
Submitted 20 October 2014
Accepted 18 December 2014
Published 8 January 2015

Corresponding author
Majid Masso, mmasso@gmu.edu

Academic editor
Alfonso Valencia

Additional Information and
Declarations can be found on
page 21

DOI 10.7717/peerj.721

Copyright
2015 Masso

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Modeling functional changes to
Escherichia coli thymidylate synthase
upon single residue replacements: a
structure-based approach
Majid Masso

Laboratory for Structural Bioinformatics, School of Systems Biology, George Mason University,
Manassas, VA, USA

ABSTRACT
Escherichia coli thymidylate synthase (TS) is an enzyme that is indispensable to
DNA synthesis and cell division, as it provides the only de novo source of dTMP
by catalyzing the reductive methylation of dUMP, thus making it a key target for
chemotherapeutic agents. High resolution X-ray crystallographic structures are avail-
able for TS and, owing to its relatively small size, successful experimental mutagenesis
studies have been conducted on the enzyme. In this study, an in silico mutagenesis
technique is used to investigate the effects of single amino acid substitutions in
TS on enzymatic activity, one that employs the TS protein structure as well as a
knowledge-based, four-body statistical potential. For every single residue TS variant,
this approach yields both a global structural perturbation score and a set of local
environmental perturbation scores that characterize the mutated position as well as
all structurally neighboring residues. Global scores for the TS variants are capable
of uniquely characterizing groups of residue positions in the enzyme according to
their physicochemical, functional, or structural properties. Additionally, these global
scores elucidate a statistically significant structure–function relationship among a
collection of 372 single residue TS variants whose activity levels have been exper-
imentally determined. Predictive models of TS variant activity are subsequently
trained on this dataset of experimental mutants, whose respective feature vectors
encode information regarding the mutated position as well as its six nearest residue
neighbors in the TS structure, including their environmental perturbation scores.

Subjects Bioinformatics, Computational Biology
Keywords Computational mutagenesis, Knowledge-based potential, Variant function prediction,
Structure–function relationships, Machine learning, Thymidylate synthase

INTRODUCTION
Escherichia coli thymidylate synthase (TS; EC 2.1.1.45) drives the sole biosynthetic pathway

for production of 2’-deoxythymidine 5’-monophosphate (dTMP), by using the cofactor

5,10-methylenetetrahydrofolate as a carbon donor to catalyze the reductive methylation of

2’-deoxyuridine 5’-monophosphate (dUMP), accompanied by the release of dihydrofolate

(Santi & Danenberg, 1984). Owing to this essential role of TS in DNA synthesis and cell

division, coupled with the enzyme’s relatively high degree of sequence and structural
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Figure 1 Delaunay tessellation of protein structure. (A) Ribbon diagram of the E. coli thymidylate
synthase (TS) structure based on the Protein Data Bank (PDB) accession file 1f4b. (B) Delaunay tes-
sellation of the TS structure coarse-grained at the amino acid level, with each residue represented by the
coordinates of its constituent C-alpha atom in 3D space.

“core” conservation across numerous species (including human) (Finer-Moore, Montfort

& Stroud, 1990), structure-based drug design efforts have led to the discovery of TS

inhibitors that are now key components in certain anticancer treatment regimens

(Jarmula, 2010). The native TS protein is functionally active as a symmetric dimer of

two identical 30–35 kDa subunits, each consisting of 264 amino acid residues, with the

same six-stranded β-sheet from both subunits packing against one other to form the

dimer interface (Carreras & Santi, 1995). Two deep active site cavities are present in the

structurally obligate TS homodimer, whereby lining each site are critical residues donated

by both subunits (Carreras & Santi, 1995).

Included in the Protein Data Bank (PDB) (Berman et al., 2000) are X-ray crystallo-

graphic structures for both the monomeric TS polypeptide chain (Fig. 1A) and the biologi-

cally functional dimer (PDB accession codes 1f4b and 1kzi, respectively), each determined

at 1.75 Å resolution (Erlanson et al., 2000; Fritz et al., 2002). Given the moderately small size

of each TS subunit (1f4b consists of 263 amino acid residues, consecutively numbered

2–264), the protein is well suited for a variety of protein engineering experiments.

In particular, site-directed mutagenesis studies of TS were previously undertaken via

suppression of amber nonsense mutations, leading to the production of 372 variants of the

enzyme generated by introducing the same subset of amino acids (A, C, E, F, G, H, K, L,

P, Q, R, S, Y) at each of 30 targeted sequence positions, and yielding either 12 or 13 single

residue replacements per position (Kim, Michaels & Miller, 1992; Michaels et al., 1990).

These sites included completely substitutable exposed surface positions (E14, D105, N121,

and E223), as well as positions well conserved across species that were substitutable to a

surprisingly high degree (Q33, R35, D81, and R127) (Michaels et al., 1990). Another 12

sites accepted a limited number of substitutions, and these included residues that form

parts of the substrate binding pockets (R21, W80, R126, H147, R166, D169, and N177), the

active site nucleophile (C146), and important structural elements (F30, D110, Q151, and

G204) (Michaels et al., 1990). Lastly, a subsequent study similarly investigated the impact of
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the single residue replacements at 10 sites forming parts of a surface loop (D20, T22, G23,

and T24) that covers residues 20–24, as well as parts of a β-strand (G25, T26, L27, S28, I29,

and G31) spanning residues 25–35; the latter contains a β-bulge centered over residues 30

and 31, while residues 30–35 occur at the dimer interface (Kim, Michaels & Miller, 1992).

Residues surrounding the β-bulge, as well as three sites within the surface loop that are

at the base of the substrate binding pocket, were found to be highly sensitive to amino

acid substitutions (Kim, Michaels & Miller, 1992). The published experimental data on the

qualitative activity levels of the TS variants, relative to that of the native TS, were used to

categorize them as either unaffected (201 variants) or detrimentally affected (171 variants)

by their respective residue replacements.

