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Abstract

KIF5A is a kinesin superfamily motor protein that transports various cargos in

neurons. Mutations in Kif5a cause familial amyotrophic lateral sclerosis (ALS).

These ALS mutations are in the intron of Kif5a and induce mis-splicing of

KIF5A mRNA, leading to splicing out of exon 27, which in human KIF5A

encodes the cargo-binding tail domain of KIF5A. Therefore, it has been

suggested that ALS is caused by loss of function of KIF5A. However, the precise

mechanisms regarding how mutations in KIF5A cause ALS remain unclear.

Here, we show that an ALS-associated mutant of KIF5A, KIF5A(Δexon27), is
predisposed to form oligomers and aggregates in cultured mouse cell lines. Inter-

estingly, purified KIF5A(Δexon27) oligomers showed more active movement on

microtubules than wild-type KIF5A in vitro. Purified KIF5A(Δexon27) was

prone to form aggregates in vitro. Moreover, KIF5A(Δexon27)-expressing
Caenorhabditis elegans neurons showed morphological defects. These data col-

lectively suggest that ALS-associated mutations of KIF5A are toxic gain-of-

function mutations rather than simple loss-of-function mutations.
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1 | INTRODUCTION

Neuronal development, function, and maintenance depend
on intracellular transport (Hirokawa et al., 2009). Kinesin
superfamily proteins (KIFs) and cytoplasmic dyneins are
molecular motors that enable anterograde and retrograde
transport, respectively (Hirokawa et al., 2010; Kardon &
Vale, 2009). Among KIFs, the Kinesin-1, -2, and -3 family

members are the main anterograde transporters in neurons
(Hall & Hedgecock, 1991; Niwa et al., 2008; Okada
et al., 1995; Scholey, 2008; Vale et al., 1985; Xia et al., 2003).
KIFs generally consist of a conserved motor domain, a
dimerized coiled-coil domain, and a cargo-binding tail
domain. The motor domain exhibits microtubule-stimulated
ATPase activity, which allows the protein to move along
microtubules (Hackney, 1995). Each KIF has a specialized
tail domain (Vale, 2003) that binds to specific cargo vesicles
and protein complexes (Hirokawa et al., 2009).Juri Nakano and Kyoko Chiba contributed equally to this work.
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Advances in genomic sequencing technology have
allowed identification of many disease-associated muta-
tions in motor protein genes (Hirokawa et al., 2010;
Holzbaur & Scherer, 2011). Mutations in KIFs and
dynein subunits often cause motor neuron diseases. For
example, mutations in Kinesin-3 family members, such

as KIF1A and KIF1B, cause hereditary spastic paraplegia
and Charcot–Marie–Tooth disease type 2A1 (Boyle
et al., 2021; Budaitis et al., 2021; Chiba et al., 2019;
Zhao et al., 2001). Mutations in dynein heavy chain
1 (DYNC1H1) cause Charcot–Marie–Tooth disease
type 2O and spinal muscular atrophy-1 (Harms
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et al., 2012; Weedon et al., 2011). Mutations in the
p150 subunit of dynactin (DCTN1), an activator of
dynein, cause amyotrophic lateral sclerosis (ALS;
Munch et al., 2004). Gain-of-function mutations in
BICD2, a cargo adaptor protein for the cytoplasmic
dynein complex, also cause spinal muscular atrophy
(Huynh & Vale, 2017). KIF5A mutations are associated
with hereditary spastic paraplegia (SPG) and ALS
(Brenner et al., 2018; Nicolas et al., 2018; Reid
et al., 2002). KIF5A transport protein complexes and
membrane organelles such as neurofilaments, RNA
granules and mitochondria (Hirokawa et al., 2010;
Kanai et al., 2004; Uchida et al., 2009; Xia et al., 2003).
The mutated residues differ between KIF5A-associated
SPG and ALS. SPG is caused by motor domain muta-
tions in KIF5A that abolish the motor activity of the
KIF5A motor (Ebbing et al., 2008). However, ALS-
associated KIF5A mutations commonly induce mis-
splicing and deletion of exon 27 (Figure 1a; Brenner
et al., 2018; Nicolas et al., 2018). The Δexon27 mutation
induces frameshift, leading to abnormal C-terminal tail
(Figure 1a). Previous studies have suggested that ALS-
associated mutations in KIF5A are loss-of-function muta-
tions because of the deletion of the cargo-binding tail
domain (D. Brenner et al., 2018; Nicolas et al., 2018). How-
ever, the precise molecular mechanism of KIF5A-
associated ALS has not been shown.

We show here that the product of ALS-associated
KIF5A alleles, KIF5A(Δexon27), is predisposed to form
oligomers and aggregates. Binding of KLC1, a cargo
adaptor of KIF5A, was not affected by Δexon27. Inter-
estingly, KIF5A(Δexon27) oligomers showed higher
motility than those of wild-type KIF5A regardless of the
presence of KLC1. Furthermore, exogenous expression
of KIF5A(Δexon27) caused defects in the neuronal mor-
phology of Caenorhabditis elegans. Collectively, these
findings suggest that ALS-associated mutations in

KIF5A are toxic gain-of-function mutations rather than
simple loss-of-function mutations.

