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A nonlinear oscillator with variable mass is studied in the approach of Supersymmetric quantum mechanics. 
Ladder operators in association with the shape invariance condition allowed us to find the coherent states of 
the system in the sense of Barut and Girardello. The statistical properties of these particular states are studied 
using the probability of distribution. In addition, the vibrational partition function is calculated. We see that the 
thermodynamic functions of the system such as mean energy and entropy depend on the nonlinearity parameter, 
except for the specific heat.
1. Introduction

Scientists have long sought a unifying explanation of all basic in-

teractions in nature, namely strong, electroweak and gravitational in-

teractions [1]. Various efforts have been made in the last forty years, 
and nowadays it is known that Supersymmetry is the key to any uni-

fying approach. This approach which discusses bosonic and fermionic 
degrees of freedom, relies on Lie algebra based on commutation and 
anti-commutation relations. In a crystal, an electron can behave as if it 
had a mass different from that of a free electron 𝑚0. There are crystals 
in which the effective mass 𝑚∗ of charge carriers is larger or smaller 
than 𝑚0. The effective mass can be anisotropic or even negative [2, 3, 
4]. The significant point is that in a periodic potential, an electron is ac-

celerated relative to the lattice in an electric or magnetic field as if its 
mass were equal to its effective mass. Neutrons propagating in a crystal 
under the diffraction conditions have a lower effective mass than the 
rest mass in vacuum and a positive or negative electric charge [5]. This 
has been verified experimentally by measuring the deflection of neu-

trons subjected to a magnetic force at the crossing of a silicon crystal. 
There is a multitude of work on quantum systems of variable mass. We 
can mention among others: the approach of the displacement operator, 
the application of the Meijer G-functions for the analytical solutions, 
the transport and dispersion properties at heterojunctions, etc. [6]. This 
field of study has emerged in favor of the development of the fabrication 
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of semiconductors with very small dimensions and remarkable quantum 
effects. Variable mass Schrödinger equations play an important role in 
the study of the electronic properties of inhomogeneous crystals, quan-

tum dots and quantum liquids [7]. In 1926 Schrödinger introduced a 
system of non-orthogonal wave functions to describe non-propagated 
wave packets of quantum oscillators. A few years later, a large sub-

set of these wave functions was used to partition the phase plane of a 
one-dimensional system into regular cells. This approach was carefully 
studied by Glauber who qualified these states as coherent states and 
showed that they are adequate to describe a coherent laser beam in the 
context of quantum theory in 1953 [8]. The exceptional property of a 
system of coherent states is that it contains more states than it takes to 
decompose any state vector. Such a system cannot be treated as it is 
customary. Compared to the usual orthogonal system, this system has 
many advantages. It has been successfully applied to quantum optics, 
radiophysics, superfluidity of a Bose gas, spin waves in the Heisen-

berg model of ferromagnetism and quantum electrodynamics. Coherent 
states are the subject of particular attention in the literature [9]. The 
formalism of the construction of the coherent states of the harmonic os-

cillator is based on the Heisenberg-Weyl algebra [10]. These states are 
defined as: eigenstates of the annihilation operator, displaced vacuum 
states or states of minimum uncertainty. As a consequence of the many 
applications in mathematics and physics, the notion of coherent states 
has been generalized using the algebraic structure of the system [9]. 
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In 1971 Barut and Girardello developed coherent states of noncompact 
groups [11]. In the context of constant mass systems, contributions have 
been made by many authors. However the generalization of coherent 
states for variable mass systems has not yet been studied in a signifi-

cant way [11, 12]. We expect in this work to determine coherent states 
for a particular variable mass system in the sense of Barut-Girardello 
and then compare their properties to those already known. This arti-

cle is structured as follows. In section 2 we present ladder operators 
that factorize the quantum Hamiltonian of the variable mass system un-

der consideration. Section 3 is reserved to the construction of coherent 
states of the system in the sense of Barut-Girardello. Some statistical 
features of these states are discussed in Section 4. The system’s vibra-

tional partition function is calculated in Section 5 where we explore the 
thermodynamic properties of the system. We end our work with some 
remarks in section 6.

