantly high
average enrichment in all three lipids treatments
(Supplementary Table S1). These two genera plus
Sulfitibacter, and Planktomarina genera had signifi-
cantly high enrichment values in many of the
treatments, with the notable exception of the starch
treatments. Although raw average enrichment values
were positively correlated between Pelagibacter and
these Rhodobacterales populations (Figure 3b), it did
not have high average enrichment values relative to
the other populations in any of the six treatments.

Substrate preference and availability influence activity
In addition to measuring substrate specialization,
proteomic SIP data can indicate de novo protein
synthesis activity through quantification of ‘label
frequency’, the relative frequency of labeled versus
total PSM for a population. Pairwise Pearson’s
correlation coefficients for label frequency values
indicated that trends in de novo protein synthesis
activity followed substrate specialization patterns
and were also significantly more similar between
related populations than random (permutational
analysis of variance, pseudo-F = 8.9, P-value
⩽0.001). Indeed, within treatment measures of label
frequency and average enrichment were highly
correlated (average Pearson’s r=0.58, s.d. = 0.22,
n=18). However, related populations did exhibit
heterogeneity in terms of the magnitude of protein
synthesis as quantified by label frequency values.
This was evident from the hierarchical clustering of
populations based on label frequency z-scores
(Supplementary Figure S5A). Genera within the
Rhodobacteriales, which were abundant at the time
of sampling, and the Alteromonadales, which exhib-
ited rapid relative abundance increases during the
incubations, were consistently among the most
active populations (Supplementary Figure S5A).
Flavobacteriales populations generally had the high-
est label frequency in the starch treatment, and the
Flavobacterium genus demonstrated much higher
activity than others from this order. Populations of
Gammaproteobacteria from clades within the Cellvi-
brionales and SAR86 along with Methylophilales (a
member of the Betaproteobacteria), and Pelagibacter-
iales (a member of the Alphaproteobacteria) had low
overall protein synthesis activity across all
treatments (Supplementary Figure S5A). Although
populations of Alphaproteobacteria exhibited the
most correlated resource specialization patterns
(Figure 3b), they also exhibited the greatest hetero-
geneity in terms of protein synthesis activity
(Supplementary Figure S5B) among the three abun-
dant classes.

Chip-SIP identifies substrate-assimilating populations
at high taxonomic resolution
Population-level substrate assimilation patterns were
also measured in rRNA pools. Out of 390 taxa
represented by probe spots on the microarray,
Chip-SIP identified 72 taxa with 13C enrichment in

Figure 4 Phylogenetic tree of rRNA sequences used for Chip-SIP
microarray probes and accompanying heatmap depicting 13C
enrichment values (average of two replicates) for combined probe
sets. Taxonomy is indicated by the color key. Names for Chip-SIP
probe sets are indicated in Supplementary Figure S6.
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at least one treatment (Figure 4; Supplementary
Figure S6). As observed in the proteomic SIP results,
glucose and amino-acid treatments had the most
widespread assimilation across 16S rRNA-targeted
taxa, 40 and 39 out of 72, respectively. Starch was
the third most widely assimilated (32 out of 72 taxa),
followed by the protein treatment. Among the taxa
with 13C-enriched rRNA, members of the Flavobac-
teriales order (Figure 4), primarily from the
Cryomorphaceaea and Flavobacteriaceae families,
were highly enriched with 13C from the starch
treatment, similar to the trend in the proteomic SIP
data. Gammaproteobacteria from the SAR86 clade,
the Cellvibrionales and Alteromonadales order, plus
other unclassified clades were enriched with 13C
from amino acids, glucose and to a lesser extent
starch. Rhodobacterales taxa were 13C-enriched in
the amino-acid, glucose and protein treatments. 13C
label from protein assimilation was also detected in
SAR116 Alphaproteobacteria, as well as in the
SAR406 clade, Deltaproteobacteria, Epsilonproteo-
bacteria and Flavobacteria. Lipid assimilation was
only detected in a SAR406 and a deep SAR11 taxa,
while acetate assimilation was only detected after
32 h of incubation (see Materials and Methods) in
rRNA hybridized to one Rhodobacteraceae probe set.
Similar to the proteomic SIP data, class-level group-
ings of probe spots had significantly higher within-
group Pearson’s correlation coefficients than random
groupings (permutational analysis of variance,
pseudo-F =3.1, P-value ⩽0.001). Although the
detected trends in substrate assimilation were more
similar for taxa at the class level, comparisons
between closely related populations within order-
level taxonomies revealed some variation in sub-
strate assimilation. Glucose, starch and lipid assim-
ilation was detected for a deep ecotype of SAR11,
whereas as surface-associated ecotype was found to
be highly enriched only in amino acids. Within the
Flavobacteriales order, there were two populations
that exhibited higher assimilation of glucose than
starch. And finally, within the Rhodobacteriales
order, there was some variation in the assimilation
of amino acids and glucose.

