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INTRODUCTION

Functional Near-Infrared Spectroscopy (fNIRS) is an optical neuroimaging technology that has
rapidly gained momentum within the last decades (Boas et al., 2014; Scholkmann et al., 2014;
Yücel et al., 2017). It is a non-hazardous and non-invasive optical brain imaging technique
that uses near-infrared light to measure local cortical concentration changes of oxygenated and
deoxygenated hemoglobin (HbO2/HbR), which are associated with brain metabolism (Villringer
and Chance, 1997; Ferrari and Quaresima, 2012). fNIRS has been considered a cost-effective and
mobile alternative for functional Magnetic Resonance Imaging in conventional neuroscientific
research. It is very suitable—and thus increasingly being used—for single trial analysis and Brain
Computer Interface (BCI) applications (Matthews et al., 2008; Hong et al., 2018) as a single
modality or along with Electroencephalography (EEG). While EEG and fNIRS signal processing
is essential to increase the contrast to noise ratio (CNR) of measured brain responses, the nature
of the signals and processing methods differ greatly. Hemodynamic brain responses in fNIRS
are usually masked by local and systemic physiological confounding signals, for instance from
superficial (scalp) blood flow, low frequency oscillations (Mayer waves), motion and breathing
(Elwell et al., 1999; Yücel et al., 2016; von Lühmann et al., 2019). New and increasingly complex
and powerful statistical methods are being developed that aim to remove the confounding factors
in the signal, improve CNR and increase the detection/classification accuracy of hemodynamic
responses. An objective way of validating the power of these novel methods and comparing them
with the existing ones is to use an fNIRS dataset which has all the confounding signals but also a
known hemodynamic brain response. One solution for this problem is to generate realistic fNIRS
ground truth data by modeling a hemodynamic response function (HRF) on top of real resting
state data (Gagnon et al., 2012; von Lühmann et al., 2019, 2020a,b). This approach can be used as a
good approximation for realistic fNIRS signals with evoked responses, for which the ground truth
is available. Generating such data is comparatively straight forward but requires prior knowledge in
fNIRS signal characteristics as well as experience in fNIRS signal processing. Moreover, the use of
short-separation fNIRS measurements and additional physiological signals, such as accelerometer
or photoplethysmography (PPG), has been shown to enable methods that yield improved CNR
(Yücel et al., 2015; von Lühmann et al., 2020a), but there are only few openly available multimodal
fNIRS datasets (Shin et al., 2017, 2018) and even fewer multimodal datasets that include sufficient
resting state periods to enable the approach described above. Thus, as a remedy, here we
provide such a multimodal dataset with (and without) added synthetic HRF ground truth,
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short-separation fNIRS measurements, accelerometer, and other
physiological measurement, for the data science community in
order to facilitate the validation of novel methods. We also
provide a simple code example to enable customization and
modification of the HRF ground truth in the data.

METHODS

The resting state data consists of two subsets: Dataset I, with
5min resting state data from 14 participants and Dataset II, with
10min resting state data from 14 participants. The data details
follow and are summarized in Figure 1.

Participants and Demographics
Dataset I consists of recordings from 14 healthy participants (age:
21 ± 2 years; 11 male/3 female) and Dataset II from 14 healthy
participants (age: 32 ± 19 years; 7 male/6 female/1 not reported)
with no neurological or psychological disorders.

Experimental Paradigm
Participants were seated in a comfortable chair with room light
on and were asked to look at a fixation cross on a black screen
∼50 cm in front of them. A 5-min resting state data (Dataset I)
or a 10-min resting state data (Dataset II) were recorded from
each participant.

Data Acquisition
fNIRS data were acquired using a multichannel continuous wave
fNIRS system (CW6, TechEn Inc. MA, USA) operating at 690
and 830 nm wavelengths. The system is an optical imager with
32 frequency encoded lasers (half at 690 and half at 830 nm) and
32 avalanche photo-diode detectors. The light is carried from
the system to the head probe and back via optical fiber bundles.
fNIRS data were acquired at a sample rate of 50 Hz.

DATASET I: Optode Array and Auxiliary

Measurements

Optode array
Both head optode arrays were designed utilizing AtlasViewer
software (Aasted et al., 2015) (Figure 1). The optode array for
Dataset I consisted of an elastic cap (EasyCap, Herrsching,
Germany) with 8 sources, 12 long-separation detectors (∼3 cm
apart from the source) and 2 short-separation detectors (∼1 cm
apart from the source) providing, in total, 26 long-separation and
2 short-separation channels covering the occipital lobe.