2. Model

Researchers study nonlinear oscillations because many realistic phe-

nomena present this type of oscillations. In the literature we can find 
several models of variable mass systems. We choose:

𝑚(𝑥) = 𝜆
(
1 + 𝛿2𝑥2

)−1
(1)

where 𝜆 is a real parameter and 𝛿 a constant that measures the force 
of the nonlinearity of the oscillator. This expression is one of the three 
effective mass profiles proposed by A.P. Zang and his team when they 
solved the Schrödinger equation of variable mass for some physical po-

tentials [13]. The classical Hamiltonian of the nonlinear oscillator is:

𝐻(𝑥) = 𝑝2

2𝑚(𝑥)
+ 𝑉 (𝑥) (2)

where 𝑉 (𝑥) is a deformed quadratic potential given by:

𝑉 (𝜔,𝑥) = 1
2

(
𝜆

1 + 𝛿2𝑥2

)
𝜔2𝑥2 (3)

and 𝜔 the frequency of the oscillations. The quantization of the classical 
system takes place by replacing position and momentum canonical vari-

ables 𝑥 and 𝑝 by their corresponding operators satisfying the knowing 
commutation relation [14]. A particular ordering applied to the kinetic 
operator [14, 15, 16, 17, 18, 19] in association with Eq. (3) provides the 
quantum Hamiltonian which allows us to write the Schrödinger equa-

tion independent of the time of this system. In the standard system 
of atomic units (a.u.) [17], ℏ = 1. The effective mass profile chosen in 
Eq. (1) is introduced into the Hamiltonian to yield:

𝐻(𝜔,𝑥) = 1
2𝜆

[
−(1 + 𝛿2𝑥2) 𝑑

2

𝑑𝑥2
− 2𝛿2𝑥 𝑑

𝑑𝑥
+ 𝜆2𝜔2𝑥2

1 + 𝛿2𝑥2

]
(4)

By applying the technique of elaboration of ladder operators in Super-

symmetric quantum mechanics for variable mass systems [20, 21], we 
obtain the pair of operators:

𝜉−(𝜔) = 1√
2𝜆

[√
1 + 𝛿2𝑥2 𝑑

𝑑𝑥
+ 𝜆𝜔𝑥√

1 + 𝛿2𝑥2

]
;

𝜉+(𝜔) = 1√
2𝜆

[
−
√
1 + 𝛿2𝑥2 𝑑

𝑑𝑥
+

(
𝜆𝜔− 𝛿2

)
𝑥√

1 + 𝛿2𝑥2

] (5)

Previous operators are constructed so that:

𝜉−(𝜔) ||𝜓0⟩ = 0 (6)

where 𝜓0 represents the wave function of the ground state of the quan-

tum system studied. Products of operators 𝜉+(𝜔) and 𝜉−(𝜔) can be ob-

tained by applying them on any wave function 𝜓(𝑥). It is clear that the 
pair of previous operators factorizes the Hamiltonian and provides us 
with 𝜀0 the energy of the fundamental level of the system:
2

𝜉+(𝜔)𝜉−(𝜔) =𝐻(𝜔) − 𝜀0 (7)

𝜀0 = 𝜔∕2 (8)

This pair of operators intervenes in the condition of shape invariance as 
follows [22, 23]:

𝜉−(𝜔1)𝜉+(𝜔1) = 𝜉+(𝜔2)𝜉−(𝜔2) + 𝑟(𝜔1) (9)

In which, the remainder

𝑟(𝜔1) = 𝜔2 = 𝜔1 − 𝛿2∕𝜆 (10)

shows that for the considered system, the parameters 𝜔1 and 𝜔2 are 
connected by means of a translation with step equal to −𝛿2∕𝜆. We can 
therefore write:

𝑟(𝜔𝑛) = 𝜔𝑛+1 = 𝜔− 𝑛𝛿2∕𝜆 (11)

This implies that parameters 𝜔𝑛+1 can be obtained from 𝜔𝑛 by using the 
following unitary translation operator 𝑇 (𝜔) [22]:

𝑇 (𝜔) = 𝑒𝑥𝑝(− 𝛿
2

𝜆

𝜕

𝜕𝜔
) ; 𝑇 −1(𝜔) = 𝑒𝑥𝑝(+ 𝛿

2

𝜆

𝜕

𝜕𝜔
) (12)