2 | RESULTS

2.1 | KIF5A(Δexon27) forms aggregates
in the cell

To study the molecular mechanism of ALS caused by
KIF5A mutations, we expressed mScarlet-fused KIF5A
(mSca::KIF5A) and mScarlet-fused KIF5A(Δexon27)
(mSca::KIF5A(Δexon27)) in a neuron-like cell line, CAD
(Qi et al., 1997; Figure 1b–f). 20 hours after the transfec-
tion, mSca::KIF5A was mostly diffuse throughout the
cell, but approximately 30% of mSca::KIF5A-expressing
cells showed small aggregates in the cytoplasm
(Figure 1c–f), which is consistent with our prior finding
showing a propensity of KIF5A to form oligomers (Chiba
et al., 2022). The proportion of cells showing aggregation
was increased compared with cells expressing mScarlet-
fused KIF5B, a homologue of KIF5A (Hirokawa
et al., 2009). Only 10% of mSca::KIF5B-expressing cells
exhibited aggregates. In contrast, mSca::KIF5A(Δexon27)
formed many aggregates in the cytoplasm, as noted in
97% of cells. We observed that aggregates often accumu-
lated in the tip of neurites in CAD cells (Figure 1e
arrows), which is similar to the localization of KIF5A
with constitutive-active mutations (Nakata et al., 2011).
Few aggregates were found in mScarlet-expressing cells
(Figure 1f). Formation of aggregates is not due to the
higher expression of mSca::KIF5A(Δexon27) because
most mSca::KIF5A(Δexon27)-expressing cells had aggre-
gates even 6 h after the transfection. These data suggest
that KIF5A is predisposed to form aggregates in the cell
and that the ALS-associated mutation Δexon27 strongly
enhances aggregate formation.

FIGURE 1 Cellular distribution of amyotrophic lateral sclerosis (ALS)-associated KIF5A mutations. (a) Schematic drawing of ALS

mutations in KIF5A. ALS-associated KIF5A mutations (asterisks) are often found in introns around exon 27 and commonly induce mis-

splicing of exon 27 and frameshifts. Amino acid sequences show the C-terminal sequences of wild type KIF5A (black font) and KIF5A

(Δexon27) (purple font). (b) Schematic drawing showing mScarlet-fused wild-type KIF5A (mSca::KIF5A) and mScarlet-fused mutant KIF5A

(mSca::KIF5A(Δexon27)). Motor domain (MD) (1-335a.a.), coild-coil domains (331–374 a.a., 408–539 a.a. and 632–800 a.a.), light chain
binding domain (KLC binding) (822–905 a.a) and IAK motif (918–920 a.a.), that is required for the autoinhibition, are shown. (c–f) mSca::

KIF5A and mSca::KIF5A(Δexon27) were expressed in CAD cells and analyzed by fluorescence microscopy. (c and d) Representative images

showing the localization of mSca::KIF5A (c and d) and mSca::KIF5A KIF5A(Δexon27) (e). Arrow heads and arrows indicate cytoplasmic

aggregates and aggregates accumulated to neurite tips, respectively. Bars, 10 μm. (f) The cells were classified by the mScarlet signal

distribution into three categories: no aggregates (white), no more than 10 aggregates (light gray) and more than 10 aggregates (dark gray),

and the number of cells in each category was counted. N = 98 mScarlet-expressing cells, 112 KIF5A(wt)-expressing cells, 101 KIF5A

(Δexon27)-expressing cells, and 177 KIF5B-expressing cells. A chi-square test with Bonferroni correction was used for data analysis. ns,

adjusted p value >.05 and not statistically significant. *, adjusted p value <.05. **, adjusted p value <.01, **** adjusted p value <.0001
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FIGURE 2 Co-aggregation of amyotrophic lateral

sclerosis-associated KIF5A. mScarlet fused to KIF5A or KIF5A

(Δexon27) was co-expressed with enhanced green fluorescent

protein (EGFP)-fused proteins in CAD cells. (a and b)

Representative images showing mSca::KIF5A (a) and EGFP::

KIF5A (b) co-expressing cells. When mSca::KIF5A did not

form aggregates, EGFP::KIF5A did not co-aggregate in the

same cell. No cells (0/70) showed co-aggregation. (c and d)

Representative images showing mSca::KIF5A(Δexon27)
(c) and EGFP::KIF5A (d) co-expressing cells. Note that EGFP::