In this work, a structure-based in silico mutagenesis technique was implemented to

quantitatively characterize every single residue TS variant (i.e., each of the 19 single amino

acid replacements at every sequence position in the TS protein structure), one that relies on

a knowledge-based four-body statistical potential energy function obtained by analyzing

propensities of amino acid quadruplet interactions in over 1,400 diverse protein structures

spanning the PDB. To generate the potential, each structure was initially coarse-grained at

the residue level via the amino acid C-alpha atomic coordinates. For each protein, the set

of C-alpha points were then all employed as vertices to create a space-filling 3-dimensional

(3D) tetrahedral tiling of the structure, referred to as a Delaunay tessellation in the

computational geometry literature (de Berg et al., 2008). Tessellation of an average-sized

protein generates hundreds of packed tetrahedra, each objectively identifying at its four

C-alpha vertices a quadruplet of nearest neighbor residues (Fig. 1B), and the four-body

potential was derived using quadruplet frequency data obtained from these structures.

Applications making use of this energy function mirror those common to traditional

physics (i.e., molecular mechanics) based energy functions; in particular, as detailed in the

Methods, the four-body potential is useful for calculating the total potential energy for any

folded protein structure, as well as for computing structural residue environment scores for

all the amino acids in the protein. These techniques were implemented here to model the

native TS protein structure.

Next, for each single residue substitution in the native TS enzyme, a computational

mutagenesis approach employing the multibody potential described above was defined

and used to empirically quantify structural environmental perturbation (EP) scores at

the position undergoing the single residue mutation, as well as at all locally neighboring

positions identified by tessellation of the 3D protein structure (Fig. 2). Consistent with

the results of prior work analyzing protein-specific (Masso et al., 2014; Masso, Lu &

Vaisman, 2006; Masso et al., 2009; Masso & Vaisman, 2007; Masso & Vaisman, 2013; Masso

& Vaisman, 2011b) as well as collective (Masso & Vaisman, 2008; Masso & Vaisman,

2010; Masso & Vaisman, 2011a; Masso & Vaisman, 2014) sets of single residue mutants

whose consequent functional changes had previously been experimentally determined,

the structural EP scores corresponding to the 372 TS variants explored in this study were

similarly capable of elucidating statistically significant structure–function relationships.

Moreover, the EP scores were combined with additional sequence- and structure-based
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Figure 2 Visualization of the methodology. (A) Delaunay tessellation of E. coli thymidylate synthase
(TS) from Fig. 1B, modified by the removal of tetrahedral edges longer than 12 Å to exclude false-positive
residue quadruplet interactions from all subsequent analyses. (B) Ten tetrahedral simplices from the
modified tessellation that all share as a vertex the C-alpha point representing residue E14, which is
enlarged relative to the others. Collectively, there are nine additional C-alpha vertices associated with
these simplices, and they represent TS residues forming the tessellation-based local structural neighbor-
hood of E14. (C) Residual profile for the TS variant E14C. The ten residue positions with nonzero EP
scores correspond precisely to the mutated position 14 and its nine neighbors, whose respective C-alphas
collectively form the ten vertices of the simplices shown in (B). Attributes related to mutated position 14
and only its six closest neighbors, as determined by the lengths of simplex edges in (B), are included in
the E14C variant feature vector.

features (i.e., also referred to as predictors, input attributes, or independent variables with

respect to computational modeling, as detailed in the Methods) in order to represent each

TS variant as a 27D feature vector; and, when combined with the activity category of each

TS variant (i.e., also referred to as the functional class, output attribute, or dependent

variable, as detailed in the Methods), these data were used to train predictive models

of TS variant activity by implementing four distinct cutting-edge statistical machine

learning algorithms. In contrast to the previous studies, here the focus is on a highly

conserved bacterial enzyme that served as an important target for the development of

pharmaceutical inhibitor drugs. In particular, a “proof-of-principle” is reflected in this
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work via the successful analysis of yet another protein unrelated to any of those already

investigated, a welcome outcome that could not be predetermined with any assurance.

The results to follow establish that the TS structure is similarly capable of being modeled

using the four-body statistical potential energy function, and that the TS variants can be

accurately represented with the use of the related computational mutagenesis technique.

Finally, the conceptual and analytical tools described and implemented in this work reflect

a consolidation of methods previously developed and employed over the course of the

earlier related studies. Of note, the experimental variant datasets of proteins previously

analyzed using these computational techniques were generally larger and more uniformly

distributed throughout their respective sequences relative to that for TS. Yet statistically

significant observations and structure–function relationships made in those prior studies

by applying these techniques are similarly reported here, reflecting a general robustness to

the way in which variants are represented with this methodology.

METHODS
Four-body potential derivation
High resolution X-ray crystallographic structures (<2.2 Å) for 1,417 diverse protein

chains (<30% sequence identity), all having atomic coordinate data tabulated in PDB

accession files (http://proteins.gmu.edu/automute/tessellatable1417.txt), were culled using

the PISCES server (Wang & Dunbrack, 2003). The structures were coarse-grained at the

amino acid level via the C-alpha atomic coordinates of the constituent residues, and the

3D point-set of each protein was then used to generate its Delaunay tessellation (de Berg et

al., 2008), a tiled convex hull consisting of solid, space-filling, non-overlapping, irregular

tetrahedra for which all C-alpha points participate as tetrahedral vertices (Fig. 1). Such

a geometrical construction requires the four C-alpha vertices of every tetrahedron to be

collectively closest to each other, thereby identifying in an objective way all quadruplets

of nearest neighbor residues in the protein structure via tessellation. An adjacent pair

of tetrahedra that border each other in the tessellation must share either one C-alpha

vertex, one edge (i.e., two shared points), or one triangular facet (i.e., three shared

points); furthermore, each C-alpha point is typically shared as a vertex by numerous

adjacent tetrahedra in the packed 3D tiling, so the amino acid represented by that point

simultaneously participates in several distinct nearest neighbor residue quadruplets