Moreover, the commutation relation between operators 𝜉−(𝜔) and 𝜉+(𝜔)
depends on the position 𝑥. For this reason these operators are not good 
ladder operators. We construct the appropriate operators as follows 
[21]:

𝑏−(𝜔) = 𝑇 −1(𝜔)𝜉−(𝜔) ; 𝑏+(𝜔) = 𝜉+(𝜔)𝑇 (𝜔) (13)

It is therefore easy to see that:

𝜉+(𝜔)𝜉−(𝜔) = 𝑏+(𝜔)𝑏−(𝜔) (14)

Thus, the quantity (14) becomes the first supersymmetric partner 
Hamiltonian, say 𝐻 ′(𝜔). From Eq. (7), we write:

𝐻(𝜔) − 𝜀0 =𝐻 ′(𝜔) (15)

The eigenvalues of 𝐻 ′(𝜔) are derived from Eq. (11) by [9, 21, 23, 24, 
25]:

𝜀′𝑛(𝜔) =
𝑛∑
𝑖=1
𝑟(𝜔𝑖) = 𝑛𝜔− 𝛿2

2𝜆
𝑛(𝑛+ 1) (16)

Eq. (8) combined with Eq. (16) provides us with the general expression 
of the energy spectrum of the variable mass oscillator:

𝜀𝑛(𝜔) = 𝜔
(
𝑛+ 1

2

)
− 𝛿2

2𝜆
𝑛(𝑛+ 1) (17)

Let’s take a look at the annihilation and creation actions of the newly 
built ladder operators:

𝑏−(𝜔) ||𝜓𝑛⟩ =
√
𝑛𝜔− 𝛿2

2𝜆
𝑛(𝑛+ 1) ||𝜓𝑛−1⟩ ;

𝑏+(𝜔) ||𝜓𝑛⟩ =
√

(𝑛+ 1)𝜔− 𝛿2

2𝜆
(𝑛+ 1)(𝑛+ 2) ||𝜓𝑛+1⟩

(18)

From Eq. (12) and the Campbell-Hausdorff identity [26, 27], we have 
computed the commutator of the operators newly built and obtained:[
𝑏−(𝜔), 𝑏+(𝜔)

]
= 𝜔 (19)

In the standard system of atomic units (a.u.) [17, 26], we have 𝜔 = 1, 
thus the commutator indicated in Eq. (19) turns to be the unity. We see 
that the algebra hidden under the studied shape invariance potential 
has a finite dimension. The eigenstates of the nonlinear oscillator with 
variable mass are thus given by [21]:

||𝜓𝑛⟩ =
(
𝑏+

)𝑛 ||𝜓0⟩√ (20)

[𝑛]!
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where [𝑛]! is the generalized factorial that can be written in the form 
[9, 21]:

[𝑛]! = 𝜀′𝑛𝜀
′
𝑛−1...𝜀

′
1 = 𝑛!

(
− 𝛿

2

2𝜆

)𝑛
(2 − 2𝜆

𝛿2
)𝑛 (21)

(𝑢)𝑛 = 𝑢(𝑢 + 1)...(𝑢 + 𝑛 − 1) represents the Pochhammer symbol.

3. Materials and methods

We have previously seen that the nonlinear oscillator with variable 
mass has a finite dimensional Lie algebra. However the generators of 
the Lie group obtained in Eq. (18) have a complex structure. It is for 
this reason that Barut has proposed new operators simple to handle 
than the previous ones [26]:

𝑎− = 𝑏−
√
𝐻 ′ ; 𝑎+ =

√
𝐻 ′𝑏+ ; 𝑎0 = 1∕2 +𝐻 ′ (22)

From Eq. (22) we get the following commutators, as well as the corre-

sponding Casimir operator:[
𝑎0, 𝑎+

]
= +𝑎+ ;

[
𝑎0, 𝑎−

]
= −𝑎− ;

[
𝑎−, 𝑎+

]
= 2𝑎0 ;

𝑐 = 𝑎+𝑎− − 𝑎0(𝑎0 − 1) = 1∕4
(23)

Results obtained in Eq. (23) are the commutation relations and the 
Casimir operator of the generators of the Lie algebra su(1, 1) [26, 28]. 
Thus the dynamic group of the nonlinear oscillator with variable mass 
is the non-compact group SU(1, 1). Our appropriate ladder operators act 
as follows:

