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Abstract

Accurate prediction of transcription factor binding sites (TFBSs) is essential for understanding gene regulation mechanisms and the
etiology of diseases. Despite numerous advances in deep learning for predicting TFBSs, their performance can still be enhanced. In this
study, we propose MLSNet, a novel deep learning architecture designed specifically to predict TFBSs. MLSNet innovatively integrates
multisize convolutional fusion with long short-term memory (LSTM) networks to effectively capture DNA-sparse higher-order sequence
features. Further, MLSNet incorporates super token attention and Bi-LSTM to systematically extract and integrate higher-order DNA
shape features. Experimental results on 165 ChIP-seq (chromatin immunoprecipitation followed by sequencing) datasets indicate that
MLSNet consistently outperforms several state-of-the-art algorithms in the prediction of TFBSs. Specifically, MLSNet reports average
metrics: 0.8306 for ACC, 0.8992 for AUROC, and 0.9035 for AUPRC, surpassing the second-best methods by 1.82%, 1.68%, and 1.54%,
respectively. This research delineates the effectiveness of combining multi-size convolutional layers with LSTM and DNA shape-based
features in enhancing predictive accuracy. Moreover, this study comprehensively assesses the variability in model performance across
different cell lines and transcription factors. The source code of MLSNet is available at https://github.com/minghaidea/MLSNet.

Keywords: transcription factor binding sites; multisize convolutional fusion; super token attention and Bi-LSTM; DNA sequence; DNA
shape

Introduction
Transcription factors (TFs) are proteins that bind to specific
DNA sequences, regulating gene expression. These binding sites,
known as TF binding sites (TFBSs), typically range from 5 to
20 bp in length [1–3]. Accurate TFBS identification is vital for
understanding gene regulation and disease mechanisms [4].
Genomic variations in TFBSs have been linked to diseases such
as cancer, autoimmune disorders, and neurological diseases
[5]. High-throughput sequencing technologies like ChIP-seq [6]
provide extensive experimental data on TF–DNA interactions.
ChIP-seq, which combines chromatin immunoprecipitation
with high-throughput sequencing, efficiently identifies TFBSs.
However, due to the difficult-to-obtain reagents and materials,
such as antibodies against certain TFs [7, 8], computational
prediction of TFBSs from sequence data has become a preferred
method.

In the past decades, a variety of computational methods
have been developed to predict TFBSs. Machine learning–based

approaches [9, 10] have been commonly used for predicting TF
recognition binding sites. These approaches include methods
based on Support Vector Machines (SVMs) [11], Random Forest
models [9], and Hidden Markov Models (HMMs) [12], among others.
Despite their success in TFBSs prediction tasks, these traditional
methods often depend on handcrafted features and may not fully
exploit the information in the raw input sequences.

Recently, deep learning methods have emerged as powerful
tools in bioinformatics, offering new possibilities for TFBS pre-
diction. Many methods have been proposed to predict the TFBSs,
such as Expecto [13], Sei [14], and Enformer [15]. These methods
focus on genetic variant effects with additional identification of
some specific TFBSs. They are more as studies of noncoding vari-
ant effect prediction and analyses of gene regulatory processes,
lacking specialized mechanisms for specific TF recognition. To
addition to these methods, deep learning–based methods like
DeepBind [16], DeepSEA [17], and DanQ [18] utilized the power
of neural networks to learn complex patterns, outperforming
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methods based on handcrafted features [19–26]. These methods
not only capture local features of DNA sequences but also manage
to some extent distant dependencies. This represents a signif-
icant advancement over traditional methods, paving the way
for more accurate and comprehensive TFBS predictions. Recent
studies have underscored the importance of DNA shape in pre-
dicting TFBSs. Consequently, new methods such as DLBSS [27],
CRPTS [28], D-SSCA [29], and DeepSTF [30] have been developed to
improve TFBSs prediction by integrating both sequence and shape
information. Compared with previous methods, these methods
not only utilize the sequence-only features but also incorpo-
rate DNA shape information. This allows models to comprehen-
sively consider the characteristics of TF-DNA binding, thereby
enhancing prediction accuracy and interpretability. For instance,
DeepSTF combines convolutional neural networks (CNNs), Bi-
LSTM, and an enhanced Transformer [30]. By processing DNA
sequences and shape contours jointly, it adaptively extracts high-
order features, improving TFBSs prediction accuracy. Further-
more, in-depth analysis of shape contours has demonstrated the
positive influence of shape [27–30] on TF-DNA binding, offering a
fresh perspective for TFBSs prediction.