Discussion

This study utilized metagenomics, 16S rRNA gene
sequencing, proteomic SIP and rRNA Chip-SIP in a
combined assessment of resource partitioning among
sympatric populations of coastal marine microbes.
Metagenomics and 16S rRNA gene sequence
libraries indicated distinct structural changes in the
sampled community that accompanied each sub-
strate addition. However, the relationship between
substrate assimilation and population dynamics was
often inconsistent. Relative abundance data from
sequencing libraries and substrate assimilation data
from proteomic SIP data were the most consistent for
populations of Alteromonadales, which exhibited

relative abundance increases and significant
substrate assimilation in the amino-acid and protein
treatments. Populations of Pelagibacterales, with
previously reported slow growth rates (Rappé et al.,
2002), were abundant at the time of sampling, but
exhibited neither increased relative abundance nor
high average enrichment values for peptides across
all treatments, despite significant numbers of labeled
peptides being detected in all treatments. Flavobac-
teriales abundance and assimilation were positively
correlated in the starch treatment, but in the glucose
treatment, an increase in their relative abundance
was not accompanied by significant glucose assim-
ilation. Conversely, Rhodobacterales populations
accounted for the highest amount of detected
substrate assimilation in their proteomes but exhib-
ited negligible shifts in their relative abundance.
Oligotrophic marine Gammaproteobacteria had low
label frequency (the proportion of newly made 13C
peptides relative to the total pool) and generally
decreased in relative abundance across all treat-
ments, yet were among the most 13C-enriched in the
lipid treatment.

The differences observed between these popula-
tions may suggest different life strategies. In the case
of Rhodobacterales, these populations are actively
incorporating substrate, but it is not translating into
rapid growth as seen for the Alteromonadales. In
another example, genomic data would predict wide-
spread glucose utilization by diverse populations in
our samples. However, the combined SIP and
metagenomic approaches allowed us to distinguish
between the responses of Flavobacteriales popula-
tions, which rapidly increased in abundance, and
Rhodobacterales populations, which allocated this
resource into biomass without a similar increase in
relative abundance. These observations suggest that
the role of substrate utilization in population
dynamics is more complex than can be predicted
by genomic data or revealed by relative abundance
metrics alone. This apparent lack of correlation
between relative abundance shifts and substrate
assimilation patterns may result from the fact that
populations within a complex microbial community
can vary in their growth efficiency and rates (Roller
et al., 2016) and the inherent challenges of linking
relative abundance changes to absolute changes
(Nayfach and Pollard, 2016; Props et al., 2016). In
addition, unmeasured substrate in natural samples
may support growth that would not be measured by
SIP approaches.