𝑎− ||𝜓𝑛⟩ = [𝑛− 𝑘𝑛(𝑛+ 1)] ||𝜓𝑛−1⟩ ;

𝑎+ ||𝜓𝑛⟩ = [(𝑛+ 1) − 𝑘(𝑛+ 1)(𝑛+ 2)] ||𝜓𝑛+1⟩ (24)

where we have set 𝑘 = 𝛿2

2𝜆 . Note that there are four irreducible rep-

resentations for the Lie algebra su(1, 1) [11]. Strong of the preceding 
generators, we can determine the coherent states for the nonlinear os-

cillator with variable mass in the sense of Barut-Girardello. These states 
are defined as [29]:

𝑎− |𝑠⟩ = 𝑠 |𝑠⟩ (25)

where 𝑠 is any complex number and 𝑎− is the annihilation operator 
given by Eq. (24). The states |𝑠⟩ can be expanded onto energy eigen-

states of the Hamiltonian 𝐻 [30, 31]:

|𝑠⟩ = ∞∑
𝑛=0

Ω𝑛 ||𝜓𝑛⟩ (26)

By substituting Eq. (26) in Eq. (25), we obtain a recursive relation which 
permits to express the solutions:

Ω𝑛 =
Ω0 (−1∕𝑘)𝑛

𝑛! (2 − 1∕𝑘)𝑛
𝑠𝑛 (27)

Setting

𝜌𝑛 = 𝑛!(−𝑘)𝑛 (2 − 1∕𝑘)𝑛 (28)

the desired coherent states are given by:

|𝑠⟩ = 1
𝐾(𝑠)

∞∑
𝑛=0

𝑠𝑛

𝜌𝑛

||𝜓𝑛⟩ (29)

where the normalization factor Ω0 =
1

𝐾(𝑠) can be obtained through the 
condition ⟨𝑠 ∣ 𝑠⟩ = 1:

𝐾2(𝑠) =
∞∑
𝑛=0

(
(1∕𝑘)𝑛

𝑛! (2 − 1∕𝑘)𝑛

)2 |𝑠|2𝑛 (30)

which in terms of hypergeometric function [32], is equal to:

𝐾2(𝑠) = 0𝐹3

(
1,2 − 1∕𝑘,2 − 1∕𝑘;

(|𝑠|
𝑘

)2
)

(31)
3

Barut-Girardello coherent states obtained in Eq. (29) satisfy the min-

imum Kauder requirements for any coherent state [12]. Using the 
Eq. (29) we perform the inner product of two coherent states |𝑠⟩ and ||𝑠′⟩ for the nonlinear oscillator with variable mass. It comes that:

⟨
𝑠 ∣ 𝑠′

⟩
= 1
𝐾(𝑠)𝐾(𝑠′)

∞∑
𝑛=0

(
(1∕𝑘)𝑛

𝑛! (2 − 1∕𝑘)𝑛

)2 (
𝑠′𝑠∗

)𝑛
(32)

Eq. (32) shows that Barut-Girardello coherent states for the nonlinear 
oscillator with variable mass do not form an orthogonal set. In fact 𝑠′𝑠∗
is a positive number and therefore does not admit any zero. This is not 
a paradox because coherent states are eigenstates of the annihilation 
operator, which is not hermitian. Consequently, any coherent state can 
be expressed in terms of all other coherent states. Thus the coherent 
states are not linearly independent. We therefore say that the set {|𝑠⟩}
is overcomplete [33]. Moreover, the convergence radius is important 
because a coherent state exists only if its radius of convergence is non-

zero. For the nonlinear oscillator with variable mass considered, the 
convergence radius 𝓁 of the coherent states is defined from Eq. (29) as 
follows [11]:

𝓁 = lim
𝑛→∞

𝑛
√
𝜌𝑛 = lim

𝑛→∞
𝑛
√
𝑛!(−𝑘)𝑛 (2 − 1∕𝑘)𝑛 (33)

Computation of 𝓁 provides us with the following:

𝓁 =∞ (34)

The result given in Eq. (34) shows that Barut-Girardello coherent states 
for the nonlinear oscillator with variable mass are defined on the entire 
complex plane.