However, the deep learning methods described above also have
some limitations, such as only capturing local sequence fea-
tures, failing to extract more information from sparse sequence
features, and overemphasizing shape features while neglecting
sequence features. To address these issues, we propose a novel
deep learning model, MLSNet. This model employs a multisize
convolution fusion framework with LSTM [31] to effectively cap-
ture higher-order features from sparse sequence features and
obtain global sequence features. Additionally, we process DNA
shape data as supplementary features and incorporate them into
the model to enhance prediction accuracy.

Materials and methods
Construction of the benchmark dataset
DNA sequence
We evaluated our model’s performance using the dataset previ-
ously employed by DeepSTF. Notably, this dataset comprises 165
ChIP-seq sub-datasets curated by Zeng et al. [32] from the larger
pool of 690 ENCODE ChIP-seq datasets. The selection criteria
included diversity across different cell lines. Detailed dataset
descriptions are available in Supplementary Table S1 available
online at http://bib.oxfordjournals.org/. Each dataset consists of
training and testing subsets, comprising multiple positive and
negative instances. DNA sequences are represented as fixed-
length strings of 101 bp, with binary labels (0 and 1) indicating
the absence or presence of TFBSs, respectively. The 165 ChIP-
seq dataset is extensively utilized for studying the prediction
of DNA-TF binding sites [29, 30]. Comprehensive details about
the datasets are presented in Tables S1–S3 available online at
http://bib.oxfordjournals.org/. Access to all datasets is provided
at http://cnn.csail.mit.edu/motif_discovery/.

DNA shape
In light of model interpretability and data availability, we sought
to optimize performance using the simplest feasible model.
Through extensive analysis of DNA structures, we identified five
critical shape features: helical twist (HelT), minor groove width
(MGW), propeller twist (ProT), rolling (Roll), and electrostatic
potential (EP). These features, which encapsulate essential infor-
mation on DNA’s structural and functional properties, are crucial
for enhancing TFBSs identification. By examining these shape

features, we gain a deeper understanding of TF–DNA interaction
mechanisms. DNAshapeR, a high-performance R/BioConductor
package, can encode DNA shape features rapidly and effectively.
Full documentation and further details are available at http://
www.bioconductor.org/ and in Table S4 available online at http://
bib.oxfordjournals.org/.

Model description
The overall architecture of MLSNet is illustrated in Fig. 1.

Data preprocessing
DNA sequence

The DNA sequence was encoded employing both 3-mer encoding
and one-hot encoding technologies. An initial 101-nucleotide
sequence was segmented into 99 overlapping 3-mers. 3-mer
encoding, a common k-mer encoding method, has been proven to
be highly effective [33], as detailed in Text S1 available online
at http://bib.oxfordjournals.org/. For instance, the nucleotide
sequence ATGCCG is transformed into overlapping 3-mers: ATG,
TGC, GCC, and CCG. Subsequent one-hot encoding converted A, T,
C, and G into the vectors [1,0,0,0], [0,1,0,0], [0,0,1,0], and [0,0,0,1],
respectively. Finally, this process yields a feature matrix with
dimensions 1 × 12 × 99, represented as follows:

S1 = [M1, M2, Mi, ..., M98, M99] (1)

where Mi refers to the i-th 3-mer nucleotide fragment.

DNA shape

The DNAshapeR toolkit processes DNA sequences to predict asso-
ciated structural features: Helt, MGW, ProT, Roll, and EP. These
features are concatenated to form matrix S2, serving as the input
data for DNA shape analysis in 1 × 5 × 101 format, defined as
follows:

S2 = [N1, N2, Ni, ..., N100, N101] (2)

where Ni represents the set of five spatial structural features
predicted by the DNAshapeR toolkit for the i-th nucleotide.

Sequence data processing
Utilizing 3-mer encoding can enhance the representational
breadth of the input sequence matrix. However, a limitation
of one-hot encoding is its production of a sparse matrix
comprised solely of zeros and ones, which may hinder the
performance of standard convolutional networks. To overcome
this, we adopted a multiscale strategy (3 × 3, 5 × 5, and 7 × 7
kernels) with incremental channel scaling from 32 to 128 and
mixed-channel integration, to enhance feature extraction across
multiple scales. Padding was adjusted to maintain the original
input’s dimensionality throughout the process and outputs were
integrated along the channel dimension, followed by max-pooling
to improve computational efficiency and network robustness.
Besides, a dropout layer was also implemented to prevent
overfitting, represented as follows:

M = Concat
(
Conv1

(
S1, W1, b1

)
, Conv2

(
S1, W2, b2

)
, Conv3

(
S1, W3, b3

))

(3)

C1 = Dropout
(
MaxPooling(M)