Auxiliary measurements
Systemic physiological changes and head motions of the
participants were simultaneously recorded along with the fNIRS
data using an MP160 data acquisition and analysis system
(BIOPAC Systems Inc., Goleta, CA). The pulse waveform
was recorded using a PPG100C amplifier and TSD200 PPG
pulse transducer placed on the participant’s right index finger
(BIOPAC Systems Inc., Goleta, CA). Respiration data was
collected via measuring the abdominal (or thoracic) expansion
and contraction using a RSP100C amplifier and a TSD201
respiration transducer (respiration belt) (BIOPAC Systems Inc.,

Goleta, CA) around the participant’s chest. The blood pressure
waveform was recorded using a DA100C amplifier and a TSD110
pressure transducer (BIOPAC Systems Inc., Goleta, CA) placed
on the participant’s right thumb. Head motions in x, y, z
directions were collected using an accelerometer (ADXL335,
Analog Devices Inc., Norwood, MA) secured on the head with
a headband.

DATASET II: Optode Array and Auxiliary

Measurements

Optode array
The optode array for Dataset II consisted of an elastic cap
(EasyCap, Herrsching, Germany) with 16 sources, 24 long-
separation detectors (∼3 cm apart from the source) and 8 short-
separation detectors (∼1 cm apart from the source) providing,
in total, 48 long-separation and 8 short-separation channels
covering the head from frontal to parietal regions bilaterally.

Auxiliary measurement
Head motions of the participants in x, y, z directions were
simultaneously recorded along with the fNIRS data using a 3-axis
accelerometer (ADXL335, Analog Devices Inc., Norwood, MA)
secured on the head with a headband.

Adding Synthetic HRF to the fNIRS Data
In the documented data repository, we provide the acquired
resting state data with and without synthetic HRF as well as the
scripts used for the generation of the data to enable users to
alter and re-generate ground truth HRF according to their needs.
We generate synthetic HRFs with three different amplitudes
using a gamma function with a time-to-peak of 6 s and a total
duration of 16.5 s. The shape of this synthetic HRF is also
depicted in Figure 2A. The three amplitudes are provided as
percentages (100/50/20%) of a typical average amplitude of a
task-evoked HRF (Huppert et al., 2006) and simulate varying
degrees of CNR in the data: The (100%) amplitude is equal to
+1% | −2% change from baseline intensity at 690 nm | 830 nm
leading to an HRF peak amplitude of +0.66 | −0.23µM for
HbO2 | HbR, respectively with a differential pathlength factor
of 6 (Delpy et al., 1988; Boas et al., 2004) for a 30mm source-
detector separation. For each participant in the two datasets, all
resting state data is divided into windows of 20 s length. The
HRFs are added in the intensity domain at a random onset
(0–3.5 s) within each 20 s window for a randomly selected half
of all available long separation channels after pruning with a
5 dB SNR threshold. This results in an average of 15 | 38
trials per participant and HRF amplitude in each resting state
Dataset I | II.

Data Structure and Format
Both datasets are presented in the Shared Near Infrared File
Format V1.0 Specification (snirf), which is based on the
HDF5 file format (https://github.com/fNIRS/snirf). SnirfClass
function loads the snirf object into the MATLAB environment.
Table 1 provides the list of variables in the current dataset
snirf object. The main fields of interest are: the data

field which has the fNIRS raw signal at each channel
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FIGURE 1 | Summary of dataset metadata. Red dots are fNIRS emitters, blue dots are fNIRS detectors. LS, Long-Separation; SS, Short-Separation; PPG,

Photoplethysmography; RESP, Respiration; BP, Blood Pressure; ACCEL, Accelerometer. HRF with 20, 50, and 100 % of +0.66 | −0.23µM peak HbO2/HbR

amplitude. Sensitivity profile in log10 dB.