4. Analysis

The statistical properties of the preceding coherent states can be ex-

plored through the probability of occupation of the eigenstates in the 
configuration space. It is a quantity that indicates the way the total 
probability of one is distributed over the entire population. This occu-

pation probability is evaluated from Eq. (28) by [11]:

℘𝑛 = ||Ω𝑛||2 (35)

whose graph is given in Fig. 1. We see that this distribution is narrower 
than that of the linear oscillator. For this reason, the probability distri-

bution of the nonlinear oscillator with variable mass is sub-poissonian. 
Specifically, the sub-poissonian statistics refers to a photon number dis-

tribution for which the variance is less than the expected value. The 
first moment represents the expected value ⟨𝑛⟩, also called mean of the 
distribution is:

⟨𝑛⟩ = ∞∑
𝑛=0

𝑛℘𝑛 =
1

𝐾2(𝑠)

( |𝑠|
2𝑘− 1

)2 ∞∑
𝑛=0

(1∕𝑘)2

(2)𝑛 (3 − 1∕𝑘)𝑛 (3 − 1∕𝑘)𝑛
|𝑠|2𝑛
𝑛!

(36)

equivalent to the following programmable form:

⟨𝑛⟩ = 1
𝐾2(𝑠)

( |𝑠|
2𝑘− 1

)2

0𝐹3

(
2,3 − 1∕𝑘,3 − 1∕𝑘;

(|𝑠|
𝑘

)2
)

(37)

The second moment of the distribution is given by:

⟨
𝑛2
⟩
=

∞∑
𝑛=0

𝑛2℘𝑛 =
1

𝐾2(𝑠)

( |𝑠|
2𝑘− 1

)2 ∞∑
𝑛=0

(1∕𝑘)2

(1)𝑛 (3 − 1∕𝑘)𝑛 (3 − 1∕𝑘)𝑛
|𝑠|2𝑛
𝑛!

(38)

which is equivalent to:

⟨
𝑛2
⟩
= 1
𝐾2(𝑠)

( |𝑠|
2𝑘− 1

)2

0𝐹3

(
1,3 − 1∕𝑘,3 − 1∕𝑘;

(|𝑠|
𝑘

)2
)

(39)

The variance of this distribution is:

(Δ𝑛)2 =
⟨
𝑛2
⟩
− ⟨𝑛⟩2 (40)
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Fig. 1. Plot of the probability distribution for (a) the nonlinear oscillator and (b) the linear oscillator as a function of quantum number 𝑛 with |𝑠| = 20 for (1) 
𝑘 = −0.10 and (2) 𝑘 = −0.90.
Fig. 2. Plot of the Mandel parameter as function of the coherent states parame-

ter 𝑠 for (a) 𝑘 = −0.10, (b) 𝑘 = −0.25, (c) 𝑘 = −0.39 and (d) 𝑘 = −0.90.

Fig. 3. Plot of the second order correlation function as a function of the coherent 
state parameter 𝑠 for (a) 𝑘 = −0.10, (b) 𝑘 = −0.25, (c) 𝑘 = −0.39 and (d) 𝑘 = −0.90.

Generally, the Mandel parameter 𝑄 is an indispensable tool for de-

termining the nature of a distribution. A distribution of probability 
is poissonian if 𝑄 = 0, sub-poissonian if 𝑄 ≺ 0 and super-poissonian if 
𝑄 ≻ 0. This parameter is defined as follows [11, 34, 35, 36, 37]:

𝑄 =
(Δ𝑛)2 − ⟨𝑛⟩⟨𝑛⟩ (41)

Fig. 2 presents the variations of the Mandel parameter according to the 
parameter 𝑠 of coherent states. The sub-poissonian character of the dis-

tribution is confirmed by this graph. Another important quantity that 
can indicate the nature of the distribution is the second order correla-

tion function 𝑔2(0) defined by [34]:

𝑔2(0) =
⟨
𝑛2
⟩
− ⟨𝑛⟩⟨𝑛⟩2 (42)