)
(4)

where Wi, i = 1, 2, 3 represents the weight matrices and bi, i =
1, 2, 3 denotes the biases of the convolutional layers. The convo-
lution operations, denoted as Conv1 (∗), Conv2 (∗), and Conv3 (∗),
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Figure 1. Overview of the MLSNet workflow. (A) Data preprocessing: This part involves the preparation of sequence data and shape data. (B) Deep
learning framework: It consists of: sequence data processing flow (integrating multiscale convolutional fusion with LSTM), shape data processing flow
(employing Super Token Attention and Bi-LSTM), and the output module. Note: “conv” means “convolution”.

employ kernels of sizes 3 × 3, 5 × 5, and 7 × 7 respectively, expand-
ing the channel count to 32, 64, and 128. Concat (∗) fuses channel
outputs from these convolutions. Maxpooling (∗) and Dropout (∗)

refer to the local max-pooling and dropout operations (to mitigate
overfitting). The detailed architecture of the multiscale fusion
channel convolution module is described in Table S5.

Subsequently, an LSTM layer is utilized to capture long-range
dependencies within the DNA sequence, to further extract deeper
hidden features, represented as follows:

L1 = LSTM
(
BN

(
ReLU

(
Convl1

(
C1, Wl1, bl1

))))
(5)

where ReLU (∗) is an activation function, BN (∗) denotes batch
normalization, and LSTM (∗) is LSTM, adept at capturing long-
range dependencies in sequences.

Finally, we adopted a symmetric processing structure to obtain
rich feature information. Specifically, this operation can be repre-
sented as:

P1 = Conv
(
ELU

(
BN

(
MaxPooling (L1)

)))
(6)

where ELU (∗) is a variant of the ReLU operation, designed to miti-
gate the “dying ReLU” issue and provide enhanced activation upon
subsequent use. The Conv (∗) operation performs convolution on
all features to extract the most abstract, high-level hidden feature
information.

Shape data processing
In our approach to DNA shape data processing, we initially employ
a tool known as SuperTokenViT [34]. This tool is instrumental in

discerning the global spatial dependencies inherent in the DNA
shape. Once these dependencies have been successfully captured,
our next step involves the extraction of high-level hidden features.
This is achieved through the application of convolutional oper-
ations. The specific procedures involved in these operations are
detailed in the following sections:

C2 = MaxPooling
(
BN

(
ReLu

(
Conv

(
SuperTokenAttention (Conv (R1))

))))

(7)

Our methodology begins with the application of the Super
Token Attention module, a concept derived from STViT [34]. This
module cleverly deconstructs conventional global attention into
a series of multiplications involving a sparse association map and
low-dimensional attention, as detailed in Text S2 available online
at http://bib.oxfordjournals.org/. This innovative approach allows
for the efficient capture of global dependencies. Huang et al.
[34] have demonstrated the efficacy of this module in achieving
remarkable results on various image datasets. In our research,
we have adapted this concept for DNA shape data processing,
with the anticipation of obtaining similarly promising results. Our
experimental findings corroborate this expectation, demonstrat-
ing a noticeable improvement in performance.

For the DNA shape data processing, we adopt an approach akin
to that used for sequence data. The key distinction lies in our
choice of Bi-LSTM over the unidirectional LSTM. While LSTM has
proven effective in handling sequence data, we contend that Bi-
LSTM is more apt for dealing with DNA shape data. Bi-LSTM can
capture the information in both directions. DNA has two strands
in the shape; thus, using Bi-LSTM can better capture the features
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Table 1. Hyperparameters of MLSNet and the corresponding search space

Calibration parameters Search space Sampling Final settings

Learning rate – – Auto-adjustment
Optimizer Adam, RMSProp, SGD Evaluate all Adam
Kernel numbers 32, 64, 128, 256 Evaluate all 128
Batch size 32, 64, 128 Evaluate all 64
Dropout ratio 0.1, 0.2, 0.3, 0.4 Evaluate all 0.1, 0.2

of DNA shape in both directions. The specifics of this operation
are as follows:

P2 = Conv
(
ELU

(
BN

(
Bi − LSTM (C2)

)))
(8)

The processing workflow for DNA shape can be found in Fig. 1B.

Output processing
In this phase, we incorporate the DNA shape data as auxiliary
features into the sequence data for processing and subsequent
prediction. The primary methodology involves the fusion of the
previously obtained higher-order sequence features, denoted as
P1, with the higher-order shape features, denoted as P2. Specifi-
cally, the detailed operations involved in this process are outlined
in the subsequent sections:

O = Sigmod
(
Linear

(
Flatten

(
AdaptiveMaxPool (Concat (P1, P2))

)))
(9)

The comprehensive framework of MLSNet is illustrated in
Fig. 1. The details of MLSNet are illustrated in Tables S5–S7
available online at http://bib.oxfordjournals.org/.