Indeed, interpretation of SIP data, while powerful,
can also present challenges, as substrate assimilation
may be affected by biological factors relating to the
uptake (Kirchman, 2003), physical factors, including
the concentration of similar substrates in the
sampled sea water and the accessibility of each
substrate (Nagata, 2008), or flux (Chubukov et al.,
2014) of specific substrates into amino acid and
RNA. To address this latter issue, we evaluated how
label incorporation into protein and rRNA was
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differently quantified in the biomass of populations
as measured by the two SIP approaches. Amino-acid
and glucose assimilation were the most highly
detected in both peptides and rRNA, indicating
broad and efficient utilization and assimilation by
diverse populations. However, detection of isotopic
enrichment was less widespread for the lipid and
acetate treatments with Chip-SIP compared to pro-
teomic SIP, suggesting lower overall incorporation of
the 13C label from these compounds into nucleotides
and subsequent de novo-synthesized RNAs than into
amino acids and de novo-synthesized proteins. This
may indicate differences in the sensitivity of the two
techniques; with proteomic SIP one has the ability to
quantify isotope incorporation for multiple peptides
independently, whereas in Chip-SIP all 16S rRNA
molecules are hybridized to a single probe spot.
Alternatively, the allocation of specific substrates
into biomolecules may vary depending on where a
substrate enters pathways of central carbon metabo-
lism. Increased cellular concentrations of acetyl-CoA
from direct utilization of acetate or beta oxidation of
lipids could result in the preferential flux of these
substrates into the tricarboxylic acid cycle and
amino-acid biosynthesis pathways via the anaplero-
tic reaction sequence of the glyoxylate shunt (Sauer
and Eikmanns, 2005; Gottschalk, 2012), and the
subsequent redirection of other unlabeled carbon
sources to the synthesis of carbohydrates and
nucleotides via gluconeogenesis and the pentose
phosphate pathways (Chubukov et al., 2014; Wolfe,
2015). This explanation is further supported by the
opposing trend observed among Gammaproteobac-
teria populations, which showed higher glucose
assimilation measured by Chip-SIP (Figure 4) than
by proteomic SIP (Figure 3).

The substrate assimilation trends we measured
revealed evolutionary cohesive ecological strategies
among related populations and divided the micro-
bial community into distinct guilds. Rhodobacterales
populations exhibited a preference for low-
molecular-weight monomers: acetate; glucose; and
amino acids (either directly or as products from
extracellular hydrolysis of whole proteins) (Nagata,
2008). This order demonstrated a more generalist
lifestyle than other populations, supporting prior
genomic observations for these clades (Newton et al.,
2010). Pelagibacterales populations exhibited similar
trends in resource assimilation as the Rhodobacter-
ales, but were less active overall in assimilating
substrate into protein biomass. Resource partitioning
between these two abundant Alphaproteobacteria
populations may be better described in terms of
competitive advantages under diffusion-limited oli-
gotrophic conditions given our observations for
substrate assimilation. Flavobacteriales populations
displayed a distinct advantage in assimilating starch.
These findings confirm prior genomic observations
for Flavobacteriales taxa, which have identified high
numbers of enzymes for extracellular binding,
hydrolysis and transport of complex carbohydrates

(Mann et al., 2013; Xing et al., 2014). Specialization
for lipid assimilation was observed among
low-activity members of the Gammaproteobacteria,
including populations from SAR86, SAR92 and
OM60/NOR5 clades, as well as fast growing popula-
tions of Alteromonadales. This observation for
SAR86 confirms an earlier hypothesis for lipid
utilization based on genomic analysis (Dupont
et al., 2012). In addition, metatranscriptomic studies
have identified the importance of fatty acid
metabolic genes within populations of Cellvibrio-
nales and Alteromonadales (McCarren et al., 2010;
Gifford et al., 2013).