KIF5A co-aggregated with mSca::KIF5A(Δexon27). All cells
(85/85, 100%) showed co-aggregation. (e and f) Representative

images showing mSca::KIF5A (e) and EGFP::KIF5B (f) co-

expressing cells. When mSca::KIF5A did not form aggregates,

EGFP::KIF5B did not co-aggregate as well. No cells (0/70)

showed co-aggregation. (g and h) Representative images

showing mSca::KIF5A(Δexon27) and EGFP::KIF5B co-

expressing cells. Note that EGFP::KIF5B co-aggregated with

mSca::KIF5A(Δexon27). All cells (82/82, 100%) showed co-

aggregation. (i and j) Representative images showing mSca::

KIF5A(Δexon27) and EGFP co-expressing cells. Even when

mSca::KIF5A(Δexon27) formed aggregates in the cytoplasm,

no GFP aggregation was observed. No cells (0/54) showed co-

aggregation. Bars, 50 μm
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2.2 | KIF5A(Δexon27) co-aggregates with
wild-type motors

We investigated whether the ALS-associated KIF5A protein
co-aggregates with wild-type motors. mSca::KIF5A
(Δexon27) was co-expressed with enhanced green fluores-
cent protein (EGFP)-labeled KIF5A (EGFP::KIF5A). Previ-
ous studies have shown that KIF5A forms a homodimer
and moves along microtubules (Hackney, 1995; Hackney
et al., 1991; Vale et al., 1996). As expected, mSca::KIF5A
(Δexon27) co-aggregated with EGFP::KIF5A(wt) in the cell
(Figure 2a–d), and aggregates accumulated at the tips of
CAD cell neurites. Homo sapiens have three homologous
kinesin heavy chain genes: KIF5A, KIF5B, and KIF5C
(Hirokawa et al., 2009). These three proteins are highly con-
served but do not form heterodimers (Kanai et al., 2000).
Interestingly, mSca::KIF5A(Δexon27) co-aggregated with
EGFP::KIF5B(wt) (Figure 2e–h). However, EGFP::KIF5B
was diffuse in the cytoplasm when mSca::KIF5A did not
form aggregates (Figure 2e,f), and EGFP::KIF5B(wt)
uncharacteristically accumulated in neurite tips and co-
aggregated with mSca::KIF5A(Δexon27) (Figure 2g,h). In

contrast, mSca::KIF5A(Δexon27) did not co-aggregate with
EGFP alone (Figure 2i,j). These data suggest that KIF5A
(Δexon27) co-aggregates with wild-type KIF5A and KIF5B
motors in the cell.

2.3 | KIF5A(Δexon27) oligomerizes
in vitro

Kinesin-1 is a heterotetramer composed of two heavy
chains (KIF5) and two light chains (KLC; Hackney
et al., 1991). We have previously shown that KIF5A has a
propensity to form oligomers in vitro (Chiba et al., 2022).
To examine the effect of the Δexon27 mutation on the
interaction of KIF5A with KLC1 and oligomerization, we
next purified heavy chain dimers (KIF5A) and Kinesin-1
tetramers (KIF5A-KLC1) with or without the Δexon27
mutation. First, we expressed full-length KIF5A::mSca
and KIF5A(Δexon27)::mSca in sf9 cells and purified
them by affinity chromatography and size exclusion chro-
matography (SEC; Chiba et al., 2022). In SEC, wild-type
KIF5A predominantly eluted at a single peak (Figure 3a,
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FIGURE 3 Purification of KIF5A and KIF5A(Δexon27). mScarlet was added to the C-terminus of either KIF5A (KIF5A::mSca) or

KIF5A(Δexon27) (KIF5A(Δexon27)::mSca). Recombinant proteins were expressed in sf9 cells and then purified. (a and b) Normalized size

exclusion chromatograms for KIF5A::mSca and KIF5A(Δexon27)::mSca (a) and KIF5A::mSca-KLC1 and KIF5A(Δexon27)::mSca-KLC1 (b).

The yellow shaded area shows the void volume of the column corresponding to potential aggregates, the red shaded area shows the fraction

corresponding to oligomers, and the blue shaded area shows the fraction corresponding to KIF5A dimers or KIF5A-KLC1 tetramers.

(c) Coomassie blue stained gel showing purified KIF5A::mSca, KIF5A(Δexon27)::mSca, KIF5A::mSca-KLC1, and KIF5A(Δexon27)::mSca-

KLC1. Wild-type protein from the blue shaded fraction and Δexon27 protein from the red shaded fraction (a and b) were analyzed.
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blue shaded area). In addition, a small amount of wild-
type KIF5A was recovered from fractions that were
eluted before the major peak and from the void volume
(Figure 3a, red and yellow shaded areas). SEC coupled
with multi angle light scattering (SEC-MALS) analyses
have shown that the main peak corresponds to KIF5A
dimers and that the minor peak eluted before the main
peak represents KIF5A oligomers (Chiba et al., 2022).
Next, we examined KIF5A(Δexon27) and found that the
Δexon27 mutation markedly changed the elution profile
from that of wild-type KIF5A. The major elution peak of
Δexon27 shifted toward a higher molecular weight,
which corresponds to oligomerization (Figure 3a, red
shaded area). Most KIF5A(Δexon27) was recovered from
high molecular weight fractions but not from dimer frac-
tions. Thus, the Δexon27 mutation induces oligomeriza-
tion of KIF5A. We note that Δexon27 also increased the
population recovered from the void volume, suggesting
the potential of KIF5A(Δexon27) to form aggregates as
well as oligomers (Figure 3a, yellow shaded area).

