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Abstract: This paper proposes a new two-stage machine learning approach for bridge damage
detection using the responses measured on a passing vehicle. In the first stage, an artificial neural
network (ANN) is trained using the vehicle responses measured from multiple passes (training data
set) over a healthy bridge. The vehicle acceleration or Discrete Fourier Transform (DFT) spectrum
of the acceleration is used. The vehicle response is predicted from its speed for multiple passes
(monitoring data set) over the bridge. Root-mean-square error is used to calculate the prediction
error, which indicates the differences between the predicted and measured responses for each passage.
In the second stage of the proposed method, a damage indicator is defined using a Gaussian process
that detects the changes in the distribution of the prediction errors. It is suggested that if the bridge
condition is healthy, the distribution of the prediction errors will remain low. A recognizable change
in the distribution might indicate a damage in the bridge. The performance of the proposed approach
was evaluated using numerical case studies of vehicle–bridge interaction. It was demonstrated that
the approach could successfully detect the damage in the presence of road roughness profile and
measurement noise, even for low damage levels.
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1. Introduction

Transportation networks play a key role in supporting economic growth all over the world. Several
factors such as technology development, increasing population, and economic growth, have impact
on the increasing demand for transportation and personal mobility. Therefore, keeping pace with
these changes is an important challenge for transport infrastructure systems, which need to adapt and
improve their performance [1]. Bridges are key components of the transport infrastructure that are in
constant use and are subjected to deterioration and damage. Therefore, it is necessary to monitor the
structural condition of bridges to ensure their reliability and safety. In most bridge-health monitoring
techniques, the common practice is to install several sensors at different positions on the structure. It is
possible to monitor the structural condition of the bridge by monitoring the responses measured by the
sensors. However, depending on the location and type of bridge, in many cases, the direct installations
are relatively expensive, time-consuming, and even dangerous. Moreover, covering all bridges within
an entire railway or highway network, would require many sensors, power installation for the sensors
and an extensive network of data acquisition and processing.

Recently, many researchers have studied ‘indirect’ or ‘drive-by’ methods in which the bridge
condition is monitored using an instrumented vehicle [2]. In this method, the vehicle excites the bridge
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and at the same time measures its response on a moving reference. This is a low-cost approach at the
network level as it reduces the need for direct installation of monitoring equipment on the bridge.
This method was first proposed by Yang et al. [3] for identifying bridge natural frequencies from
responses measured on a passing vehicle. Many numerical and experimental [4–6] studies have been
carried out aiming at improving the identification of frequencies. Recently, several researchers have
investigated estimating bridge mode shapes from indirect measurements. Malekjafarian et al. [7]
proposed the short-time frequency domain decomposition (STFDD) method for identifying the bridge
mode shapes from the dynamic responses of two following axles. Yang et al. [8] proposed using
the Hilbert amplitude of a filtered response measured on a passing axle for finding bridge mode
shapes. Malekjafarian et al. [9] suggested using a vehicle equipped by an exciter for finding the bridge
mode shapes with higher resolution and better accuracy. Bridge mode shapes identified from indirect
methods can be used for bridge damage detection [10,11]. The bridge modal properties can be used
to identify the bridge damage, as they lead to changes in these properties. A common challenge in
most modal-based approaches is the limited measurement time. This results in a relatively short-time
measured signal, when the vehicle travels at a normal highway speed over a short or medium span
bridge. Reducing the speed of the test vehicle in highways is also not recommended as it might cause
congestion [2].

There are several indirect methods for bridge condition monitoring that do not explicitly estimate
bridge modal properties. O’Brien et al. [12] employ a Moving Force Identification (MFI) algorithm
to monitor the bridge condition using vehicle accelerations. In their method, road surface profile
and global bridge stiffness are calculated using the vehicle–bridge interaction force, assuming the
presence of a priori information about dynamic properties of the vehicle (e.g., suspension stiffness,
damping, etc.). Li et al. [13] proposed a multistage damage detection technique incorporating empirical
mode decomposition (EMD) and a Genetic Algorithm (GA) approach. Quirke et al. [14] employed an
optimization method to calculate the apparent profile from simulated acceleration responses of a train
bogie. They showed that the calculated apparent profile is sensitive to bridge damage. Zhu et al. [15]
proposed using the vehicle–bridge interaction force estimated from the accelerations measured at both
the axle and the body for bridge damage detection. They concluded that the interaction force along the
travelling pass of the vehicle was more sensitive to bridge damage than the vehicle accelerations.