Model implementation
The proposed MLSNet model is based on PyTorch and follows
the same training/testing process as the baseline. This approach
ensures the reliability of our experimental comparisons. During
the training phase, we employ the binary cross-entropy loss func-
tion (BCELoss) and the Adam optimizer [35], as detailed in Text S3
available online at http://bib.oxfordjournals.org/. To maintain the
independence of the test set, we split each training set into
training and validation subsets at 80:20, ensuring that the test set
remained untouched during hyperparameter tuning. We assessed
the model’s loss on the validation set to monitor its performance,
which facilitates determining if adjustments to hyperparameters
or modifications in training strategies are required. Ultimately,
the model was evaluated using the test set. This methodology
safeguards the independence of each test set, thereby facilitating
a more precise evaluation of the model’s generalization capability.
The batch size is set at 64, and the exact parameter settings of
the model are specified in Table 1. The impact of various convo-
lutional kernel sizes is shown in Text S4 available online at http://
bib.oxfordjournals.org/. For each training and validation set, the
model undergoes training for 15 epochs, and its performance is
evaluated using the test set with a batch size of 1.

Evaluation metrics
This study focuses on TFBS identification based on DNA sequence,
which is a binary classification problem. Therefore, model perfor-
mance is evaluated using accuracy (ACC), receiver operating char-
acteristic area under the curve (ROC-AUC), and precision–recall
area under the curve (PR-AUC) [30]. ACC quantifies the overall
prediction accuracy, while ROC-AUC and PR-AUC are employed
to address potential imbalances in the data. ROC-AUC and PR-
AUC are suitable for evaluating imbalanced datasets, and PR-AUC

measures the trade-off between precision and recall. Comprehen-
sive details of these evaluation metrics are provided in Text S5
available online at http://bib.oxfordjournals.org/.

Baseline methods
Our model was compared with other state-of-the-art deep learn-
ing methods, including those leveraging DNA sequences alone
and those integrating DNA sequences and shapes together. All
models were trained and evaluated under the same conditions
for fairness.

Among the selected baselines, DeepSTF is particularly note-
worthy. It significantly enhances TFBSs prediction accuracy by
incorporating an advanced Transformer coupled with a Bi-LSTM
module specifically designed for DNA shape processing [30]. Other
baselines include DeepBind [16], DanQ [18], DLBSS [27], CRPTS
[28], D-SSCA [29], and DeepSTF [30]. DeepBind and DanQ use only
DNA sequences for prediction, with DanQ adding a Bi-LSTM to
DeepBind’s approach. DLBSS, CRPTS, and D-SSCA also use DNA
shape data, processing features with Siamese convolution, con-
volutional recursive neural network, and multi-layer perception
(MLP), respectively. Among these, DeepSTF demonstrates the most
outstanding performance, making it our primary comparison tar-
get. The details of baseline methods are displayed in Text S6
available online at http://bib.oxfordjournals.org/.

Results and discussion
Multisize convolutional fusion with long
short-term memory and shape data improving
prediction performance
This study constructed two variant models to explore the
improvement of the model studied in this paper regarding the
multisize convolutional fusion with LSTM and shape data.

MLSNet-1
In our study, we developed MLSNet-1 to assess the efficacy of
multisize convolutional fusion combined with LSTM for DNA
sequence data. This model incorporates multisize convolutional
fusion with LSTM and adjusts the remaining parameters for
optimal performance. The model was trained on the 165 ChIP-
seq datasets, and the results are presented in Table 2. Compared
to the MLSNet-1 model, MLSNet demonstrated improvements in
ACC, ROC-AUC, and PR-AUC by 1.67%, 1.54%, and 1.43%, respec-
tively. The model’s performance on each dataset is visualized in
Fig. 2C, showing that MLSNet consistently outperforms MLSNet-
1 across almost all datasets, yielding more stable results. By
employing multisize convolution fusion, we were able to cap-
ture DNA sequence information across various kernel sizes. The
results of the multisize convolution are then fused along the
channel dimension, mitigating some of the limitations of one-hot
encoded DNA sequences, such as performance deficiencies or the
risk of overfitting in models like LSTM when processing sparse
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Figure 2. Performance comparison of MLSNet and variant models on 165 ChIP-seq datasets. (MLSNet-1: Without multisize convolutional fusion
with LSTM; MLSNet-2: Without supplemental shape data). (A) ACC: This part involves the ACC comparison between MLSNet and variant models.
(B) ROC-AUC: This part involves the ROC-AUC comparison between MLSNet and variant models. (C) PR-AUC: This part involves the PR-AUC comparison
between MLSNet and variant models. (D) Average results: This part involves the average ACC, ROC-AUC, and PR-AUC comparison between MLSNet and
variant models.