Next, to determine whether binding of the KLC sub-
unit is affected, we co-expressed KLC1 with full length
KIF5A or KIF5A(Δexon27). KLC1 was co-purified either
with KIF5A(wt) or KIF5A(Δexon27) (Figure 3b,c). The
ratio of heavy chains to light chains was almost 1:1 and
was not markedly affected by Δexon27. Thus, binding to
KLC is not abolished by the deletion of exon 27. The
KIF5A-KLC1 complex showed an elution profile similar
to that of KIF5A in the SEC analysis (Figure 3b, blue
lines). With KIF5A(Δexon27)-KLC1, we again observed a
peak shifted toward a higher molecular weight and an
increased population recovered from the void volume.
These results suggest that the propensity of KIF5A
(Δexon27) to form oligomers and aggregates is not largely
affected by KLC1.

2.4 | KIF5A(Δexon27) oligomers are
hyperactivated on microtubules

We analyzed the motility of purified microtubule motors
at single-molecule resolution by total internal reflection
fluorescence microscopy (Chiba et al., 2019; Chiba
et al., 2022; McKenney et al., 2014). Purified full-length
KIF5A(wt)::mSca and KIF5A(wt)::mSca-KLC1 did not
bind or move well on microtubules (Figure 4a,b) because
of the autoinhibitory mechanism described previously
(Chiba et al., 2022; Coy et al., 1999; Friedman &
Vale, 1999; Hackney & Stock, 2000). In contrast, we found
that full-length KIF5A(Δexon27)::mSca and full-length
KIF5A(Δexon27)::mSca-KLC1 frequently bound to and
moved along microtubules (Figure 4a–c). KLC1 suppresses
the binding of KIF5A(Δexon27) onto microtubules

(Figure 4c). Interestingly, Δexon27 mutation did not delete
the IAK motif that is essential for the autoinhibitory
mechanism of kinesin heavy chains (Figure 1b; Coy
et al., 1999; Friedman & Vale, 1999; Hackney &
Stock, 2000). The fluorescent intensities of KIF5A
(Δexon27)::mSca and full-length KIF5A(Δexon27)::mSca-
KLC1 were stronger than those of KIF5A(wt)::mSca
and KIF5A(wt)::mSca-KLC1 (Figure 4b), suggesting
the formation of oligomers. On average, the binding
rates of KIF5A(Δexon27)::mSca and KIF5A(Δexon27)::
mSca-KLC1 were nine times higher than those of
KIF5A(wt)::mSca and KIF5A(wt)::mSca-KLC1, respec-
tively (Figure 4c). We previously showed that the aver-
age run length and velocity of wild-type KIF5A are
1.0 μm and 1.1 μm/s, respectively (Chiba et al., 2022);
however, we could not collect a sufficient number of
samples to measure the run length and velocity of
wild-type proteins under the present condition. The
median run lengths of KIF5A(Δexon27)::mSca and
KIF5A(Δexon27)::mSca-KLC1 were approximately
3 μm each (Figure 4d), which is much longer than that
of wild-type KIF5A. No significant difference was
detected between KIF5A(Δexon27)::mSca and KIF5A
(Δexon27)::mSca-KLC1. The velocity of KIF5A(Δexon27)::
mSca and KIF5A(Δexon27)::mSca-KLC1 was 0.4 μm/s
(Figure 4e,f), which is slower than that of wild-type
KIF5A. Taken together, these results suggest that KIF5A
oligomers induced by Δexon27 are more active than those
of wild-type KIF5A both in the presence and absence of
the KLC subunit (Table 1).

2.5 | KIF5A(Δexon27) oligomers tend to
form aggregates

To examine the properties of KIF5A(Δexon27), we
incubated purified mScarlet, KIF5A::mSca and KIF5A
(Δexon27)::mSca at 37�C and measured the turbidity of
protein solutions by determining the optical density at
600 nm, which was used to monitor the formation of
protein aggregates in solution in a previous study
(Schafheimer & King, 2013). Immediately before incu-
bation, protein solutions were centrifuged and clari-
fied. The turbidity of purified KIF5A(Δexon27)::mSca
increased gradually while those of mScarlet and
KIF5A::mSca did not (Figure 5a). Twenty-four hours
later, the solution was again centrifuged, and purified
mSca::KIF5A(Δexon27) formed a protein pellet
(Figure 5b). At this concentration, purified mScarlet
and KIF5A::mSca did not form visible pellets at all,
even after the 24-h incubation. These data indicate that
purified KIF5A(Δexon27) is predisposed to form pro-
tein aggregates in vitro.
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2.6 | KIF5A(Δexon27) is toxic in
Caenorhabditis elegans neurons