(Fig. 2B) (Masso & Vaisman, 2010; Masso & Vaisman, 2014). To ensure that false-positive

quadruplet interactions are eliminated from the tessellation, all tetrahedral edges longer

than 12 Å (often between pairs of C-alphas that correspond to non-interacting distant

residues on the surface, in order to complete the convex hull) are immediately removed

prior to further analysis, effectively eliminating all tetrahedra that utilize those edges

and revealing protein surface clefts and pockets via the tessellation (Fig. 2A) (Masso &

Vaisman, 2008; Masso & Vaisman, 2010; Masso & Vaisman, 2014). All quantitative data

associated with the Delaunay tessellations of protein structures were obtained by using the

Qhull software package (http://www.qhull.org/) (Barber, Dobkin & Huhdanpaa, 1996);

data formatting and analyses, both prior and subsequent to generating the tessellations,
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were performed using an ad-hoc suite of Perl codes written as needed; molecular graphics

were produced with the UCSF Chimera package (Pettersen et al., 2004); and tessellation

visualizations were generated using Matlab, Version 7.0.1.24704 (R14) Service Pack 1.

In this context, primary interest rests with detecting quadruplets of interacting residues

via the four C-alpha vertices of every tetrahedron in these tessellations, irrespective of

any particular order in which the four residues are written; hence, one arrangement

type (e.g., CCDH, written in ascending alphabetical order) was singularly used as a

representative for all possible permutations of the same four residues. Additionally,

given that the sequences of protein structures contain multiple occurrences of the same

amino acid types, a residue quadruplet identified at the four vertices of a tetrahedron may

contain repeated instances of the same amino acids, as suggested by the above parenthetical

example. By observing these constraints (i.e., all permutations of a tabulated quadruplet

are excluded, and quadruplets may each contain repeated residues) and using a standard

protein alphabet of K = 20 letters, the total number of distinct subsets of size r = 4 residues

that can be specified is given by the combinatorial formula


K + r − 1

r


=


23

4


= 8,855

(Masso & Vaisman, 2008; Masso & Vaisman, 2010; Masso & Vaisman, 2011a; Masso &

Vaisman, 2014). For each such 4-residue subset (i, j, k, l), an observed relative frequency

of occurrence fijkl was calculated as the proportion of all tetrahedra generated by the 1,417

protein structure tessellations having the given quadruplet at its vertices, subsequent to

removal of all edges longer than 12 Å. Next, by employing the multinomial probability

distribution to obtain background (i.e., reference) frequencies, an expected rate of

chance occurrence for each quadruplet was computed as pijkl =
4!20

n=1(tn!)

20
n=1atn

n ,

where
20

n=1an = 1 and
20

n=1 tn = 4 (Masso & Vaisman, 2008; Masso & Vaisman,

2010; Masso & Vaisman, 2011a; Masso & Vaisman, 2014). Here, an denotes the proportion

of all residues comprising the 1,417 proteins that are of type n, and tn represents the

number of repeated occurrences of residue type n in quadruplet (i, j, k, l). Based on

a well-established application of the inverted Boltzmann principle, the log-likelihood

score sijkl = −log(fijkl/pijkl) is proportional to the (i, j, k, l) residue quadruplet multibody

interaction energy (Sippl, 1993; Sippl, 1995); moreover, the combined set of scores for all

8,855 distinct quadruplet types defines the four-body statistical potential utilized in this

study (http://proteins.gmu.edu/automute/potential 1417 cut12.txt) (Masso & Vaisman,

2008; Masso & Vaisman, 2010; Masso & Vaisman, 2014).

Computational mutagenesis
For any tessellated protein structure (subject to the 12 Å edge-length cutoff), such as that

of TS, the energy function derived above can be used for empirically calculating a total

potential (tpwt) for the protein (i.e., total potential energy of the folded protein) as follows:

first assign a score to each tetrahedron in the tessellation equal to the interaction energy

of the residue quadruplet associated with its four C-alpha vertices, as tabulated in the

above referenced four-body statistical potential, and then compute the sum of all these

tetrahedral scores (Masso & Vaisman, 2007; Masso & Vaisman, 2010). A residue environ-

ment score (RES) can also be calculated for each primary sequence position number i in
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the protein structure, by adding together only scores of tetrahedra that share the C-alpha

of that position as a vertex, where qi,wt designates the RES value for each position of the

native protein (Masso & Vaisman, 2008; Masso & Vaisman, 2010; Masso & Vaisman, 2014).

Collectively, the vector < qi,wt>
n
i=1 (n = primary sequence length of protein structure) is

referred to as a 3D-1D potential profile (Bowie, Luthy & Eisenberg, 1991). Each RES value

qi,wt empirically provides an overall measure of how the residue at sequence position i

interacts with all those at structurally nearby positions forming its local 3D neighborhood

defined via tessellation (i.e., a measure of sequence-structure compatibility). The local

structural neighbors of a given residue position consist of those whose C-alphas participate

as vertices in the same tetrahedra as the C-alpha of that residue itself; more succinctly, the

neighbors are precisely all those with C-alphas that are connected to the C-alpha of that

residue position by a tetrahedral edge in the tessellation (Fig. 2B).

A single residue substitution is introduced at a protein sequence position in this

scenario (i.e., in the tessellated protein structure) by associating the C-alpha vertex of

that position with a new amino acid; hence, the tessellation construct itself is unaltered,

and the modification involves changing a residue label at that point. This alters by one

amino acid the residue quadruplets associated with all tetrahedra that share the vertex,

thereby changing their tetrahedral scores. The RES values are also altered, say from qi,wt

to qi,mut , at the modified residue position itself and at all neighboring positions defined

by the tessellation. At precisely these positions i, non-zero environmental perturbation

(EP) scores are defined as EPi = qi,mut − qi,wt and, given its significance in elucidating

structure–function correlations, the term residual score is used in referring to the EP

score at the mutated position (Masso & Vaisman, 2008; Masso & Vaisman, 2010; Masso

& Vaisman, 2014). In particular, the residual score empirically quantifies relative change

in global protein sequence–structure compatibility, as detailed in the next paragraph.