Despite all the progress that has been made so far, there are still several barriers for indirect
methods to become practical [16]. It is generally accepted that the change in bridge natural frequencies
due to damage is small and hard to detect. In addition, frequencies might change by other factors such
as environmental and operational conditions (e.g., temperature change). The bridge mode shapes from
indirect methods are usually identified under certain assumptions (e.g., low vehicle speed, smooth
road surface profile, etc.) and need more accuracy to be employed as a damage indicator. The effect of
road surface profile is one of the main challenges. A rough profile normally excites vehicle-related
frequencies, which might mask bridge-related components of responses. The concept of subtracting
signals from identical axles [17] has been used in many studies to address this problem. In addition,
the interference from environmental effects such as temperature has never been studied for indirect
approaches. As most indirect approaches focus on damage indicators obtained from single runs from
healthy and damaged cases, the effects of road profile and temperature change would be significantly
misleading in the process of damage detection. The use of multiple runs is a promising approach
to tackle these issues. A few studies have been done on using multiple vehicle runs for indirect
bridge-damage detection. Cerda et al. [18] employed 60 vehicle runs over a bridge in a laboratory-scaled
experimental set up. They developed a detection procedure to capture the shifts in the fundamental
frequency of the bridge, due to damage. Miyamoto et al. [19] proposed a framework for monitoring
short- and medium-span bridges on a regular basis, in a particular area, using a fixed-route in-service
public bus. They employed average-estimated (characteristic) deflections from multiple runs as a
damage indicator. A common challenge in most of these methods is how to process large quantities of
measured data and transform it into helpful information about the bridge’s condition.
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In recent years, there has been an increasing interest in the use of machine learning algorithms for
bridge-structural-health monitoring using direct measurements. The algorithms have been employed
to extract structural abnormalities from the measured data. These algorithms build and train a model
using the data measured from the normal conditions of a structure [20]. For example, Jin et al. [21]
proposed an extended Kalman filter-based artificial neural network (ANN) for bridge-damage detection
under temperature changes. One-year measurement data from a real bridge was used to train the neural
network. Diez et al. [22] proposed a clustering-based machine learning approach, which separated
the behaviors of working in normal conditions from the ones working in abnormal conditions.
The effectiveness of the proposed approach was shown using data measured from a field test. Gonzales
and Karoumi [23] used the bridge acceleration data and bridge weight-in-motion data from the healthy
condition to train an ANN. A damage indicator was developed using the error between the measured
bridge accelerations and the ones predicted by their ANN model. The method was further developed
by Neves et al. [20] using a three-dimensional (3D) bridge model. They added a simplified method for
the calculation of the expected total cost of the proposed strategy, as a function of the chosen threshold.

In this paper, a two-stage indirect bridge-damage detection method was proposed using a
machine learning algorithm. In the first stage, an ANN was trained using either vehicle accelerations
or its Discrete Fourier Transform (DFT) spectrum and speed from multiple passes over a healthy
bridge. The vehicle speed was constant in each pass, but varied randomly from one pass to another.
The network predicted the vehicle’s response using the vehicle speed. The prediction error, which
was the difference between the predicted and measured accelerations, was calculated for each pass.
As the healthy condition was used for training, the prediction errors for the training data set were
very small. In the second stage, a Gaussian process was fitted to the prediction errors under healthy
conditions. This process could automatically detect any subsequent increase in the prediction error
that was caused by damage. A numerical model of a vehicle–bridge interaction (VBI) was used to
evaluate the effectiveness of the proposed method. Several data sets measured from the healthy and
damaged cases were employed. It was shown that the proposed algorithm successfully detected the
presence of damage. The proposed method was tested with a relatively high vehicle speed, which
overcame the speed limitation of indirect methods. To the knowledge of the authors, this was the first
time a machine learning method was used for indirect bridge-damage detection.

2. Damage Detection Algorithm

The proposed damage detection method consists of two stages (Figure 1). An ANN is trained
in the first stage to predict vehicle response (accelerations in the time domain or DFT spectrum in
the frequency domain). The second stage compares the predicted and measured responses using
a Gaussian process. This process classifies the data into healthy and damaged signals based on
the prediction error. A brief background of ANN and the details of each stage are described in the
following sections.
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2.1. ANN Background