Table 2. The average ACC, ROC-AUC, and PR-AUC
of the MLSNet model and its variants (MLSNet-1: without
multisize convolutional fusion with LSTM; MLSNet-2: without
supplemental shape data) on the test set of 165 ChIP-seq datasets

Method ACC ROC-AUC PR-AUC

MLSNet-1 0.814 0.884 0.889
MLSNet-2 0.820 0.889 0.894
MLSNet 0.831 0.899 0.904

matrices. This LSTM processing also enhances the model’s robust-
ness. The MLSNet-1 results underscore the necessity of multisize
convolution fusion and LSTM in our experiment. These tech-
niques significantly enhance the original model’s performance,
enabling it to more effectively capture DNA sequence features and
predict TFBSs.

MLSNet-2
To evaluate the contribution of DNA shape, we developed the
MLSNet-2 model, which exclusively used sequence data while
excluding the input of shape data. The relevant results and
comparisons are displayed in Fig. 2 and Table 2. In our experi-
ment, MLSNet-2 demonstrated lower performance than MLSNet
in ACC, ROC-AUC, and PR-AUC by 1.05%, 1.02%, and 0.99%,
respectively. This suggests that the inclusion of DNA shape data as
supplementary information enhances MLSNet’s performance. We
opted for STViT to better capture global latent features from DNA
shape data. Shape data effectively capture the spatial attributes
of DNA, enabling the model to acquire additional spatial features
of DNA alongside sequence features. The chosen DNA spatial fea-
tures have been corroborated by numerous deep learning meth-
ods [29, 30]. The final results confirm that the additional input of
DNA shape data can further enhance MLSNet’s performance.

Figure 3. Distribution of MLSNet results on ACC, ROC-AUC, and PR-AUC
on 165 ChIP-seq datasets.

We have also visualized the performance of MLSNet on the 165
ChIP-seq datasets. Please refer to Fig. 3 for details.

It can be observed that our model achieves excellent results
on the vast majority of datasets. Compared to ACC, MLSNet
demonstrates superior performance in ROC-AUC and PR-AUC. It
can be seen that the vast majority of the datasets of MLSNet on
ROC-AUC and PR-AUC are concentrated above 0.85, while ACC
is mostly clustered above 0.75. Nevertheless, we have achieved
noteworthy results with our MLSNet.

Results on different cell lines and transcription
factors
In order to comprehensively assess the performance of MLSNet
across various cell lines and TFs, we meticulously segmented
and analyzed the results. The collection of 165 ChIP-seq datasets
spans 32 cell lines and 29 TFs. The specific datasets related to



6 | Zhang et al.

Table 3. The average ACC, ROC-AUC, and PR-AUC of the MLSNet model and the second-best model on several cell lines and TFs

Name ACC ROC-AUC PR-AUC

Cell lines TFs DeepSTF MLSNet DeepSTF MLSNet DeepSTF MLSNet

Hepg2 0.821 0.839(+1.82%) 0.891 0.908(+1.73%) 0.896 0.911(+1.57%)
K562 0.806 0.825(+1.96%) 0.875 0.893(+1.80%) 0.881 0.897(+1.62%)
H1heasc 0.804 0.821(+1.67%) 0.873 0.889(+1.60%) 0.883 0.896(+1.25%)
Helas3 0.818 0.835(+1.72%) 0.885 0.902(+1.73%) 0.889 0.905(+1.63%)
Gm12878 0.795 0.813(+1.80%) 0.868 0.886(+1.85%) 0.874 0.891(+1.74%)

COREST 0.752 0.780(+2.74%) 0.827 0.857(+3.09%) 0.827 0.864(+3.72%)
CTCF 0.912 0.929(+1.64%) 0.966 0.975(+0.89%) 0.971 0.979(+0.75%)
EZH2 0.664 0.683(+1.92%) 0.722 0.742(+2.05%) 0.711 0.724(+1.27%)
NFKB 0.784 0.805(+2.14%) 0.867 0.888(+2.15%) 0.879 0.901(+2.15%)

these cell lines and TFs are enumerated in Tables S1 and S2 avail-
able online at http://bib.oxfordjournals.org/. Unfortunately, most
cell lines are represented by only one associated dataset when
viewed from a cell line perspective. Consequently, we focused
our analysis on the top five cell lines with the most datasets.
The results concerning to all cell lines and TFs are catalogued in
Tables S8 and S9 available online at http://bib.oxfordjournals.org/.

Table 3 presents the average prediction results of the MLSNet
and DeepSTF models across different cell lines and TFs. The table
illustrates the improvement of MLSNet compared to DeepSTF in
each case. As indicated by the table results, MLSNet consistently
DeepSTF for each cell line and TF selected.