Since EPi = 0 at all other positions i whose C-alpha vertices lie outside the structural

neighborhood of the mutated position, this in silico mutagenesis technique clearly is also

concerned with local residue effects. The vector < EPi >
n
i=1 is termed the residual profile of

the mutated protein (Fig. 2C) (Masso & Vaisman, 2008; Masso & Vaisman, 2010).

Next, the total potential of the mutated protein, denoted by tpmut , can be determined in

the same way that tpwt was calculated for the native protein, by using the same tessellation

modified by a single residue letter label alteration at the appropriate C-alpha vertex. It is

a straightforward exercise to show that the difference tpmut − tpwt is precisely equivalent

to the residual score (i.e., EP score at the mutated position) of the single residue variant

(Masso & Vaisman, 2007; Masso & Vaisman, 2010); consequently, this computational

mutagenesis models global structural effects of a mutation. Lastly, a comprehensive

mutational profile (CMPi) score can be computed for each protein sequence position

i by replacing the native residue with each of the 19 possible amino acid alternatives

and averaging their respective residual scores (Masso, Lu & Vaisman, 2006). Thus, each

CMP value quantifies the mean effect on protein sequence-structure compatibility by

considering all possible substitutions of the native residue at the given position.
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Statistical learning and TS variant attributes
The Weka software package (http://www.cs.waikato.ac.nz/ml/weka/) (Frank et al., 2004;

Witten & Frank, 2000) was used to implement four machine learning algorithms for

this study: random forest (RF) (Breiman, 2001), support vector machine (SVM) (Platt,

1998), decision tree (DT) (Quinlan, 1993), and neural network (NN) (Witten & Frank,

2000). Relevant algorithm parameter values used for training were as follows: one hundred

trees (i.e., iterations) for RF; fit logistic models to the outputs = true, complexity (C) =

2.0, epsilon = 10−12, standardized training data, and radial basis function (RBF) kernel

with gamma = 0.01 for SVM; ten bagged (bootstrap aggregated) iterations and pruning

confidence factor = 0.25 for DT; and two hidden layers, learning rate = 0.3, momentum =

0.2, and training time = 500 epochs for NN.

Despite their diverse methodological underpinnings, these supervised classification

techniques all share the same goal of fitting a complex nonlinear function (i.e., model of

the form y = f (x), where x and y are vectors) to data that distinctively characterize each of

the 372 single residue TS variants with experimentally studied activity (i.e., the training set

of known examples). Here, the single residue TS mutants were encoded as feature vectors

sharing a common set of components (i.e., the input attributes or independent variables xi,

i = 1, 2, . . . , N of the model). Values for the input attributes are variant-specific, providing

a unique feature vector representation for each TS mutant, and the objective is to evaluate

their usefulness as predictors of TS variant activity (i.e., categorical U/A output attributes

or dependent variables yi, i = 1, 2 of the model).

In particular, the input attributes used for characterizing each single residue TS variant

included the following (Masso & Vaisman, 2010; Masso & Vaisman, 2014): primary

sequence position number of the mutated residue, identities of the native and replacement

amino acid residues, and the residual score (i.e., the EP score at the mutated position).

Based on the local structural neighborhood of the mutated position as defined by the

tessellation of TS, additional feature vector components consisted of the EP scores at the

six nearest neighbor positions, ordered by proximity to the mutated position (i.e., 3D

Euclidean distance as measured by the length of tetrahedral edges between respective

C-alpha pairs). The amino acid identities at the six nearest neighbors, and their sequence

locations relative to the mutated position (i.e., difference between neighbor and mutated

position primary sequence numbers), were also included in the feature vector and similarly

ordered as the EP scores of the neighbors. Lastly, the following input attributes were added

to each TS variant feature vector:

(1) Mean volume and mean tetrahedrality calculated for the subset of tetrahedra in the TS

tessellation that share the mutated position as a vertex, where tetrahedrality is given by
i>j(li − lj)2/15l̄2 such that li measures the length of the ith edge of the tetrahedron

and l̄ is the mean length of all six tetrahedral edges;

(2) Secondary structure at the mutated position (H, helix; S, strand; or C, coil);

(3) Mutated position depth (S, surface; U, undersurface; or B, buried), a tessellation-based

measure of surface accessibility. If the mutated position serves as a vertex of a triangular
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facet for precisely one tetrahedron (i.e., the facet is not shared by two adjacent

tetrahedra), then the position is on the surface. An undersurface position is one

connected to a surface position via a tetrahedral edge. All other positions are buried;

(4) The number of tessellation edges the mutated position shares with surface positions

(zero by definition for buried positions).

Hence, a total of 27 input attributes were evaluated for each TS variant. An output

attribute was also associated with each TS variant and defined to be the effect of the

mutation on the level of activity, a categorical variable taking one of two possible values:

unaffected (U) or detrimentally affected (A).

Evaluating model performance
Leave-one-out cross-validation (LOOCV) as well as tenfold cross-validation (10-fold CV)

testing procedures were implemented for evaluating the performance of models trained on

the experimental dataset of 372 single residue TS variants with known effects on activity.

As both approaches produced similar results, those based on LOOCV testing were reported

in nearly all instances; an exception was made in the production of learning curves to

visualize how training set size impacts performance, for which 10-fold CV testing data were

used in creating the plots. To implement a 10-fold CV procedure in general, the training set

instances (e.g., 372 TS variants with known activity) are randomly stratified to ten disjoint

subsets roughly equal in size, and testing then proceeds as follows: one subset is held-out

while a model is trained using all of the variants from the other nine subsets combined;

the model is used to predict activity categories for variants in the held-out subset based

on the values of the input attributes in their feature vectors; the process is iterated so that

each subset serves once as a hold-out and has its variants predicted by the model trained

using the combined variants from the other nine subsets; and overall performance is

calculated based on the aggregate of correct predictions and misclassifications obtained

for all 372 TS variants (Witten & Frank, 2000). Implementation of LOOCV proceeds in

a similar fashion, except that the number of initial subsets is equivalent to the size of the

training set (i.e., each subset is a singleton containing one TS variant). The results of any

two independent runs of 10-fold CV often yield minor differences, due to variability in

the way variants are randomly segregated initially to form ten disjoint subsets, so the

overall results are reported as an average of those obtained by ten independent iterations

of the procedure; in this regard, LOOCV is a deterministic method (i.e., identical results

guaranteed with every run) requiring only a single iteration (Witten & Frank, 2000).