FIGURE 2 | Overview of data quality and baseline analysis for Datasets I and II. (A) Across-trial recovered HRF estimated with tCCA GLM using Homer3 for all three

amplitudes (100, 50, 20%) (participant 33 from Dataset I and participant 98 from Dataset II - the first participant in each data set). Red: HbO2, Blue: HbR, Black

dashed: Ground Truth. (B) Mean SNR in dB across channels for all participants. Whiskers indicate standard deviation. (C) Mean Motion Ratio across channels for all

participants which indicates the ratio of motion-contaminated data to the whole data. (D) Example time course of multimodal data in Dataset I. LS, Long-separation

channel; SS, Short-separation channel; AccelX|Y|Z, Accelerometer; PPG, Photoplethysmogram; BP, Blood Pressure; RESP, Respiration.

and relevant information, the probe field which has optode
array information, the aux field which has all the auxiliary
measurements and their details, and the stim field which

has the experimental paradigm information. Please note that,
while snirf.aux(2)/(3)/(4) have AccelX, AccelY, and AccelZ
measurements for both datasets, Dataset I has PPG, blood
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TABLE 1 | Snirf object fields.

snirf.filename Filename

snirf.fileformat “hdf5”

snirf.data.dataTimeSeries Time-varying signals from all channels following the order in snirf.data.measurementList

e.g., 10th column of snirf.data.dataTimeSeries corresponds to

snirf.data.measurementList(10) which is the channel defined with sourceIndex: 2;

detectorIndex: 18 and wavelengthIndex: 1

snirf.data.time Time

snirf.data.measurementList Per-channel source-detector-wavelength information

snirf.data.measurementList.dataTypeLabel Defined as (1) for HRF added channels and (0) for no HRF channels, specifically for this dataset

e.g., to check whether HRF is added on channel 10

check snirf.data.measurementList(10).dataTypeLabel

snirf.stim.name Stimuli labels

snirf.stim.data Data stream of the stimulus channel

snirf.probe.wavelengths List of wavelengths (in nm)

snirf.probe.sourcePos Source position

snirf.probe.detectorPos Detector position

snirf.probe.sourceLabels String arrays specifying source names

snirf.probe.detectorLabels String arrays specifying detector names

snirf.aux.name Name of the auxiliary channel

e.g., to check the content of an auxiliary channel 2

snirf.aux(2).name

snirf.aux.dataTimeSeries Data acquired from the auxiliary channel

snirf.aux.time Time for auxiliary data

pressure (BP), RESP at snirf.aux(5), (6), and (7), respectively in
addition to these.

BASELINE ANALYSIS AND DATA QUALITY
ASSESSMENT

Baseline analysis and data quality assessment was performed
using the openly available Homer3 toolbox (https://github.
com/BUNPC/Homer3) (Huppert et al., 2009). HRFs
were recovered from the augmented resting state data
using the processing stream provided in the repository
(tCCA_xmpl_procStream_Gauss_noHPF.cfg under “code”

folder). This processing stream includes 0.5Hz zero phase low
pass filter with an effective order of 6, conversion to HbO2

and HbR using the modified Beer-Lambert Law (Delpy et al.,
1988; Boas et al., 2004), and subsequent HRF estimation with
the temporally embedded General Linear Model (tCCA GLM)
approach using short-distance channels and a polynomial drift
term for nuisance regression and Gaussian basis functions for
the HRF regressor (von Lühmann et al., 2020a). Figure 2A

exemplifies the resulting HRF estimates in one augmented
channel for all three amplitudes from participant 33 from
Dataset I and participant 98 from Dataset II. Data quality is
provided for each participant as across-channel average of the
Signal to Noise Ratio (SNR) in Figure 2B and as themeanmotion
ratio across channels in Figure 2C. Channel SNR is calculated
as 20 × log10 of the mean over std. of the raw intensity
signal. The motion ratio is calculated as the ratio between the

cumulative time of segments in the data that were considered to
be confounded by motion artifacts, as identified by the Homer2
function hmrMotionArtifactByChannel (with tMotion = 0.5,
tMask = 0.5, STDEVthresh = 20, AMPthresh = 5), to the total
acquisition time. Figure 2D displays a typical segment of all
available signals (z-scored) in the first participant in Dataset I.
Long and short-separation fNIRS channels exhibit typical low
frequency components and cardiac pulsation, which is also
present in the PPG and BP measurement.

SUMMARY

We reported a multimodal fNIRS resting state dataset from 28
participants, that we provide with and without added synthetic
HRF ground truth at three different amplitudes. We include
the script used for the generation of these data to enable users
to adapt this approach to their own needs. The availability of
multiple auxiliary biosignals, such as motion (accelerometer)
and PPG in the data, can be used to explore and extend
existing multimodal fNIRS-based signal processing approaches
(von Lühmann et al., 2019, 2020a). Resting fNIRS data with
added known HRF enables the validation of novel processing
methods for single trial HRF detection and BCI as well as
more general artifact rejection and preprocessing approaches and
their comparison with existing methods. This can also be useful
for methods that tackle challenges such as non-stationarities in
the amplitude and time to peak of hemodynamic responses to
a stimulus.
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