Cross cell lines
Based on the number of datasets available in different cell lines,
we selected Hepg2, K562, H1hesc, Helas3, and GM12878. These
five cell lines contain 26, 32, 16, 13, and 17 ChIP-seq datasets,
respectively, making them the most represented cell lines in terms
of dataset count among the 32 cell lines. This selection strength-
ens the credibility of our comparative analysis. We aggregated
the average results obtained from testing the models trained on
all test sets within these cell lines. Evaluation metrics include
ACC, ROC-AUC, and PR-AUC. The results of the analysis and
comparison are depicted in Fig. 4. It can be observed that, except
for MLSNet and DeepSTF, the results of the other models across
these five cell lines are relatively similar, with the best perfor-
mance observed in the Hepg2 cell line and the worst in the
GM12878 dataset. Additionally, MLSNet consistently outperforms
the competing models in all cell lines, with a significantly superior
margin. These results demonstrate the strong generalization and
robustness of our MLSNet model.

Cross-transcription factors
In contrast to the uneven distribution of datasets among cell lines,
the number of datasets for different TFs is relatively balanced.
Therefore, we selected several TFs for comparison:

• REST Corepressor (COREST): Contains two datasets, and all
models exhibit notable deficiency in predicting this TF. Study-
ing this TF can help us explore the robustness of the models.
Given that this TF has only two datasets, both from K562
and HepG2 cell lines, we found that the models perform well
on other TFs within these lines. However, the predictions
on the two datasets differ significantly by over ten percent-
age points. This discrepancy, coupled with the limited data,
suggests that the poor performance in predicting COREST
is likely due to the dataset scarcity. The extreme lack of
data also raises doubts about the value of further biological

exploration. Thus, this paper uses this TF as a case study to
examine how different models perform with limited data.

• CCCTC-binding factor (CTCF): The CTCF gene, affiliated
with the BORIS + CTCF group, produces a transcriptional
controller endowed with 11 consistent zinc finger (ZF) motifs.
It binds various DNA sequences and proteins using different
ZF configurations, thereby modulating gene activity by
either initiating or inhibiting transcription linked to histone
acetyltransferases and deacetylases [36]. Furthermore, CTCF
adjusts genomic interactions by blocking communication
between enhancers and promoters, influencing the expres-
sion of imprinted genes [37]. Alterations in this gene are
associated with a range of cancers, including invasive breast
cancer, prostate cancer, and Wilms tumor [38]. Herein, there
are 20 CTCF ChIP-seq datasets, and all models demonstrate
superior performance in predicting this TF’s binding sites.
This aids in exploring the optimal performance of deep
learning methods in predicting specific TFs.

• Enhancer of Zeste Homolog 2 (EZH2): EZH2, implicated in
Weaver syndrome and lymphomas, is associated with the
activation of RNA polymerase I promoters and PIP3-mediated
AKT signaling. Its Gene Ontology(GO) annotations include
sequence-specific DNA binding and chromatin binding, high-
lighting its critical roles in epigenetic regulation and cellu-
lar functions. These functions are crucial for transcriptional
repression and cellular proliferation, as explored in depth by
Kim [39]. In this study, there are six EZH2 ChIP-seq datasets,
and almost all models obtain suboptimal results in predicting
this TF’s binding sites. The datasets of this TF have relatively
little data. Investigating this TF helps us explore the bottle-
neck of data volume or specific TFs in deep learning methods
for predicting TFBSs.

• Nuclear Factor kappa-B (NFKB): Contains six datasets, and
both the data volume and prediction results are comparable
to the average results of the models across all datasets.
Studying this TF can better explore the generalization and
robustness of the models.

Among the four TFs examined, CTCF demonstrates superior
predictive performance, whereas EZH2 shows poorer outcomes.
The analyses for these findings are as follows:

• CTCF: The effective prediction of CTCF binding sites is under-
pinned by several key factors. (i) High sequence conserva-
tion: CTCF binding sites are highly conserved evolutionarily,
providing robust signals for sequence-based prediction algo-
rithms [37]. (ii) Abundant experimental data: Comprehensive
ChIP-seq datasets furnish extensive samples that enhance
the precision and applicability of CTCF prediction models

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae489#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae489#supplementary-data
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae489#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae489#supplementary-data
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
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Figure 4. Performance comparison of MLSNet with competing models on selected cell lines and TFs. (A) ACC of cell lines: This part involves the ACC
comparison between MLSNet and competing models on selected cell lines. (B) ROC-AUC of cell lines: This part involves the ROC-AUC comparison
between MLSNet and competing models on selected cell lines. (C) PR-AUC of cell lines: This part involves the PR-AUC comparison between MLSNet and
competing models on selected cell lines. (D) ACC of TFs: This part involves the ACC comparison between MLSNet and competing models on selected
TFs. (E) ROC-AUC of TFs: This part involves the ROC-AUC comparison between MLSNet and competing models on selected TFs. (F) PR-AUC of TFs: This
part involves the PR-AUC comparison between MLSNet and competing models on selected TFs.