The performance of each testing procedure was determined by referring to the variant

activity categories as Positive (P) and Negative (N), where P = class of unaffected (U)

variants and N = class of detrimentally affected (A) variants; hence, TP and TN represent

the total number of true (i.e., correct) predictions from within each category, while FN and

FN correspond to the total number of respective misclassifications. Using this notation,

predictions were evaluated by calculating sensitivity = TP / (TP + FN), specificity =

TN / (TN + FP), and PPV = positive predictive value (i.e., precision) = TP / (TP + FP).
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Figure 3 E. coli thymidylate synthase (TS) structure–function correlation. C/NC refer to
conservative/non-conservative amino acid substitutions.

Additionally, the following quantities were computed: balanced accuracy rate BAR = 0.5×

[Sensitivity + Specificity]; Matthew’s correlation coefficient

MCC =
TP × TN − FP × FN

√
(TP + FN)(TP + FP)(TN + FN)(TN + FP)

;

and the area (AUC) under the receiver operating characteristic (ROC) curve, a plot of the

true-positive rate (i.e., Sensitivity) versus false-positive rate (i.e., 1 − Specificity) in the

unit square. The AUC is equivalent to a non-parametric Wilcoxon test of ranks (Hanley &

McNeil, 1982), taking on values that fall within two extremes given by AUC ≈ 0.5 (random

guessing) and AUC = 1.0 (perfect classifier).

RESULTS AND DISCUSSION
E. coli TS structure–function relationships
A residual profile was derived for each TS variant, categorized as either unaffected (U, 201

variants) or detrimentally affected (A, 171 variants) based on experimentally determined

activity, by computing its EP scores at all sequence positions in the TS protein structure.

Focusing specifically on the residual score of each TS variant (i.e., the EP score at the

mutated position) and the calculated average of such scores over all variants comprising

each activity class (i.e., categorical mean residual scores), Fig. 3 (row labeled All) reveals

that TS protein functional impairment upon mutation is correlated with a detrimental

impact to TS protein structure (i.e., mean residual score of activity class U is positive
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with relatively small magnitude, while that of class A is negative with substantially larger

magnitude). Moreover, the difference between mean residual scores for the U/A activity

class pair is statistically significant (t-test: p < 0.05).

Variants in each class were further categorized based on whether the replacement

residue represented a conservative (C) or non-conservative (NC) substitution relative

to the native amino acid, and mean residual scores were computed for each of these

subgroups. By clustering amino acids into six groups as [(A, S, T, G, P), (D, E, N,

Q), (R, K, H), (F, Y, W), (V, L, I, M), (C)] based on physicochemical similarities,

intraclass residue replacements are defined as conservative while interclass substitutions

are non-conservative (Dayhoff, Schwartz & Orcut, 1978). As depicted in Fig. 3, the

non-conservative variant subsets within each activity category clearly drive the overall

structure–function relationship; furthermore, the conservative variants within each

activity category display a deleterious average effect on TS structure (i.e., mean residual

scores are −0.34 for both C subsets in Fig. 3), contrary to an expectation that conservative

substitutions would minimally impact structure in the aggregate (i.e., mean residual scores

that are closer to zero). The latter observation stems from bias that exists among the

372 experimental TS variants for residue substitutions at highly intolerant positions, as

opposed to uniform sampling from among all conservative TS variants, a fact supported

by prior computational studies on proteins for which comprehensive experimental

mutagenesis data were available for analysis (Masso et al., 2008; Masso, Lu & Vaisman,

2006; Masso et al., 2009; Masso & Vaisman, 2011b).

An alternative analysis was performed by examining the way in which these 372

experimental TS mutants were distributed throughout a 2 × 4 contingency table having

activity categories and residual score intervals as row and column headings, respectively. In

particular, the two U/A activity classes were used to label the table rows, while four clusters

of residual scores formed by the intervals (−∞,−1), [−1, 0), [0, 1), and [1, +∞) were

used to identify the columns, and each cell in the table contained the number of TS variants

satisfying the respective row and column conditions. A chi-square test applied to the table

led to rejection of the null hypothesis that no association exists between activity level and

residual scores (χ2
= 33.91, 3 degrees of freedom; p < 0.0001).

Classification of E. coli TS residue positions
A closer inspection of the in silico comprehensive single residue mutagenesis data and

residue environment scores at all 263 constituent sequence positions in the TS protein

structure (PDB accession code 1f4b) revealed a strong inverse correlation (R2
= 0.74)

between CMP and RES scores (Fig. 4). When the residual scores of non-conservative (NC)

and conservative (C) residue substitutions at each position were averaged separately, the

resulting modified NC-CMP and C-CMP data showed NC substitutions (R2
= 0.74) to

be the driving force behind the overall correlation in Fig. 4, with minimal contribution

from C substitutions (R2
= 0.10). Similar results were repeatedly observed with the use

of analogous in silico data obtained from a variety of diverse proteins, including HIV-1

protease (Masso, Lu & Vaisman, 2006; Masso & Vaisman, 2003), E. coli lac repressor
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Figure 4 CMP—potential profile correlation plot for E. coli thymidylate synthase. Note how the amino
acid residues comprising the protein are clustered by polarity.

Table 1 Distribution of all TS residues.