ANN is a useful tool for predicting/estimating one or multiple output targets in complex systems,
where output targets are dependent on multiple input parameters. It has been used in many cases for
solving non-linear prediction problems, pattern recognition, and optimization. ANN’s design includes
an input layer, hidden layer(s), an output layer, connection weights and bias, an activation function,
and a summation node. Each layer integrates a number of computational units called neurons [24],
which takes its input values from the previous layer and generates an output value for the next
layer. The input layer provides the input values of the network, which are fed to the hidden layer.
Each hidden layer consists of a number of neurons that calculate an output using all inputs of the input
layer and a predefined set of weights and bias, as stated. This result can be either fed to a next hidden
layer or the output layer. The output layer then analyses all the input produced in the last hidden layer
and produces the final output of the whole ANN. As depicted in Figure 2, during the learning process,
each neuron calculates a single output value based on its input data from the previous layer. In this
figure, si is the output of the neuron ni in the previous layer, wi is a real-valued weight factor associated
with ni, b is a real number called the neuron bias, and S is some transform function, typically a sigmoid.
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A supervised learning technique is one of the methods used to train an ANN network, which is
based on the difference between predicted values and the real expected output values. One of such
methods is the Levenberg–Marquardt backpropagation [23]. The learning process in an ANN works
as a closed loop where the calculated error is the feedback signal to the system and this loop ends
when the difference between the predicted values and the measured values are minimized. To do
so, the process has to reach a state of τ∗ = τ, where τ∗ is the optimized vector of parameters of the
ANN function and τ is a vector of parameter for the ANN. The number of parameters to determine
depends on the number of neurons, at each layer of the network. As stated in Equation (1), for a pair
of data points (si, yi), a τ∗ , the optimized vector of parameters of the ANN function minimizes the
value predicted by the neural network using the input data, and the actual expected value is:

τ∗ = arg
{∣∣∣ANN(τ, si) − yi

∣∣∣} (1)

In this paper, the hidden layers of the ANN contain hyperbolic tangent (TanH) activation
functions and a linear activation function is used in the output layer. The network is designed using a
backpropagation optimization method. Each hidden layer has a set number of neurons, each of which
contain a transformative function and are assigned an adjusted weight, based on the resulting error
from each iteration. The number of hidden layers and neurons should be chosen such that the network
maintains the right balance between increased accuracy and required computational time. Initially
to train the network, the neurons are assigned random small influence weights and the inputs are
propagated through the hidden layers to give a predicted output value. The error between the target
output and network predicted output is found. The training error is back-propagated through the
layers and the weights are adjusted accordingly. A loop is formed and the process of back-propagating
the error of each iteration is repeated until a minimum error is achieved or the predicted and target
outputs converge. The backpropagation method employed in this network is the Levenberg–Marquardt
backpropagation (LMBP) algorithm. LMBP is known for having a good computation time while
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also maintaining a stable convergence. The LMBP algorithm combines the favourable aspects of the
steepest-descent method and the Gauss–Newton method. The steepest-descent method contributes to
the analytical stability of the method while the computational speed of this method can be attributed
to the Gauss–Newton method. In this study, the ANN includes two hidden layers and twenty neurons.
This model will be used in the numerical examples in this paper.

2.2. The Proposed ANN Model

In the proposed algorithm, ANN is trained to predict the vehicle response during its passage over
the bridge, where the vehicle speed is known.

The algorithm is proposed to work with two types of responses; raw acceleration signals in the
time domain and also the DFT spectrum of the acceleration in the frequency domain. In this study,
Fast Fourier Transform (FFT) was used to compute the DFT spectrum. The algorithm proposed here is
named acceleration-based or FFT-based algorithms on the basis of which the response type was used.
In both versions, it was assumed that there is no other vehicle on the bridge when the test vehicle
is crossing the bridge. This might limit the application of the proposed method, but this is likely to
happen for small and medium-span bridges.

2.2.1. Acceleration-Based Algorithm

As the sensor measures the response at a moving reference, the location of the vehicle is also
known and is used as another input. In this form, the vehicle acceleration is function of the vehicle
position and speed for each individual bridge [25]. The independent variable s is formed by the vector
containing:

si = (li, vi) (2)

where li is the position of the vehicle over the bridge at sample i and vi is the vehicle speed which is
kept constant for each pass. The dependent variable yi can be formed as:

yi =
..
uvi (3)

where
..
uvi is the vehicle acceleration at sample i.

2.2.2. Spectrum-Based Algorithm

The second version of the algorithm works with the FFT spectrum of acceleration. The frequency
domain is defined using the scanning frequency of the measurement. However, a range of frequency
that is closer to the bridge frequencies (e.g., 0–20 Hz) can be chosen. In this form, the amplitude of the
vehicle acceleration’s spectrum is a function of the frequency and vehicle speed for each individual
bridge. The independent variable s is defined by a vector containing:

si = ( fi, vi) (4)

where fi is the corresponding frequency at sample i and vi is the vehicle speed which is kept constant
for each pass. The dependent variable yi can be formed as:

yi = a ..
ui

(5)

where a ..
ui

is the amplitude of the FFT spectrum of the vehicle acceleration at sample i.
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2.3. Damage Indicator

The prediction error of the ANN model is characterised by root mean square, calculating the
difference between the predicted values and the actual values for each entry point of the data:

pe j =

√√
1
n

n∑
i=i

(ANN(τ∗, si) − yi)
2 (6)

where pe j is the prediction error for passage, j, of the vehicle over the bridge, which is the summation
of prediction error for all the data samples corresponding to j.