Previous studies have shown that ALS is caused by toxic
gain-of-function mutations (Bruijn et al., 1998; Johnson
et al., 2009; Kwiatkowski Jr. et al., 2009). Therefore, we

examined the toxicity of KIF5A(Δexon27) in C. elegans
neurons. The morphology of mechanosensory neurons
was compared after expressing human KIF5A and KIF5A
(Δexon27) (Figure 6a–f). Mechanosensory neurons were
analyzed because many studies have shown that these
neurons have very stereotypical morphology and show
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small variations in the wild-type background (Gallegos &
Bargmann, 2004; Ghosh-Roy et al., 2012).The morphol-
ogy of posterior lateral microtubule (PLM) and posterior

ventral microtubule (PVM) neurons was observed and
compared in day 1 adults. PLM neurons had a long
straight axon along the body in wild-type cells (Figure 6a,b).

FIGURE 4 Motility of amyotrophic lateral sclerosis-associated KIF5A on microtubules. The motility of 10 nM KIF5A::mSca, 10 nM

KIF5A(Δexon27)::mSca, 10 nM KIF5A::mSca-KLC1 complex, and 10 nM KIF5A(Δexon27)::mSca-KLC1 complex on microtubules in the

presence of 2 mM ATP was observed by TIRF microscopy. Wild-type protein from the blue shaded fraction and Δexon27 protein from the

red shaded fraction in Figure 3a,b were observed. (a) Representative TIRF images of KIF5A (magenta) and microtubules (cyan). Note that

KIF5A(Δexon27)::mSca and KIF5A(Δexon27)::mSca-KLC1 bound to microtubules more frequently than KIF5A::mSca and KIF5A::mSca-

KLC1. Bars, 10 μm. (b) Representative kymographs of KIF5A::mSca, KIF5A(Δexon27)::mSca, KIF5A::mSca-KLC1 complex, and KIF5A

(Δexon27)::mSca-KLC1 complex. Scale bars represent 10 s (vertical) and 10 μm (horizontal). (c) Dot plots showing the landing rates of

KIF5A::mSca (wt), KIF5A(Δexon27)::mSca (Δexon27), KIF5A::mSca-KLC1 complex (wt + KLC1), and KIF5A(Δexon27)::mSca-KLC1

complex (Δexon27 + KLC1). The number of KIF5A oligomers that bound to microtubules was counted and adjusted by the time window,

microtubule length, and concentration. Each dot shows one data point. N = 20 kymographs from each sample. Data were analyzed by

Brown–Forsythe and Welch ANOVA followed by Dunnett's multiple comparisons test. ***, adjusted p value <.001. ****, adjusted p value

<.0001. (d) Dot plots showing the run length of KIF5A(Δexon27)::mSca (Δexon27) and KIF5A(Δexon27)::mSca-KLC1 complex

(Δexon27 + KLC1). N = 202 (Δexon27) and 201 (Δexon27 + KLC1). Data were analyzed with the Mann–Whitney test. ns, adjusted p value

>.05 and not statistically significant. (e and f) Gaussian fit and histogram showing the velocity of KIF5A(Δexon27) and the KIF5A

(Δexon27)::mSca-KLC1 complex (377 ± 107 nm/sec (KIF5A(Δexon27)) and 378 ± 111 nm/sec (KIF5A(Δexon27)-KLC1)). The means ±

standard deviation were obtained from best-fit values. N = 349 and 337, respectively. The velocity of KIF5A(Δexon27) was not affected by

KLC1. Note that a sufficient number of samples could not be collected for KIF5A(wt)::mSca and KIF5A(wt)::mSca-KLC1

TABLE 1 Measured parameters of KIF5A

Summary of motility measurement of KIF5A(Δexon27)

Velocity (nm/s) Landing rates (motors/μm/s/μM) Run length (μm)

KIF5A(1–420) 1048 ± 173a 162 ± 31a 0.70a (0.55–0.93)

Full-length
KIF5A

Wild-type 1182 ± 187a 0.85 ± 0.57 1.00a (0.69–1.61)

Δexon27 377 ± 107 8.3 ± 2.3 2.76 (1.50–4.54)

KIF5A-KLC1 complex Wild-type 1051 ± 176a 0.20 ± 0.20 1.49a (0.78–2.84)

Δexon27 378 ± 111 4.6 ± 0.80 2.30 (1.44–4.03)