Residue types

Graph quads Apolar Charged Polar Total

Q1 8 6 21 35

Q2 11 44 38 93

Q3 7 8 9 24

Q4 77 1 33 111

Total 103 59 101 263

(Masso et al., 2008), bacteriophage f1 gene V protein (Masso et al., 2009), bacteriophage

T4 lysozyme (Masso, Alsheddi & Vaisman, 2009) and human interleukin-3 (Masso &

Vaisman, 2011b), whereby an identical pattern of constituent amino acid residue clustering

by polarity emerged in each instance (Fig. 4: hydrophobic/apolar, Quad 4; charged, Quad

2; polar, diffuse pattern about the origin). Moreover, application of a chi-square test to

the 4 × 3 contingency table (Table 1) quantifying the distribution of all residues in the TS

structure as depicted in Fig. 4, whereby Cartesian coordinate quadrant locations (Quads

1–4) and residue polarities (apolar, charged, polar) designated row and column headings,

respectively, led to rejection of the null hypothesis that no association exists between

polarity and location (χ2
= 103.32, 6 degrees of freedom; p < 0.0001).
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Table 2 Distribution of annotated TS residues.

Residue Types

Graph quads Burieda Catalyticb Exposedc Interfaced Total

Q1 0 2 0 7 9

Q2 0 2 22 8 32

Q3 0 0 8 6 14

Q4 34 4 2 12 52

Total 34 8 32 33 107

Notes.
a GETAREA (http://curie.utmb.edu/getarea.html) using PDB file 1f4b (TS monomer).
b Catalytic Site Atlas (http://www.ebi.ac.uk/thornton-srv/databases/CSA/) using PDB file 1f4b, as well as Dev et al. (1989).
c Overlap between surface residues identified using both GETAREA, with PDB file 1kzi (TS dimer), and the tessellation-

based definition of depth, excluding any residues annotated as either interface or catalytic.
d Greene et al. (1993).

Next, a detailed analysis was performed using a subset of 107 annotated TS residues,

taking into consideration structural locations and functional properties. In particular,

34 amino acids (L7, M8, V11, L38, F42, L59, F62, L72, V77, L90, V93, W98, I112, V115,

L119, I128, V130, M141, F150, L159, L163, V170, F171, L174, L184, V185, M187, M188,

F199, W201, L208, L230, I239, and F247) were determined to be buried by the GETAREA

(http://curie.utmb.edu/getarea.html) program (Fraczkiewicz & Braun, 1998); 8 catalytic

residues (E58, W80, Y94, C146, H147, R166, D169, and N177) were identified by accessing

the Catalytic Site Atlas (http://www.ebi.ac.uk/thornton-srv/databases/CSA/) (Furnham

et al., 2014) and by referring to Dev et al. (1989); 33 dimer interface residues (T16, K18,

N19, D20, S28, F30, Q33, R35, W101, T103, P104, D124, R126, I129, S131, W133, V135,

G136, A148, Q151, Y153, V154, A155, D156, S160, Q162, Y164, S167, V200, T202, D205,

H207, and Y209) were reported in Greene et al. (1993); and 32 amino acids (K2, D13,

E14, Q17, G23, D40, E74, N76, E86, N87, D105, G106, R107, N121, D122, D139, D193,

D214, L218, S221, E223, P226, K233, K235, E237, E245, G251, D253, P256, K259, P261,

and I264) were deemed exposed both by using the tessellation-based definition of depth

as well as by applying the GETAREA program. Distribution of the residues belonging to

each structural or functional subgroup according to their Cartesian coordinate quadrant

locations, as depicted in Fig. 4, is summarized in Table 2. Fisher’s exact test applied to this

4 × 4 contingency table led to rejection of the null hypothesis that no association exists

between structural/functional subgroups and quadrant locations (p < 0.0001).

These annotated residue positions were subsequently characterized via their respective

in silico data, where Fig. 5 depicts both the mean of the residue environment scores

(M.R.E.S.) over all the positions of each subgroup, as well as the mean of the residual scores

computed for all 19 single residue replacements at all positions within each subgroup (rows

labeled All/C/NC). It is clear from Fig. 5 that these mean scores differ substantially between

buried and exposed residues; furthermore, the scores distinguish interface residues from

other exposed residues, while mean scores for the set of catalytic residues display a pattern

that is distinct from those for the other three subgroups.
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Figure 5 Characterization of E. coli thymidylate synthase structural/functional residue groups. C/NC
refer to conservative/non-conservative amino acid substitutions, and M.R.E.S. refers to mean of the
residue environment scores.

Machine learning models for predicting E. coli TS variant activity
Four supervised classification models were trained using the dataset of 372 experimental

single residue TS variants with known activity (i.e., expressed as a U/A categorical output

attribute), where each variant was uniquely represented as a 27D feature vector of input

attributes consisting of EP scores, calculated using the in silico mutagenesis technique, as

well as sequence- and structure-based data, derived from both the TS structure and its

tessellation (see Methods for details). The trained models were derived by implementing

the random forest (RF), support vector machine (SVM), decision tree (DT), and neural

network (NN) machine learning algorithms. Models were evaluated based on the accuracy

of predictions obtained via leave-one-out cross-validation (LOOCV) testing, as reported

in the upper section of Table 3, whereby all four methods performed equally well and

consistent with one another. In every case, the information encoded by the feature vector

input attributes proved to be invaluable for accurately distinguishing between TS variants

categorized by activity as either unaffected (U) or detrimentally affected (A). To highlight

the significance of these signals with respect to all four trained models, LOOCV testing

results in Table 3 using the original dataset were compared with those obtained using a

control dataset generated by randomly shuffling the 201U/171A class labels among the

372 TS variants. Dramatic drops in AUC values to levels near 0.5 were observed using the

control dataset (Fig. 6A), suggesting these model predictions were equivalent to random

guessing, a conclusion further supported by BAR and MCC performance measures: RF
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Table 3 Evaluation of TS variant prediction performance.

Method Sensitivity Specificity PPV MCC BAR AUC

LOOCV testing results

RF 0.79 0.85 0.86 0.64 0.82 0.87

SVM 0.81 0.85 0.86 0.66 0.83 0.88

DT 0.77 0.87 0.88 0.64 0.82 0.87

NN 0.77 0.81 0.83 0.58 0.79 0.85

Predictions made by existing methods

Auto-Mute 2.0 0.95 0.50 0.63 0.38 0.73 0.73

SNAP 0.32 0.99 0.98 0.40 0.65 0.67

PMut 0.27 0.87 0.71 0.17 0.57 0.59

(AUC = 0.55, BAR = 0.55, MCC = 0.10), SVM (AUC = 0.54, BAR = 0.53, MCC =

0.05), DT (AUC = 0.53, BAR = 0.56, MCC = 0.13), and NN (AUC = 0.55, BAR = 0.53,

MCC = 0.07).