It is expected that pe j varies significantly for a healthy structure with different vehicle speed.
This results in a stochastic distribution that requires a normal distribution characterization to identify
the unhealthy and healthy structures. In this paper, a Gaussian process is employed to generate a
normal distribution of the prediction errors with mean, µ, and standard deviation, σ values:

pe j ∼ (µ, σ) (7)

The prediction errors for the training data set from a healthy bridge would be fairly low. The errors
would remain low for a new data set, while the structure is in a healthy condition. A damage index (DI)
is introduced using the sum of the distance of the pe j to the mean measured in standard deviations, thus:

DI j =
pe j − µtraining

σtraining
(8)

where µtraining and σtraining are estimated mean and standard deviation of the prediction errors of the
training data set which is from the healthy condition, respectively. Equation (8) is used to standardize
the DI. The standardization is helpful for recognizing the healthy condition from low levels of damage.
If only pe j is used as a damage indicator, it would show low levels of damage for a healthy case, which
is in fact the error of training. Therefore, DI is standardized using µtraining and σtraining. This is shown
with more details in the following sections.

3. Numerical Modeling

The proposed method is tested using a numerical model of a VBI. This section provides details of
the numerical model using finite element (FE) and also numerical modeling of damage on the bridge.

3.1. Finite Element Modeling of Vehicle–Bridge Interaction

The VBI, modeled here using FE, works as a coupled VBI system and the solution is calculated at
each time step using an iterative procedure. The vehicle is modeled as a quarter-car shown in Figure 3.
This model has been extensively used in the literature [25–27] as it illustrates many of the important
characteristics of VBI [28]. The quarter-car has two independent degrees of freedom corresponding
to body mass and axle mass translations. ms and mu represent the vehicle body and axle component
masses, us and uu represent their displacements, respectively. A spring with linear stiffness kt, which
represents a tyre, connects the axle mass to the road surface. The equations of motion of the vehicle
model are obtained in terms of the degrees of freedom by imposing equilibrium of all forces and
moments acting on the vehicle:

Mv
..
uv + Cvuv + Kvuv = fint (9)

where Mv, Cv, and Kv are the respective mass, damping, and stiffness matrices of the vehicle and
..
uv,

.
uv,

and uv are the respective vectors of nodal acceleration, velocity, and displacement (uv =
[

us uu
]T

).
The vector fint contains the time-varying dynamic interaction forces applied to the vehicle’s degrees of
freedom. The interaction forces are function of the road irregularities and bridge vibrations. Therefore,
these forces transfer the bridge vibrations to the vehicle as an excitation. It means that the bridge’s
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natural frequencies would present in the vehicle response which proposes the main idea of indirect
bridge monitoring.Sensors 2019, 19, x FOR PEER REVIEW 7 of 18 
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Figure 3. Finite element (FE) model of a quarter-car passing over a bridge.

Beam finite elements are used to model the bridge as a simply supported beam with total span
length L (Figure 3). Each beam element consists of four degrees of freedom (one translational and one
rotational for each of the two nodes). It has constant mass per unit length, m, modulus of elasticity,
E, and second moment of area, J. The equations of motion of the beam under a series of moving
time-varying forces can be written in terms of its degrees of freedom:

Mb
..
ub + Cbub + Kbub = fint (10)

where Mb, Cb, and Kb are the global mass, damping and stiffness matrices of the beam model, respectively,
and

..
ub,

.
ub, and ub are the vectors of the nodal bridge accelerations, velocities, and translation, respectively.

Rayleigh damping is adopted to represent viscous damping for the bridge [29]:

Cb = β1Mb + β2Kb (11)

where β1 and β2 are constants. The damping ξ is assumed to be proportional for all modes and β1 and
β2 are obtained from, β1 = 2ξω1ω2/(ω1 +ω2) and β2 = 2ξ/(ω1 +ω2) where ω1 and ω2 are the first
two natural frequencies of the bridge [29]. The dynamic interaction between the vehicle and the bridge
is implemented in MATLAB. The vehicle and the bridge are coupled at the tyre contact points via the
interaction force vector. Combining Equations (9) and (10), the coupled equation of motion of the
vehicle and the bridge is formed as:

Mg
..
u + Cg

.
u + Kgu = F (12)

where Mg and Cg are the combined system mass and damping matrices, respectively, Kg is the coupled
time-varying system stiffness matrix and F is the system force vector. The vector, u = {uv, ub}

T, is the
displacement vector of the system. The Wilson–Theta integration scheme [30] is used to solve the
equations for the coupled system with the optimal value of the parameter θ= 1.420815 for unconditional
stability in the integration scheme. The initial condition of the solution is considered to be zero vertical
translation, velocity, and acceleration in all simulations.