Note: The motility parameters of tail-truncated KIF5A(1–420), full-length KIF5A and KIF5-KLC1 complex. Velocities (mean ± SD), landing rates (mean ± SD),
and run lengths (median and interquartile range) are shown.
aValues are described in Chiba et al. (2022).
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The PVM neuron extends an axon that grows ventrally
and then turns anteriorly when it reaches the ventral
nerve cord (Figure 6a,b). No significant differences were
found between KIF5A-expressing neurons and control
neurons (Figure 6c). In contrast, KIF5A(Δexon27)-

expressing neurons showed morphological defects
(Figure 6d–f). Approximately 60% of worms showed
abnormal PLM and PVM morphologies (Figure 6d), but
no stereotypical abnormalities were found. The PLM
cell body was often mislocalized, and some worms had
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PLM neurons with multiple neuronal processes,
whereas other worms had PLM neurons with bent
axons. Approximately 20% of worms showed neuronal
loss (Figure 6e). These data suggest that KIF5A
(Δexon27) is toxic in neurons.

3 | DISCUSSION

Previous studies have suggested that KIF5A(Δexon27)
causes ALS by a loss-of-function mechanism because
the cargo-binding tail domain is deleted (Brenner
et al., 2018; Nicolas et al., 2018). However, while several
loss-of-function mutations have been found in the
motor domain of KIF5A, these mutations cause SPG,
rather than ALS (Ebbing et al., 2008; Reid et al., 2002).
None of the motor domain mutations in KIF5A have
been associated with ALS. These genetic data suggest
that ALS mutations in KIF5A are not simple loss-of-
function mutations. Protein aggregates are often associ-
ated with neurodegenerative disorders (Soto, 2003), and
numerous ALS-associated mutations have been identi-
fied in other genes such as TARDBP (TDP-43 gene),
SOD, and FUS (Aoki et al., 1993; Kabashi et al., 2008;
Kwiatkowski Jr. et al., 2009; Vance et al., 2009). These
mutations commonly induce aggregates that are toxic in
cells (Bruijn et al., 1998; Johnson et al., 2009; Kwiatkowski
Jr. et al., 2009). Our data suggest that the Δexon27 mutation
in KIF5A induces toxic aggregates. Furthermore, while we
were preparing this manuscript, a preprint supporting the
same conclusion was posted on Biorxiv (Pant et al., 2022).
The study showed that KIF5A(Δexon27) causes aggregate
formation in cultured cells and is toxic when expressed in
Drosophila. The study also showed that unpurified KIF5A
(Δexon27) in cell lysates is more active than wild-type
KIF5A. What induces the formation of KIF5A(Δexon27)
aggregates? It is possible that unidentified proteins bind to
the abnormal C-terminus of KIF5A(Δexon27) and induce
hyperactivation and aggregation. However, our assays using

purified proteins strongly suggest that KIF5A(Δexon27) is
hyperactive and is predisposed to form aggregates without
the involvement of other factors (Figures 3–5).

The Δexon27 mutation induces hyperactivation of
KIF5A. KIF5 is inhibited by KLC-dependent and inde-
pendent autoinhibitory mechanisms (Chiba et al., 2022;
Hackney & Stock, 2000; Verhey et al., 1998). Binding
with cargo vesicles or cargo complexes unlock the auto-
inhibition. The binding of KIF5A(Δexon27) onto micro-
tubules is suppressed by KLC1 (Figure 4c), suggesting
that KLC-dependent autoinhibitory mechanism works
even in KIF5A(Δexon27). Interestingly, the IAK motif is
not affected by the Δexon27 mutation (Figure 1b). It was
shown that hydrophobic materials such as polystyrene
beads and glass surface can mimic cargos and activate
KIF5-KLC complex when they bind to the tail region
(Vale et al., 1985). Δexon27 mutation induces the forma-
tion of large oligomers (Figure 3a,b). Large KIF5A
(Δexon27) oligomers may mimic cargos and activate the
motor. It is also possible that Δexon27 mutation disrupts
previously unknown autoinhibitory mechanisms.

What induces toxicity in neurons? Toxicity in worm
neurons would help to clarify neurotoxic mechanisms.
One possibility is that hyperactivated KIF5A changes
the distribution of cargo organelles and induces cellular
toxicity. We have shown that another kinesin, human
KIF1A, is functional in worm neurons (Chiba
et al., 2019). We show here KIF5A(Δexon27) binds to
the cargo-binding adaptor KLC1 (Figure 3c). Thus,
cargo transport may be affected by KIF5A(Δexon27)
even in worm neurons. Another possibility is that cargo
transport is not directly related and KIF5A(Δexon27)
aggregates are toxic in neurons as is the case in other
ALS-associated mutations (Bruijn et al., 1998; Johnson
et al., 2009; Kwiatkowski Jr. et al., 2009). Aggregates
change cellular metabolisms and induces neuronal
death (Soto, 2003). These possibilities will be discrimi-
nated by analyzing cargo transport and distributions in
KIF5A(Δexon27)-expressed worm neurons. If aggregates