For 𝑔2(0) ≺ 1 (resp. 𝑔2(0) ≻ 1) the antibunching (resp. bunching) ef-

fect appears [11]. The coherent states for the linear oscillator record 
𝑔2(0) = 1. For the system under consideration, the second order correla-

tion function is plotted in Fig. 3. This graph shows that Barut-Girardello 
coherent states for the nonlinear oscillator with variable mass exhibit 
the antibunching behavior which reveals the quantum nature of par-

ticles. This phenomenon which has no analogue in classical and semi-

classical theories, can be described with a simplified two-level energy 
diagram in which an atom taken in an excited state requires a life-

time to return back to his ground state by emission of a photon. The 
duration between adjacent photons is consequently determined by the 
excite-state lifetime. This effect known as antibunching and observed in 
quantum dots, carbon nanotubes and in diamond nanocrystals has his 
applications based on single photons sources [38].
4

Fig. 4. Plot of the partition function 𝑍 as function of 𝑘 for (a) 𝛽 = 0.5, (b) 𝛽 = 1
and (c) 𝛽 = 2.

5. Results and discussion

We are now exploring the thermodynamic properties of the vari-

able mass system. They are useful to compare our system with others 
found in the literature. For this, it is necessary to obtain the vibrational 
partition function of this system [39]:

𝑍 =
∞∑
𝑛=0

𝑒𝑥𝑝(−𝛽𝜀𝑛) (43)

in which 𝛽 = 1
𝑘𝐵𝑇

, 𝑇 is the temperature of the system and 𝑘𝐵 the 
Boltzmann factor. 𝜀𝑛 represents the vibrational energy spectrum of the 
system. Eq. (17) together with Eq. (43) enables us to write:

𝑍 = 𝑒𝑥𝑝
(
− 𝛽
2

) ∞∑
𝑛=0

𝑒𝑥𝑝
[
𝛽𝑘𝑛2 + 𝛽 (𝑘− 1)𝑛

]
(44)

Since the energy levels of the system are close to each other, we can 
replace the discrete summation with an integral without, however, in-

troducing serious mathematical errors [40]. This does not mean that 
the energy spectrum becomes continuous. No, quantification remains 
important because of the presence of the Planck constant. Eq. (44) be-

comes thereby:

𝑍 = 1
2

√
− 𝜋

𝛽𝑘
𝑒𝑥𝑝

{
− 𝛽
2

[
1 + (𝑘− 1)2

2𝑘

]}
(45)

For the linear oscillator, the partition function is:

𝑍0 =
𝑒𝑥𝑝(−𝛽∕2)
1 − 𝑒𝑥𝑝(−𝛽)

(46)

Eq. (45) shows that the partition function of the variable mass system 
depends on the nonlinearity parameter 𝑘 as well as the temperature 𝑇 . 
For a given temperature, the variations of the partition function as a 
function of the nonlinearity parameter are summarized in Fig. 4. We 
see that 𝑍 increases when 𝛽 increases. Moreover, for the nonlinearity 
parameter 𝑘 = −0.90, the partition function of the linear oscillator tends 
to zero more slowly than that of the nonlinear oscillator when 𝛽 in-

creases. Fig. 5 shows that if 𝛽 ≻ 0.6, 𝑍0 is less than 𝑍. The vibrational 
mean energy 𝑈 can be obtained as follows:

𝑈 = − 𝜕𝑙𝑛𝑍
𝜕𝛽

= 1
2

[
1 + 1

𝛽
+ (𝑘− 1)2

2𝑘

]
(47)

The previous implies that:
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Fig. 5. Comparison of the partition function between (a) 𝑍 and (b) 𝑍0 for the 
parameter 𝑘 = −0.90.

Fig. 6. Plot of the mean energy 𝑈 as function of 𝑘 for (a) 𝛽 = 0.5, (b) 𝛽 = 1 and 
(c) 𝛽 = 2.

Fig. 7. Plot showing the comparison of the mean energy between (a) 𝑈 and (b) 
𝑈0 for 𝑘 = −0.90.