A quarter-car with the properties given in Table 1 is modelled to pass over a bridge. The bridge is
modeled using 20 elements with the properties given in Table 2.
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Table 1. Properties of the quarter-car. Reproduced from OBrien et al. Application of empirical mode
decomposition to drive-by bridge damage detection. Eur. J. Mech. A Solid 2017; 61, 151–163. Copyright©
2017 Elsevier Masson SAS. All rights reserved. [25].

Properties Symbol Corresponding Value

Vehicle body mass (kg) ms 9300
Vehicle axle mass (kg) mu 700

Tyre stiffness (N/m) kt 1.75 × 106

Suspension damping (Na/m) cs 104

Suspension stiffness (N/m) ks 4 × 105

Body bounce frequency (Hz) ωb 0.94
Axle hop frequency (Hz) ωa 8.83

Table 2. Properties of the bridge. Reproduced from OBrien et al. Application of empirical mode
decomposition to drive-by bridge damage detection. Eur. J. Mech. A Solid 2017; 61, 151–163. Copyright©
2017 Elsevier Masson SAS. All rights reserved. [25].

Properties Symbol Value

Total length (m) L 15
Depth (m) d 0.75

Second moment of area (m4) J 0.5273
Modulus of elasticity (N/mm2) E 35,000

Mass per unit length (kg/m) m 28,125
Bridge first natural frequency (Hz) ωb 5.65

3.2. Damage Modeling

The damage is modeled by imposing a crack at a particular element of the bridge using the crack
modeling method proposed by Sinha et al. [31]. Accordingly, the crack is deemed to cause a stiffness
loss in a region on each side of it, with the flexibility varying linearly on each side from the uncracked
to the cracked beam section. The flexural rigidity close to the crack, EIe(ζ), is given by:

EIe(x) =


EI0 − E(I0 − Ic)

(x−ζ1)
(ζc−ζ1)

i f ζ1 � x� ζc

EI0 − E(I0 − Ic)
(ζ2−x)
(ζ2−ζc)

i f ζc � x� ζ2

(13)

where ζc is the location of the crack and ζ1and ζ2 are positions on either sides of crack where the
stiffness reduction begins, I0 and Ic are the second moment of areas of the undamaged beam and at the
crack location, respectively.

The severity of the damage is represented by the crack depth, expressed as a ratio of the beam
depth. Figure 4 shows the acceleration responses measured on the axle of the vehicle passing over
healthy and damaged bridges, where there is a crack with a ratio of 0.3 at the seventh element in the
damaged case and a smooth road roughness is considered. Several crack dimensions are considered
in the following sections, in a range between 0.05 to 0.3 crack ratios, which is referred to as 5% to
30% damage.
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© 2017 Elsevier Masson SAS. All rights reserved [25].

4. Numerical Results of the Acceleration-Based Algorithm

4.1. A Moving Quarter-Car Passing Over a Bridge with Smooth Road Profile

The numerical VBI model explained in Section 3 is used here to create the data sets. The vehicle is
simulated to pass over the healthy bridge, 100 times, at a speed randomly chosen between 10 to 15
m/s for the training (training data set). The number of measurements is chosen to be similar to [23].
No noise is included in the measurements in this section. The ANN model introduced in Section 2.1 is
used in this section to predict the response. Once the ANN is trained, seven more batches of 100 passes
are simulated including one more over the healthy bridge and another six over the bridge with six
damage scenarios (monitoring data set). For the damaged bridge, six levels of damage are considered
at the seventh element of the bridge, with cracks with ratios from 0.05 to 0.3, in increment of 0.05.

The ANN is used to predict the vehicle accelerations for seven data sets. The signal is sampled
in the space domain at a rate of dx = 0.01 m. Therefore, for a total length of 15 m, 1500 samples are
recorded for each pass. Figure 5 compares the measured and predicted vehicle accelerations for the
first four passes over the healthy bridge, from the monitoring data set. It shows that the signal is
predicted with high accuracy.
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Figure 5. The comparison of the predicted and measured vehicle responses for the first four passes
over the healthy bridge.