FIGURE 6 Neuronal toxicity in Caenorhabditis elegans. Human KIF5A or KIF5A(Δexon27) was expressed in a C. elegans strain

expressing green fluorescent protein (GFP) in mechanosensory neurons. (a and b) Morphology of posterior ventral microtubule (PVM) and

posterior lateral microtubule (PLM) mechanosensory neurons. A schematic drawing of PVM and PLM neurons (a) and a representative

image (b) of PVM and PLM neurons visualized by GFP expressed under the mec-7 promoter (Pmec-7) are shown. (c–e) Representative
images showing Kif5a-expressing mechanosensory neurons (c) and Kif5a(Δexon27)-expressing neurons (d and e). (d) The formation of beads

along the axon, an injured axon marker, is seen. Moreover, the cell body of PLM neuron is anteriorly mislocalized. The axon of PLM neuron

abnormally bends while the axon of PVM turns posteriorly. (e) PLM neuron is lost. Bars, 100 μm. (f) C. elegans phenotypes were classified

according to mechanosensory neuron morphology into two categories: normal morphology (light gray) and abnormal morphology (dark

gray), and the number of worms in each category was counted. N = 87 (control strain), 68 (KIF5A(wt)-expressing strain #1), 75 (KIF5A(wt)-

expressing strain #2), 73 (KIF5A(Δexon27)-expressing strain #1), and 79 (KIF5A(Δexon27)-expressing strain #2). Data were analyzed with a

chi-square test with Bonferroni correction. ns, adjusted p value >.05 and not statistically significant, ****, adjusted p value <.0001; compared

with the control strain
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are toxic, hyperactivation of KIF5A motor may enhance
the toxicity because hyperactivation causes mis-
accumulation of KIF5A at axonal tips, leading to a high
concentration of KIF5A and aggregate formation. This
hypothesis is supported by the observation that KIF5A
(Δexon27) aggregates were often found at neurite tips in
CAD cells (Figure 1).

We have previously shown that KIF5A forms more
oligomers than KIF5B and KIF5C in vitro (Chiba
et al., 2022). Additionally, KIF5A oligomers are more
active than KIF5A dimers. However, the physiological
significance of these phenomena remains elusive. We
show here that even wild-type KIF5A has a propensity to
form more aggregates in the cell than KIF5B (Figure 1).
A similar property has been found for TDP-43. TDP-43 is
intrinsically aggregation-prone, which implies that it may
be directly involved in the pathogenesis of sporadic ALS
(Johnson et al., 2009). The propensity of KIF5A to oli-
gomerize may be related to sporadic ALS and may be
enhanced by ALS-associated KIF5A mutations.

4 | EXPERIMENTAL PROCEDURES

4.1 | Molecular biology

Polymerase chain reaction (PCR) was performed using
KOD FX neo (TOYOBO) as described in the manual.
Restriction enzymes were purchased from New England
BioLabs Japan.

pAcebac1 plasmids containing human KIF5A(BC146670)
human KIF5B(BC126281), and KLC1 (BC008881) was
described previously (Chiba et al., 2022).

To generate mScarlet::KIF5A and mScarlet::KIF5B
expressing plasmids, pmScarletC1 plasmid was obtained
from Addgene. KIF5A and KIF5B were amplified by PCR
and transferred to pmScarletC1. To generate an EGFP::
KIF5B expressing vector, EGFP was amplified from
pEGFPN1::KIF1A (Niwa et al., 2008) and replaced with
mScarlet by using AgeI and XhoI sites. Δexon27 muta-
tion was introduced by Gibson assembly. cDNA fragment
encoding the mutated domain (Figure 1a) was synthe-
sized by gBlocks (Integrated DNA Technologies Japan)
and replated with the wild-type fragment by Gibson
assembly (Gibson et al., 2009). Plasmids used in this
paper is described in Table S1. Key plasmids were depos-
ited to Addgene.

4.2 | CAD cell experiments

CAD cells were obtained from European Collection of Cell
Cultures and maintained as described (Qi et al., 1997). For

observation, cells were cultured on glass coverslips
(Matsunami, Tokyo, Japan). Plasmid transfection was per-
formed by Lipofectamine LTX (Thermo Fisher Scientific)
as described in the manufacturer's manual. 24 hours after
the transfection, mScarlet and GFP signals were observed
under Zeiss Axio Observer inverted microscope equipped
with LSM800 confocal unit (Carl Zeiss). �40 water immer-
sion objective lens (Numerical Aperture: 1.1) was used for
imaging. ZEN software (Carl Zeiss) was used to control
the system.