Overall, these patterns in community resource
partitioning confirmed prior observations of popula-
tion dynamics made during phytoplankton blooms
(Teeling et al., 2012; Buchan et al., 2014). Signifi-
cantly similar substrate assimilation trends were
identified at the class level, implying evolutionary
conserved ecological strategies among related
populations. Furthermore, these results suggest that
functional guilds within marine surface waters can
be defined at deep branching taxonomic lineages,
confirming predictions based on genomic data
(Martiny et al., 2013). Flavobacteriales are observed
to increase when carbohydrate stocks increase,
indicating a tightly coupled relationship with the
release of this DOC type from primary producers.
Gammaproteobacteria populations emerge later in
bloom timelines when proteins and lipids are more
likely to accumulate as unhealthy phytoplankton
begin to leak or lyse. It is also evident that different
lineages within the Gammaproteobacteria exhibit
ecological strategies that separate oligotrophic clades
with lower biosynthetic responses to nutrient avail-
ability from copiotrophic clades of Alteromonadales
that rapidly respond to nutrient replete conditions.
Alphaproteobacteria populations also showed
distinct responses to nutrient additions. Whereas
the Rhodobacterales populations generally exhibited
significant protein biosynthesis with the addition of
low-molecular-weight compounds, this response
was not observed for Pelagibacterales populations
that also assimilated these substrates. These findings
fit with prior observations of relatively stable
population sizes for Pelagibacterales throughout
phytoplankton bloom cycles and the observed bloom
responses of some Rhodobacterales populations to
phytoplankton blooms (Buchan et al., 2014).

The general trends identified in this study for
relatively broad taxonomic groups may reflect the
choice of substrates used in these experiments. More
distinct DOC molecules, such as specific amino
acids, fatty acids, specific aromatic compounds or
organic sulfur compounds, such as dimethylsulfo-
niopropionate, may be less conserved at finer
taxonomic scales (Martiny et al., 2013). While the
presence or absence of specific genomic-encoded
metabolic pathways may account for some variabil-
ity in activity between closely related taxa, the
evolutionary fine tuning of individual microbial
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strains to substrate concentrations or environmental
parameters, such as temperature and salinity, may be
of greater importance. Indeed, fine scale variation in
the specific growth responses of taxa within the
Vibrio genus to a single class of carbon substrate has
been attributed to the gene copy number for a
specific enzyme, rather than its mere presence/
absence (Hehemann et al., 2016). Determining how
individual populations respond to substrate
availability under various environmental conditions,
such as resource concentration or temperature,
requires utilization of techniques that quantify
activity, such as the SIP approaches presented here,
that cannot be assessed using more conventional
genomic-based inquiry.

Prior work has demonstrated that at low resource
concentrations substrate specialists are the most
active (Sarmento et al., 2016), suggesting that this
specialization is driven by competition for limited
resources. While this study tested the assimilation of
substrates that were amended all at once and at non-
limiting concentrations, the sensitivity of the two SIP
approaches allowed the delineation of resource
partitioning within communities, even though all of
the tested substrates were utilized by all of the more
abundant microbial populations. We found con-
served resource partitioning across populations
belonging to similar taxonomic ranks, which implies
widespread overlap in the utilization of the same
substrates by related taxa. However, population-
specific measures of activity revealed variable
responses within lineages. Genomic-, transcrip-
tomic- and proteomic-based inquiry along with
population surveys have enabled hypotheses about
resource partitioning, but without SIP approaches,
the degree to which this partitioning occurs cannot
be quantified. Our results suggest that resource
preferences may rely on phylogenetically conserved
physiological traits that govern the acquisition and
flux of metabolites through central metabolic
pathways. Transient success of discrete populations
within these phylogenetically defined functional
guilds may be additionally dependent upon external
factors, including substrate or nutrient concentra-
tions, grazing pressure and viral lysis, inter-species
interactions or differential adaptation to distinct
physical and chemical environments. Our observa-
tion of overlapping resource utilization also implies
some functional redundancy within related popula-
tions, a factor that could potentiate more resilient
ecosystems in the face of environmental change. But
more importantly, these observations elucidate the
population-level mechanisms by which whole
communities partition resources, which results in
rapid responses to phytoplankton blooms and con-
sumption of labile DOM.
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