[39]. (iii) Central regulatory role: CTCF is integral to regulating
genomic structure and gene expression, contributing to the
stability and recognizability of its binding sites [40].

• EZH2: In predicting TFBSs, models frequently underperform
on the EZH2 gene due to its complex involvement in the
Polycomb Repressive Complex 2, which governs a broad spec-
trum of epigenetic activities including histone methylation.
This complexity leads to unique regulatory patterns that are
challenging to decode using standard sequence-based fea-
tures, underscoring the distinctive epigenetic roles of EZH2
[41]. Additionally, the evolutionary variability of some EZH2-
associated TFBSs compromises the accuracy of prediction
methods reliant on sequence homology, thereby reducing the
efficacy of conventional prediction algorithms [42].

Our model stands out in predicting four crucial TFs, surpassing
other models in accuracy. Refer to Fig. 4 for a visual comparison.
Notably, COREST and EZH2 consistently exhibit lower perfor-
mance across all models, primarily due to limited data, especially
evident with EZH2, which has smaller datasets. Thanks to its
unique combination of multisize convolutional and LSTM layers,
MLSNet can achieve a good performance on the limited datasets
and extract valuable insights from sparse data. On the other
hand, when it comes to CTCF, our model slightly surpasses others,
demonstrating deep learning’s strength with large datasets. How-
ever, MLSNet truly excels, excelling across datasets of all sizes.
This versatility is crucial in bioinformatics, where data availability
varies. Deep learning remains promising, especially with ample
data, as seen with NFKB. These results highlight MLSNet’s poten-
tial in bioinformatics tasks. From a computational perspective,
when data volume is sufficient, deep learning methods for pre-
dicting TFBSs still hold considerable potential.

Figure 5 illustrates the performance of MLSNet and other high-
performing models on individual cell lines and TFs on the 165

Table 4. The average ACC, ROC-AUC, and PR-AUC of MLSNet
model and several advanced methods on 165 ChIP-seq dataset
test sets

Method ACC ROC-AUC PR-AUC

DeepBind 0.784 0.851 0.857
DanQ 0.779 0.848 0.854
DLBSS 0.795 0.867 0.872
CRPTS 0.789 0.859 0.864
D-SSCA 0.784 0.854 0.857
DeepSTF 0.812 0.882 0.888
MLSNet 0.831 0.899 0.904

ChIP-seq datasets, where redder color indicates better results. As
illustrated in the figure, MLSNet outperforms other models in
almost all cell lines and TFs, further substantiating the excellent
generalization performance of MLSNet. In particular, Fig. 5 reveals
a consistent performance trend across all neural network models
when applied to different cell lines and TFs. Specifically, certain
TFs or cell lines yield high performance across nearly all mod-
els, whereas others result in uniformly poor performance. This
observation, in conjunction with the specific TFs analyzed earlier,
suggests that the prediction of TFBSs is influenced by factors
such as dataset size, the biological characteristics of the TFs,
and the specificity of the cell lines. We provide complimentary
heatmaps on ROC-AUC in Fig. S1 available online at http://bib.
oxfordjournals.org/ and heatmaps on PR-AUC in Fig. S2 available
online at http://bib.oxfordjournals.org/ and corresponding analy-
ses in Text S7 available online at http://bib.oxfordjournals.org/.

Comparing MLSNet with existing predictors
To more rigorously validate the superiority of MLSNet, we com-
pared MLSNet with multiple models, as described in the previous

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae489#supplementary-data
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae489#supplementary-data
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae489#supplementary-data
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/


8 | Zhang et al.

Figure 5. The heatmap of ACC results for MLSNet and other competing models, evaluated across all cell lines and transcription factors within 165
ChIP-seq datasets.

Figure 6. Overview of the comparative analysis and average results of MLSNet and competing models’ results on 165 ChIP-seq datasets. (A) ACC: This part
involves the ACC comparison between MLSNet and competing models. (B) ROC-AUC: This part involves the ROC-AUC comparison between MLSNet and
competing models. (C) PR-AUC: This part involves the PR-AUC comparison between MLSNet and competing models. (D) Average ACC: This part involves
the average ACC comparison between MLSNet and competing models. (E) Average ROC-AUC: This part involves the average ROC-AUC comparison
between MLSNet and competing models. (F) Average PR-AUC: This part involves the average PR-AUC comparison between MLSNet and competing
models.

text. All models were evaluated using the 165 ChIP-seq datasets
used in Zhang et al. [32]. The comparison employed the evaluation
standards mentioned earlier in this paper, including ACC, ROC-
AUC, and PR-AUC. MLSNet achieved scores of 0.8306, 0.8992, and
0.9035 in these three metrics, respectively. These scores are 1.82%,
1.68%, and 1.54% higher than the second-best model, DeepSTF

(0.8124, 0.8824, and 0.8881, respectively). The detailed results are
presented in Table 4.