Figure 6 shows the comparison of the measured and predicted vehicle accelerations for the first
four passes over the damaged bridge when the crack ratio is 0.3. It can be seen that the ANN predicts
the signal with some inaccuracies. When the bridge is damaged, the dynamic behavior of the structure
changes. This introduces some changes in the VBI which changes the vehicle response. As the ANN
model is only trained on the healthy structure, it cannot accurately predict the vehicle response in
presence of damage and the prediction errors increase compared to the healthy condition. Therefore,
the prediction error can be used as a damage indicator.
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Figure 6. The comparison of the predicted and measured vehicle responses for the first four passes
over the damaged bridge with crack ratio of 0.3.

Figure 7a shows the prediction errors for the healthy and damaged data cases for all damage
scenarios versus the vehicle speed. As the vehicle speed in the new healthy and damaged data sets are
different from the training data set, the prediction errors would not be exactly the same for different
vehicle passages, even if the bridge condition remains unchanged. Figure 7b shows DI plotted for all
passes including the healthy and 6 levels of damage. For the healthy case, the DI values are around zero
showing that the bridge condition has not changed. But for the other passes, DI increases as the crack
ratio increases. In addition, it is shown in Figure 7a that the prediction error varies significantly with
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the vehicle speed. However, Figure 7b shows that the Gaussian process used in the DI can separate the
change due to the vehicle speed and the change caused by the damage.
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4.2. Two Moving Quarter-Cars Passing over a Bridge with Low Road Profile

In this section, a road profile is added to the bridge to represent a more realistic case.
The irregularities of this profile are randomly generated using the following equation [32]:

r(x) =
∑

i

di cos(nixc + γi) (14)

where ni is the ith spatial frequency in consideration, ranging from 1 to 100 cycle/m with increment
∆n = 0.04 cycle/m, γi is the random phase angle, and di is the amplitude for each roughness class which
is defined by:

di =
√

2Gd(ni)∆n (15)

where Gd is the displacement Power Spectral Density (PSD) function and is defined as:

Gd(ni) = Gd(n0)

(
ni
n0

)−ω
(16)

where ω = 2 and n0 = 0.1 cycle/m and Gd(n0) is determined by the roughness class given in ISO 8608.
In this study, Gd(n0) is considered to be 0.01 × 10−6 m3 which is for a low-surface roughness.

It is shown in previous studies [7,16,25,33] that the presence of a road profile introduces inaccuracies
in indirect bridge monitoring methods. In this case, the vehicle frequencies are dominant in the
responses measured on the passing vehicle, which might hide the bridge responses. Yang et al. [17]
overcame this challenge by proposing the idea of subtracting the responses measured on two following
identical axles. It is shown that the bridge frequency is dominant in the residual acceleration response
and the effect of the road profile is substantially removed. A similar subtraction idea is employed here.

Two quarter-cars are modeled to pass over the bridge in this section (Figure 8). The vehicles are
assumed to have the same properties. The residual response is obtained by subtracting the acceleration
responses of the axles.

..
ures =

..
uu1 −

..
uu2 (17)

It was shown in [9] that the subtraction idea is sensitive to measurement noise. White noise is
added to the calculated axle responses to generate noise-polluted responses:

..
upolluted

u =
..
uu + EPNnoiseσ

( ..
uu

)
(18)
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where
..
upolluted

u is the polluted response, EP is the noise level, Nnoise is a standard normal distribution
vector with zero mean value and unit standard deviation,

..
uu is the calculated response, and σ

( ..
uu

)
is

its standard deviation. Three levels of noise 1%, 3%, and 5% are added to the axle responses and the
residual responses are obtained from the noise-polluted signals.

Sensors 2019, 19, x FOR PEER REVIEW 11 of 18 

 

In this section, a road profile is added to the bridge to represent a more realistic case. The 

irregularities of this profile are randomly generated using the following equation [32]: 

�(�) = � ��cos (���� + ��)

�

 (14) 

where �� is the ith spatial frequency in consideration, ranging from 1 to 100 cycle/m with increment 

∆� = 0.04 cycle/m, �� is the random phase angle, and �� is the amplitude for each roughness class 

which is defined by: 

�� = �2�� (��)∆� (15) 

where �� is the displacement Power Spectral Density (PSD) function and is defined as: 

��(��) = ��(��) �
��

��

�
��

 (16) 

where � = 2 and �� = 0.1 cycle/m and ��(��) is determined by the roughness class given in ISO 

8608. In this study, ��(��) is considered to be 0.01 × 10−6 m3 which is for a low-surface roughness. 

It is shown in previous studies [7,16,25,33] that the presence of a road profile introduces 

inaccuracies in indirect bridge monitoring methods. In this case, the vehicle frequencies are dominant 

in the responses measured on the passing vehicle, which might hide the bridge responses. Yang et al. 