For a more systematic approach to assessing statistical significance of the LOOCV

results presented in Table 3, 1,000 control sets were generated as before via class label

permutations (i.e., random class shuffles), and each dataset was used to train an RF

model and evaluate performance measures via LOOCV testing. All calculated BAR

and MCC values based on these controls were found to be distributed within narrow

windows centered around 0.5 and zero (Fig. 6B: BAR = 0.50 ± 0.03, MCC = 0.00 ± 0.07),

respectively, and distant from those obtained using the original arrangement of the class

labels (Table 3: BAR = 0.82, MCC = 0.64), so the p-value for predictive power of the model

is less than 0.001. Nearly identical LOOCV testing results were obtained when models

based on the other three algorithms were trained using the control sets: SVM (BAR = 0.50

± 0.04, MCC = 0.00 ± 0.08), DT (BAR = 0.50 ± 0.03, MCC = 0.00 ± 0.07), and NN

(BAR = 0.50 ± 0.03, MCC = 0.00 ± 0.06). Comparing these data with LOOCV testing

results in Table 3 obtained using the original dataset revealed the same degree of statistical

significance in each of these cases as that observed with the RF algorithm.

Furthermore, these 372 TS variants were submitted to three existing state-of-the-art

models in order to obtain predictions (lower section of Table 3, Fig. 6C): Auto-Mute

2.0 (http://proteins.gmu.edu/automute) (Masso & Vaisman, 2014), SNAP (https://www.

rostlab.org/services/snap/) (Bromberg & Rost, 2007), and PMut (http://mmb2.pcb.ub.es:

8080/PMut/) (Ferrer-Costa et al., 2005). The Auto-Mute 2.0 model was trained on 8,561

single residue mutations (5,251 U / 3,310 A) occurring in seven diverse proteins (Masso &

Vaisman, 2011a), exclusive of TS, so that the TS variant data represent an independent

test set. The same is true for PMut, which was trained using only mutations from

human proteins (i.e., single nucleotide polymorphisms, or SNPs), although subsequent

studies showed that this model could also be used to predict protein variants from other

organisms. The SNAP model, however, was trained using the annotated variants listed in

the Protein Mutant Database (PMD) (Kawabata, Ota & Nishikawa, 1999), among which

these TS variants are all included; hence, SNAP has a significant advantage whereby the TS
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Figure 6 Statistical significance of classifier performance. (A) Leave-one-out cross-validation
(LOOCV) ROC curves obtained for all four models based on the original dataset as well as a control
generated by a single random shuffling of the U (unaffected)/A (detrimentally affected) activity class
labels among the 372 E. coli thymidylate synthase (TS) variants in the dataset. (B) Distribution of LOOCV
random forest (RF) prediction performance over 1,000 random activity class label permutations, com-
pared with results using the original dataset (BAR, balanced accuracy rate; MCC, Matthew’s correlation
coefficient). (C) Comparison of ROC curves corresponding to TS variant predictions obtained with three
state-of-the-art methods.

Masso (2015), PeerJ, DOI 10.7717/peerj.721 16/24

https://peerj.com
http://dx.doi.org/10.7717/peerj.721


variant test set is not at all independent, and prediction performance in this case reflects

the resubstitution error (i.e., how well a model fits data it has already seen and on which it

was trained). Additionally, Auto-Mute 2.0 utilizes all but one of the input attributes applied

in this study, the exception being the sequence position number of the mutated residue

(i.e., the Auto-Mute 2.0 model is universal and not protein-specific), while SNAP and

PMut both incorporate information derived from multiple sequence alignments. Given

that the TS variant feature vectors used in both the present study as well as Auto-Mute 2.0

did not include input attributes based on such evolutionary information, the work here

corresponds to an orthogonal approach that is complementary to the SNAP and PMut

methods. Overall, Auto-Mute 2.0 predictions (Table 3, Fig. 6C) displayed considerably

more balance and less skew toward one activity category, as evidenced by the calculated

Sensitivity and Specificity values, leading to higher accuracy (BAR) and AUC measures and

outperforming the other two methods.

Characteristics of E. coli TS variant-specific predictions
Illustrated in Fig. 7 are the individual TS variant prediction results, obtained by LOOCV

testing of the four supervised classification models, which were subsequently used for

computing the summary performance data reported in Table 3. Collectively, 70% of the

TS variants (259/372) were correctly predicted by all four methods, and an additional 11%

(42/372) were misclassified only once; on the other hand, 10% of the variants (38/372)

presented a challenge and were incorrectly predicted by every method. With respect to

the individual TS sequence positions, all single residue substitutions at Q33, R35, and

N121 were correctly predicted by all four methods. Nearly perfect predictions were also

observed at E14, D81, D105, R127, and E223, with the NN algorithm causing a single

misclassification at each position for the variant formed by introducing lysine (K) as the

replacement residue. As discussed in the Introduction, these eight positions are among

those that were experimentally determined to be highly substitutable, so the models

were capable of accurately predicting variants for which activity was unaffected. At the

other extreme, position S28 displayed the greatest number of variants (6 out of 12) that

were incorrectly predicted by all four methods, followed by T22 with 4 out of 13 such

misclassified variants; furthermore, fewer than half the variants at each of the positions

T22, S28, I29, and H147 were correctly classified by more than two of the methods. Again

referring to the Introduction, the latter residue position H147 was found to accept a limited

number of substitutions, while the other three positions were determined to be highly

sensitive to amino acid replacements. Consequently, the ability of models to correctly

predict variants at these four positions presented a challenge.

