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To the Editor:

The use of high-intensity clinical data from the electronic medical record 
(EMR) has been getting increasingly popular, especially in intensive 
care medicine, where a large amount of data are continuously generated 

as the changing condition of patients is tracked by the minute (1, 2). However, 
the analysis of those data to explore a clinical causal relationship or the impact 
of an intervention can be particularly misleading when the severity of illness is 
not rigorously examined and controlled (3, 4).

The modified Wood’s Clinical Asthma Score (mWCAS), generated with 
oxygen saturation level, presence of expiratory wheezing, inspiratory breath 
sounds, use of accessory muscles, and cerebral function/status (Table  1), is 
used to assess the severity of respiratory distress in children with bronchiolitis 
(5). An mWCAS greater than 3 is an indication of moderate-to-severe respira-
tory distress (6). In this study, we aimed to demonstrate a proof of concept of 
an algorithm to generate an automated mWCAS (A-mWCAS) for critically ill 
children and to validate it with manually computed mWCAS (M-mWCAS).

This retrospective study included all infants under 2 years old with a clinical 
diagnosis of bronchiolitis, ventilated with noninvasive neurally adjusted ventila-
tory assist (NIV-NAVA), in a Canadian tertiary PICU, between October 2016 and 
June 2018. The study was approved by the ethics committee of the Sainte-Justine 
Hospital. The algorithm, written with Python 3.7, was directly connected to the 
EMR (IntelliSpace Critical Care and Anesthesia, Version F.01; Philips, Eindhoven, 
The Netherlands). The first step of the developed algorithm consisted of the au-
tomatic extraction of the five main required items, as well as the Fio2, from the 
EMRs of the PICU, using structured query language queries. Then, each item was 
given a score based on the rules listed in Table 1. This was possible because all the 
items were explicitly represented in the EMR in drop-down menus, except for 
the cerebral status. In the EMR, we have 18 different cerebral statuses in a drop-
down menu. These statuses were grouped into four categories, based on Table 1, 
by a group of pediatric intensivists. After that, the attributed scores were added 
together to obtain the A-mWCAS. M-mWCAS was computed retrospectively by 
a clinical expert who reviewed the patients’ medical charts and manually extracted 
the score’s items in a completely independent and blind way from the automatic 
algorithm. Both the A-mWCAS and the M-mWCAS were therefore based on 
data collected by multiple clinicians (respiratory therapists or nurses), but a single 
“rater” (one machine vs one clinical expert) was involved in each strategy.

We included 64 infants with a median (25–75th percentile) age of 52 months 
(32–92 mo). Manual and automatic scores were calculated for all the included 
patients at eight different times from 2 hours before to 24 hours after NIV-NAVA 

Sally Al-Omar, PhD1

Alex Lepage-Farrell, MD1

Atsushi Kawaguchi, MD, PhD1,2

Guillaume Emeriaud, MD, PhD1,3

An Automated Scoring of Clinical Asthma 
Score: Proof of Concept and the Future 
Possibility

LETTER TO THE EDITOR
DOI: 

LWW

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Letter to the Editor

2     www.ccejournal.org January 2021 • Volume 3 • Number 1

application. Scores were calculated only when all the 
required score elements were available. The median 
number of scores assessment per patient was 4 (3–5). 
Overall, 256 pairs of A-mWCAS and M-mWCAS were 
generated. Cohen kappa coefficients were applied to 
estimate the agreements between the two scores. The 
overall kappa score was 0.71 (95% CI, 0.64–0.77), in 
which we observed exact agreement for the 78.5% 
pairs and agreement with a difference in score of less 
than or equal to 0.5 in 96% (Fig. 1). The Pearson cor-
relation coefficient was R2 = 0.90. A sensitivity anal-
ysis was conducted in a subgroup of 57 patients with 
the same number of three ratings (total of 171 scores), 
with similar results: kappa score of 0.71, exact agree-
ment in 75.4% pairs, and 95% of pairs with a difference 
less than 0.5.

We also examined the agreement for each score 
component, in which we found a very good agreement 
in the oxygen saturation (kappa score 0.91), the expir-
atory wheeze (kappa score 0.79), the inspiratory breath 
sounds (kappa score 0.91), and the use of accessories 

muscles (kappa score 0.89). However, we observed a 
poor agreement in the cerebral status with a kappa 
score of 0.51. We assumed that this stemmed from the 
difference in the ways of our data collection; the clinical 
evaluation of the cerebral status is relatively subjective 
and might vary among care team members (i.e., doc-
tor, nurse, and respiratory therapist). The automated 
score likely decreases this variability by consistently 
using the same source of score (respiratory therapist). 
On the other hand, the clinical expert scored the ce-
rebral status for the M-mWCAS by referring to other 
potentially relevant information such as the notes from 
the bedside nurses or physicians.

There are limitations in our study, including the 
small sample size, the retrospective nature of the 
study, and the single-center dataset. Further prospec-
tive studies are warranted to confirm the validity of 
this approach. Nonetheless, this first clinical report 
establishes the proof of concept of an algorithm to 
generate an automated respiratory distress score in the 
pediatric population. In conclusion, the A-mWCAS 

Figure 1. Agreement table showing the actual agreement between the 256 automated modified Wood’s Clinical Asthma Score 
(mWCAS) and manually computed mWCAS.

TABLE 1. 
Modified Wood’s Clinical Asthma Score Five-Item Scoring

Item 0 0.5 1 2

Spo2 Spo2 ≥ 95% 
in room air

95% > Spo2 > 90% in 
room air

Spo2 ≥ 90% with  
Fio2 > 21%

Spo2 < 90% with  
Fio2 > 21%

Expiratory wheezing None Mild (+) Moderate (++) Marked (+++)

Inspiratory breath sounds Normal Slightly decreased Decreased Absent

Use of accessories muscles None Mild (+) Moderate (++) Maximal (+++)

Cerebral status Normal Agitated when disturbed Depressed/agitated Markedly depressed/coma



Letter to the Editor

Critical Care Explorations www.ccejournal.org     3

could provide an objective, fast, robust, and reliable 
assessment of the severity of the respiratory distress 
in a large electronic database. This will be a key pa-
rameter to control when analyzing large clinical res-
piratory datasets. It will also be an essential real-time 
component in future clinical decision support systems 
being developed to optimize the management of chil-
dren with respiratory distress.
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