[17] overcame this challenge by proposing the idea of subtracting the responses measured on two 

following identical axles. It is shown that the bridge frequency is dominant in the residual 

acceleration response and the effect of the road profile is substantially removed. A similar subtraction 

idea is employed here. 

Two quarter-cars are modeled to pass over the bridge in this section (Figure 8). The vehicles are 

assumed to have the same properties. The residual response is obtained by subtracting the 

acceleration responses of the axles. 

�̈��� = �̈�� − �̈�� (17) 

It was shown in [9] that the subtraction idea is sensitive to measurement noise. White noise is 

added to the calculated axle responses to generate noise-polluted responses: 

�̈�
��������

= �̈� + ���������(�̈�) (18) 

where �̈�
��������

 is the polluted response, ��  is the noise level, ������  is a standard normal 

distribution vector with zero mean value and unit standard deviation, �̈� is the calculated response, 

and �(�̈�) is its standard deviation. Three levels of noise 1%, 3%, and 5% are added to the axle 

responses and the residual responses are obtained from the noise-polluted signals. 

 

Figure 8. Two quarter-cars passing over the bridge. 

For each noise level, a batch of 100 vehicle passes over the healthy bridge were simulated for 

training the ANN. The ANN model introduced in Section 2.1 was used in this section to predict the 

response. Another 7 batches of 100 passes were also generated, one with a healthy condition and the 

other 6 with different damage levels. The errors calculated for the noise level 1%, 3%, and 5% are 
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Figure 8. Two quarter-cars passing over the bridge.

For each noise level, a batch of 100 vehicle passes over the healthy bridge were simulated for
training the ANN. The ANN model introduced in Section 2.1 was used in this section to predict the
response. Another 7 batches of 100 passes were also generated, one with a healthy condition and the
other 6 with different damage levels. The errors calculated for the noise level 1%, 3%, and 5% are
shown in Figure 9a–c, respectively. It can be seen that all three noisy cases provide similar levels of
errors, but as the noise level increases, the errors for each damage case are less consistent. For the
lower noise levels of 1% and 3%, the trends of errors for various damage levels in Figure 9a,b are well
separated. Although the errors are not well separated for 5% noise in Figure 9c, but the differences in
the distributions of errors are still recognizable.
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Figure 9. The prediction errors for (a) 1% added noise, (b) 3% added noise, and (c) 5% added noise
(dark blue: healthy, red: 5% damage, yellow: 10% damage, purple: 15% damage, green: 20% damage,
light blue: 25% damage, brown: 30% damage).
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Figure 10 shows the DI values calculated for the errors in Figure 9. Figure 10a shows that DI
provides a relatively high sensitivity to damage as its maximum value is about 35 when 30% damage
exists. This sensitivity is reduced by increasing the noise level. The maximum value of DI for 3% and
5% noise is about 15, which is less than half of it for 1% noise. It can be concluded that DI provides
lower values for 5% noise compared to 1% and 3% noise levels, meaning that introducing noise to
the measurements reduces the sensitivity of the proposed DI to damage. However, most importantly,
the proposed algorithm works well even for 5% noise, where there is a clear pattern for DI when the
damage level is increased (see Figure 10c).
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Figure 10. The DIs for (a) 1% added noise; (b) 3% added noise; and (c) 5% added noise.

The acceleration-based version of the proposed method directly works with the signals instead of
the bridge modal properties identified from the signals. Therefore, it excludes the inaccuracies that
might exist in the identification process. In addition, the time series include all the dynamic properties
of the bridge such as natural frequencies and mode shapes, which are taken into account in the
proposed method for damage detection. However, in the presence of road profile, it only works with
the subtraction of the responses from the following axles, which needs high accuracy measurements
that might limit its real-world application.

5. Numerical Results of the FFT-Based Algorithm

5.1. A Moving Quarter-Car Passing over a Bridge with a Smooth Road Profile

The data generated in Section 4.1 is used in this section. Instead of prediction acceleration,
the ANN is used to predict the FFT spectrum for seven data sets. The ANN model introduced in
Section 2.1 was used in this section. The ANN was trained using the training data set including 100
passes over the healthy bridge. Figure 11 compares the measured and predicted vehicle acceleration
FFT spectrum for two sample passes over the healthy bridge from the monitoring data set. The results
showed that the signal was predicted with a higher accuracy.
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Figure 11. The comparison of the predicted and measured vehicle FFT responses over the healthy bridge.