MLSNet’s superiority over many comparative models arises
from its focus on optimizing sequence data processing while also
incorporating shape data as supplementary features. Through the
multisize convolutional fusion with LSTM architecture, MLSNet
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effectively captures DNA sequence features across various scales
and temporal relationships. Additionally, leveraging the Super
Token ViT structure and Bi-LSTM enhances our ability to discern
intricate patterns within DNA shape data. Compared to Deep-
STF, which focuses on supplementary shape data, our MLSNet
emphasizes the original sequence data, leading to better train-
ing efficiency and performance. Thanks to our multisize fusion
convolutional framework, MLSNet captures a broader range of
features before LSTM processing, enhancing prediction accuracy.
In contrast, DeepSTF’s basic convolutional operations result in
some loss of feature information, as shown in our cross-cell line
and cross-TF studies. This indicates that MLSNet is more effec-
tive and robust in complex prediction scenarios. The predicted
results of DeepSTF and MLSNet on 165 ChIP-seq datasets are
enumerated in Tables S10 and S11 available online at http://bib.
oxfordjournals.org/. The results in Fig. 6 demonstrate MLSNet’s
performance on the 165 ChIP-seq datasets, consistently outper-
forming other methods in both average values and stability met-
rics. These findings underscore MLSNet’s proficiency in extracting
predictive insights regarding TFBSs, reaffirming its efficacy in
bioinformatics.

Upon evaluating the prediction performance of MLSNet on dif-
ferent cell lines and TFs, it can be further considered for predicting
binding sites in other cell lines or for specific TF’s binding sites.

Conclusion
We introduced MLSNet, a deep learning framework for predict-
ing TFBSs, utilizing multisize convolutional fusion with LSTM to
adeptly capture intricate DNA sequence features, further com-
plemented by the supplementation of DNA shape data supple-
mentation. Our detailed analysis of MLSNet’s mechanisms, the
incremental value of shape data, and its robust performance
across diverse cell lines and TFs highlight its efficacy. Analyses
of the 165 ChIP-seq datasets validate MLSNet’s exceptional TFBS
prediction capabilities.

We also find that certain TFs or cell lines yield high perfor-
mance across nearly all models, whereas others result in uni-
formly poor performance. Thus, we reveal that deep learning
prediction of TFBSs is affected by dataset size, the biological
characteristics of the TFs, and cell lines.

Despite its strengths, MLSNet faces limitations. It still grapples
with occasional performance in predicting certain TF’s binding
sites, albeit showing significant improvement over competing
deep learning methods. Moreover, MLSNet’s potential extends
beyond TFBSs prediction; it could also be leveraged for other
bioinformatics challenges, including predictions specific to cell
lines or TFs, as well as interactions between proteins and TFBSs.

Key Points

• MLSNet is a deep learning method for predicting tran-
scription factor binding sites (TFBSs) that leverages mul-
tisize convolutional fusion with long short-term mem-
ory (LSTM) and convolutional neural networks to cap-
ture DNA-sparse higher-order sequence features. It also
incorporates super token attention, Bi-LSTM, and convo-
lutional neural networks to capture DNA shape features
as supplementary features. Finally, it integrates these
features to predict TFBSs. Benchmark experiments have
shown that MLSNet surpasses several state-of-the-art
prediction methods in TFBSs prediction.

• We have provided separate explanations for the roles of
the modules in capturing dependencies and higher-order
features of both DNA sequence and DNA shape.

• The multisize convolutional fusion with the LSTM mod-
ule effectively captures the hidden information within
DNA sequences, aiding in the extraction of higher-order
hidden features and thereby enhancing prediction effi-
ciency. We also analyzed the enhancements brought by
the inclusion of shape data as supplementary features.

• Furthermore, we conducted an analysis of the predic-
tion results of different models across various cell lines
and transcription factors (TFs), which contributes to the
effective utilization of deep learning methods in predict-
ing TFBSs. Specifically, certain TFs or cell lines yield high
performance across nearly all models, whereas others
result in uniformly poor performance. Thus, we reveal
that deep learning prediction of TFBSs is affected by
dataset size, the biological characteristics of the TFs and
cell lines.

Supplementary data
Supplementary data are available at Briefings in Bioinformatics
online.
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