4.3 | Purification of KIF5A

pAcebac plasmids were transformed to generate bacmid.
Sf9 cells were maintained as a suspension culture in Sf-
900II serum-free medium (Thermo Fisher Scientific) at
27�C. To prepare baculovirus, 1 � 106 cells of Sf9 cells
were transferred to each well of a tissue-culture treated
6 well plate. After the cells attached to the bottom of the
dishes, about �5 μg of bacmid were transfected using 6 μl
of Cellfectin II reagent (Thermo Fisher Scientific). Five
days after initial transfection, the culture media were col-
lected and spun at 3000 g for 3 min to obtain the superna-
tant (P1). For protein expression, 400 ml of Sf9 cells
(2 � 106 cells/ml) were infected with 100 μl of P1 virus
and cultured for 65 hr at 27�C. Cells were harvested and
resuspended in 25 ml of lysis buffer (50 mM HEPES-
KOH, pH 7.5, 150 mM KCH3COO, 2 mM MgSO4, 1 mM
EGTA, 10% glycerol) along with 1 mM DTT, 1 mM
PMSF, 0.1 mM ATP and 0.5% TritonX-100. After incubat-
ing on ice for 10 min, the lysates were centrifuged at
15,000 g for 20 min at 4�C. The resulting supernatant
were subject to affinity chromatography described below.

For affinity chromatography, the supernatants were
put over a column of Streptactin XT resin (IBA) at 4�C.
The columns were then washed with excess lysis buffer
to remove unbound material and the proteins were
eluted in lysis buffer containing 100 mM D-biotin. Eluted
proteins were further purified via size exclusion chroma-
tography using a Superose 6 10/300 GL column (Cytiva)
equilibrated in lysis buffer. Fractions containing the pro-
teins were combined and concentrated on amicon spin
filters with a 50 kDa cutoff. Concentrated proteins were
frozen in LiN2 and stored at �80�C.

4.4 | TIRF single-molecule motility
assays

TIRF assays were performed as described (Chiba
et al., 2019). Tubulin was purified from porcine brain as
described (Castoldi & Popov, 2003). Tubulin was labeled

NAKANO ET AL. 431



with Biotin-PEG2-NHS ester (Tokyo Chemical Industry)
and AZDye647 NHS ester (Fluoroprobes) as described
(Al-Bassam, 2014). To polymerize Taxol-stabilized micro-
tubules labeled with biotin and AZDye647, 30 μM
unlabeled tubulin, 1.5 μM biotin-labeled tubulin and
1.5 μM AZDye647-labeled tubulin were mixed in BRB80
buffer supplemented with 1 mM GTP and incubated for
15 min at 37�C. Then, an equal amount of BRB80 sup-
plemented with 40 μM taxol was added and further incu-
bated for more than 15 min. The solution was loaded on
BRB80 supplemented with 300 mM sucrose and 20 μM
taxol and ultracentrifuged at 100,000 g for 5 min at 30�C.
The pellet was resuspended in BRB80 supplemented with
20 μM taxol. Glass chambers were prepared by acid
washing as previously described (McKenney et al., 2014).
Glass chambers were coated with PLL-PEG-biotin
(SuSoS). Polymerized microtubules were flowed into
streptavidin adsorbed flow chambers and allowed to
adhere for 5–10 min. Unbound microtubules were
washed away using assay buffer [90 mM Hepes pH 7.4,
50 mM KCH3COO, 2 mM Mg(CH3COO)2, 1 mM EGTA,
10% glycerol, 0.1 mg/ml biotin–BSA, 0.2 mg/ml kappa-
casein, 0.5% Pluronic F127, 2 mM ATP, and an oxygen
scavenging system composed of PCA/PCD/Trolox. Puri-
fied motor protein was diluted to indicated concentra-
tions in the assay buffer. Then, the solution was flowed
into the glass chamber. An ECLIPSE Ti2-E microscope
equipped with a CFI Apochromat TIRF 100XC Oil objec-
tive lens, an Andor iXion life 897 camera and a Ti2-LAPP
illumination system (Nikon) was used to observe single
molecule motility. NIS-Elements AR software ver. 5.2
(Nikon) was used to control the system.

4.5 | Worm experiments and strains

C. elegans strains were maintained as described previously
(Brenner, 1974). Wild-type worm N2 and feeder bacteria
OP50 were obtained from C. elegans genetic center (CGC;
Minneapolis). Nematode Growth Media (NGM) agar
plates were prepared as described (S. Brenner, 1974).
Transformation of C. elegans was performed by DNA
injection as described (Mello et al., 1991). 5 ng of Pmec-7::
KIF5A or Pmec-7::KIF5A(Δexon27) plasmids were injected.
Strains used in this study are described in Table S2.

Analysis of mechanosensory neurons in
Caenorhabditis elegans

Mechanosensory neurons were visualized using uIs31
[Pmec-7::gfp] marker that was obtained from C. elegans
genetic center (Chalfie et al., 1994). Strains expressing

human KIF5A or KIF5A(Δexon27) were observed under
Zeiss Axio Observer inverted microscope equipped with
LSM800 confocal unit (Carl Zeiss). �20 objective lens
(Numerical Aperture: 0.8) was used for imaging. ZEN
software (Carl Zeiss) was used to control the system. Fiji
was used to analyze image files (Schindelin et al., 2012).
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