Figure 12 shows the comparison of the measured and predicted vehicle acceleration FFT
spectrums for two sample passes over the damaged bridge when the crack ratio is 0.3. Similar to the
acceleration-based algorithm, there were some inaccuracies in the prediction of the FFT spectrum
when there was a damage in the bridge.
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Figure 12. The comparison of the predicted and measured vehicle FFT responses over the damaged
bridge with a crack ratio of 0.3.

Figure 13a shows the prediction errors for the healthy and damaged data sets for all different
damage levels versus the vehicle speed. Figure 7b shows the DI plotted for all passes including a
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pass over a healthy bridge and 6 other passes over a damaged bridge, with different levels of damage.
Similar to the acceleration-based case, for the healthy bridge, the DI values were around zero showing
that the bridge condition had not changed. However, for the other passes, DI increased as the crack
ratio increased.
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5.2. A Moving Quarter-Car Passing over a Bridge with a Low Road Profile

The same road profile used in Section 4.2 was included in the bridge model in this section. One of
the main advantages of the FFT-based algorithm over the acceleration-based one is that there is no
need to use the residual response from subtraction of the responses obtained from the two following
quarter-cars. Therefore, the ANN was trained using the range of 0–8 Hz. Similar to Section 4.2,
three levels of noise 1%, 3%, and 5% were added to the axle response and the FFT responses were
obtained from the noise-polluted signals. For each noise level, a batch of 100 vehicle passes over the
healthy bridge were simulated for training the ANN. The ANN model introduced in Section 2.1 was
used in this section to predict the response. Another 7 batches of 100 passes were also generated, one
with healthy condition and the other 6 with different damage levels. Figure 14a–c shows the errors
calculated for the noise level 1%, 3%, and 5%, respectively.
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Figure 14. The prediction errors for (a) 1% added noise, (b) 3% added noise, and (c) 5% added noise.

Figure 15 shows the DI values calculated for the errors in Figure 14. Figure 15a shows that the DI
has a relatively high sensitivity to damage as its maximum value is about 50 when 30% damage exists.
This sensitivity is reduced by increasing the noise level. The maximum value of DI for 3% and 5%
noise is about 30 and 15, respectively. Similar to the acceleration-based algorithm, it can be concluded
that introducing noise to the measurements reduces the sensitivity of the proposed DI to the damage.
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It is shown that the FFT-based algorithm works well even with the measurements from
one quarter-car and does not need the subtraction. This is a great advantage compared to the
acceleration-based version of the proposed algorithm. However, it depends on the changes in the FFT
spectrum of the signal. Therefore, no information about the damage location can be obtained from the
FFT-based algorithm.

6. Conclusions

A new bridge-damage detection approach was proposed in this paper using machine learning
techniques, combining an Artificial Neural Network model (ANN) and a Gaussian process, to identify
healthy bridge condition from unhealthy ones. The ANN model was trained using a training data set
including the vehicle responses measured from multiple passes over a healthy bridge. The prediction
error for each passage is calculated using root mean square of differences between the measured and the
predicted responses. It is shown that distribution of prediction errors would change when the bridge
was damaged. To interpret the prediction errors when different vehicle speed was considered, a damage
indicator (DI) that was defined using a Gaussian process, was used to normalize the distribution of
the prediction errors in presence of different vehicle speed. Several simulated data set with healthy
and damaged conditions were simulated. A more complicated case study including a road surface
profile and measurement noise was also considered. It was shown that the presence and the level of
the damage could be detected using the proposed approach in this condition. However, for real-world
applications, in order to ensure the safety of a bridge, a threshold must be defined including the
allowed DI value for each bridge. This value could be a function of several parameters, e.g., the location
of the damage, the noise level, the input of the ANN (acceleration or FFT), road roughness, etc.

This is one of the earliest attempts using a population of data for indirect bridge health monitoring,
which is an important step that needs to be taken for indirect approaches to become practical.
For example, the proposed method could detect the change in the dynamic behavior of the bridge.
It was assumed that the changes in the structure behavior were due to the damage. However,
in real-world applications, other environmental effects (such as temperature change) could also change
the behavior. However, this approach also had the potential to be trained for seasonal temperature
change to tackle the issue of environmental effects on indirect bridge monitoring. In addition, the method
was proposed for detecting the occurrence of the damage and not localizing it. This application was
still an important challenge in drive-by methods which are mostly used for monitoring short- and
medium-span bridges.

However, there are several challenges that are needed to be addressed for using the proposed
method in practice. The number of passes for training and damage detection (chosen to be 100 in this
study) needs to be optimized to reduce the computational cost of monitoring. The vehicle speed and
position were used as inputs to the ANN model for the acceleration-based algorithm. This means that
a high-accuracy positioning system is required to record the position of the vehicle and extract the
average speed.
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