𝑈 = 1
2

[
1 + (𝑘− 1)2

2𝑘

]
; 𝛽⟶∞ (48)

In the case of the linear oscillator, the mean energy is given by:

𝑈0 =
1
2
+ 1
𝑒𝛽 − 1

(49)

Thus:

𝑈0 =
1
2

; 𝛽⟶∞ (50)

From Eqs. (48) and (50), we say that for low temperatures (𝛽 ⟶∞), 
the mean energy of the nonlinear oscillator is different from that of 
the linear one. The nonlinearity introduces a shift of (𝑘−1)

2

4𝑘 in the mean 
energy of our system. From Fig. 6, one notices a monotonic increase 
of 𝑈 with 𝑘; but for a fixed value of 𝑘, 𝑈 decreases as 𝛽 increases. 
Moreover, Fig. 7 shows that the difference between 𝑈 and 𝑈0 decreases 
as 𝛽 increases. The vibrational specific heat of the nonlinear oscillator 
with variable mass may be calculated in the following way:

𝐶 = 𝜕𝑈

𝜕𝑇
=
𝑘𝐵
2

(51)

Eq. (51) suggests the following comment: the nonlinearity parameter 
has no influence on the specific heat of the system. This result is sur-

prising, knowing that the specific heat is a function of the structure of 
a substance. Particularly, it depends on the number of degrees of free-

dom that are available to the particles in the substance. In addition, for 
low temperatures (𝛽⟶∞), the specific heat of our variable mass sys-

tem vanishes. This is explained by the third law of thermodynamics and 
is due to the existence of a non-zero energy between the fundamental 
level and the first excited state [41, 42]. In general, the heat capacity 
5

Fig. 8. Plot of the vibrational entropy 𝑆 as function of 𝛽 for (a) 𝑘 = −0.25, (b) 
𝑘 = −0.39 and (c) 𝑘 = −0.90.

Fig. 9. Comparison of the vibrational entropy between (a) the variable mass 
system for 𝑘 = −0.90 and (b) the linear oscillator.

of a system approaches zero as the temperature tends to absolute zero 
because of loss of available degrees of freedom. Then, consider the free 
energy 𝐹 given by:

𝐹 = − 𝑙𝑛𝑍
𝛽

= −1
2

[
1 + 1

𝛽
𝑙𝑛

(
−4𝜋
𝑘𝛽

)
+ (𝑘− 1)2

2𝑘

]
(52)

which provides us with the vibrational entropy 𝑆 of the variable mass 
system:

𝑆 = − 𝜕𝐹
𝜕𝑇

=
𝑘𝐵
2

[
1 + 𝑙𝑛

(
−4𝜋
𝑘𝛽

)]
(53)

Consequently the entropy of the system depends on the nonlinearity 
parameter 𝑘. Fig. 8 shows that the entropy of the considered system 
decreases as 𝛽 increases. If 𝑘 = −0.90, the entropy of the nonlinear os-

cillator is greater than that of the linear oscillator for 𝛽 ≻ 0.2 as can be 
seen in Fig. 9. Increases in entropy correspond to irreversible changes 
in a system as the temperature increases, because an amount of energy 
is wasted in the form of heat. On the other hand the entropy 𝑆 tends 
towards a limit value when the temperature decreases. This result is 
consistent with Nernst’s theorem which states that any quantum system 
admits the following property [39]:

lim
𝑇→0

𝑆 = 𝑒0 (54)

where 𝑒0 is a constant number independent of all parameters of the 
system.

6. Conclusion

The condition of shape invariance allowed us to study the coherent 
states of a nonlinear oscillator with variable mass. These states have 
been shown to fulfill the basic conditions of coherent states. The Man-

del parameter for the system and the second order correlation function 
obtained showed that these coherent states obey the sub-poissonian 
statistics and consequently exhibit antibunching effect. The induced 
nonlinearity gives rise to a nonclassical photon phenomenon that is 
useful for quantum information and communication. In addition, the 
vibrational partition function of the system permit us to compare the 
variable mass oscillator with the constant mass one. We were surprised 
to find that the specific heat of the system does not depend on the 
nonlinearity parameter. On the other hand, the entropy of the system 
decreases when the nonlinearity parameter increases. Thermodynamic 
quantities presented a behavior very similar to the corresponding ones 
found in standard systems, as the absolute temperature undergoes a 
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variation. Finally, note that the shape invariance potential considered 
here cannot be reduced to the problem solving procedure of a constant 
mass oscillator. It would be interesting to study a potential that ad-

mits the limit case of the linear oscillator. Some of these problems and 
quantum systems with positive nonlinearity parameter which introduce 
imaginary entropies, will be treated elsewhere.
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