The LOOCV predictions associated with each method were further examined by

assessing the accuracy of TS variant subsets based on depth and secondary structure

associated with the amino acid positions undergoing mutation, as well as by evaluating the

performance of variant subsets according to the polarities of their native and replacement

residues. Summaries of these data are presented in Tables 4 and 5, respectively, whereby

each BAR and MCC accuracy measure represents the average value over all four methods,
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Figure 7 Model predictions. Visualization of E. coli thymidylate synthase (TS) variant-specific prediction results based on leave-one-out (LOOCV)
testing.

Table 4 Mean LOOCV prediction performance based on depth and secondary structure.

BAR MCC %

Depth

Buried 0.83 0.67 50

Undersurface 0.60 0.21 20

Surface 0.91 0.79 30

Secondary structure

Strand 0.78 0.57 46

Helix 0.88 0.76 21

Coil 0.82 0.63 33
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Table 5 Mean LOOCV prediction performance based on side chain polarities of the native and new
amino acids at the mutated position.

New/native Polar Apolar Charged All

BAR MCC % BAR MCC % BAR MCC % BAR MCC %

Polar 0.75 0.50 22 0.80 0.60 16 0.73 0.46 12 0.76 0.52 50

Apolar 0.78 0.54 5 0.74 0.49 3 0.85 0.62 2 0.78 0.54 10

Charged 0.86 0.70 19 0.96 0.93 13 0.89 0.79 8 0.90 0.79 40

All 0.80 0.59 46 0.86 0.72 32 0.80 0.59 22 0.82 0.63 100

and % refers to the proportion of the 372 TS variants belonging to each category. Table 4

reveals that variants in helices were correctly classified more often than those in strands

or coils, while predictions for mutations at surface and buried residues were substantially

more accurate than those at undersurface positions. Moreover, substitutions of charged

native residues were more accurately predicted than those of polar or hydrophobic/apolar

native positions, as presented in Table 5 (column labeled All). Polar to charged and polar to

polar residue replacements accounted for the top-most and third-highest misclassification

rates, respectively, while representing a sizeable proportion of the TS variants at 12% and

22%, and these data are consistent with the reduced accuracy reported for undersurface

positions. Conversely, variants incorporating apolar residues as replacements are correctly

classified at a higher rate than those that use polar or charged amino acids as substitutions

(Table 5, row labeled All). In particular, charged to apolar residue replacements displayed

the highest accuracy rates.

Learning curves
Lastly, learning curves were generated as a way to visualize the effect of training set size

on model performance. Using each machine learning method, tenfold cross-validation

(10-fold CV) was applied to ten stratified random samples each consisting of 50 TS

variants, whereby each set was selected from among all 372 TS variants, and mean BAR,

MCC, and AUC values were calculated over all ten sets along with respective standard

deviations. Subsequent iterations incremented the set sizes by 50 variants until sets of

size 350 variants each were selected, and a final iteration consisted of running 10-fold CV

testing ten times on the full set of 372 variants. The plots appear to plateau as the set size

approaches 372 variants (Fig. 8), suggesting that optimal performance may have been

achieved and that additional TS variant data may not necessarily improve accuracy.

Concluding remarks
In this report, a knowledge-based four-body statistical potential energy function was

used to empirically calculate a structural residue environment score for every amino

acid position of the E. coli thymidylate synthase (TS) enzyme. An in silico mutagenesis

procedure that relies on this energy function was implemented to characterize single

residue TS variants in terms of a global structural perturbation score (i.e., the residual

score), as well as local environmental perturbation (EP) scores at the mutated position and
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Figure 8 Learning curves. At each training set size increment and for each machine learning method,
mean tenfold cross-validation (10-fold CV) performance measures were calculated for balanced accuracy
rate (BAR), Matthew’s correlation coefficient (MCC), and area under the ROC curve (AUC).

all structurally nearest-neighbor residues. When compared with available experimental

data, these scores were shown to be effective at elucidating statistically significant

TS structure–function relationships, distinguishing roles of TS residues, and training

predictive models for classifying TS variant activity.

The available experimental dataset consisted of 372 single residue TS variants defined by

introducing the same 12/13 amino acid substitutions at each of 30 TS positions, and each

variant was determined to have either unaffected or detrimentally affected activity relative

to the native enzyme. Despite such a restricted set of 201 unaffected and 171 affected TS

variants, the overall average structural perturbation score (i.e., mean residual score) for the

unaffected class of variants was near zero; however, the mean residual score for variants in

the affected class was negative, reflecting a statistically significant difference between the

mean residual scores of both classes and elucidating an inherent TS structure (i.e., mean

residual score)–function (i.e., activity class) relationship.

More generally, residual scores were calculated for all TS variants (i.e., each of the 19

possible amino acid replacements of the native residue at every TS position) without regard

to availability of experimental activity data, and a CMP (i.e., comprehensive mutational

profile) score was calculated for each TS position by averaging the residual scores of all

19 variants associated with each position. Interestingly, a strong inverse correlation was

observed between the (native) structural residue environment scores and the (variant)
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CMP scores over all TS positions, and a graphical display of this correlation reveals a

clustering of TS positions based on native residue polarities. Also, substantial differences in

these scores were observed between groups of TS residues annotated for known structural

(buried, exposed) or functional (catalytic, interface) roles in the protein.

Finally, each TS variant in the experimental dataset was represented as a vector of

features that included local EP scores at the mutated position and its six structurally

nearest neighbors, specific type of residue replacement at the mutated position defining

the variant, and additional sequence as well as structure based attributes. Combined with

the known activity categories to which the 372 TS variants belong, this dataset was used

to train and analyze predictive models of TS variant activity by implementing a variety of

statistical machine learning algorithms. Cross-validation results suggest that the models

are generally reliable and expected to perform well specifically with regards to predicting

all currently unexplored TS variants (i.e., 7/8 amino acid replacements) at the 30 protein

positions included in the training dataset. As more TS variant activities at additional

positions become known, important goals with respect to this work will be to strengthen

the aforementioned structure–function relationship and correlations, as well as to develop

protein-wide predictive models.
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