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Abstract: The aim of this study was to form a functional layer on the surface of titanium (Ti)
implants to enhance their bioactivity. Layers of polyurethane (PU), containing hydroxyapatite (HAp)
nanoparticles (NPs) and magnesium (Mg) particles, were deposited on alkali-treated Ti surfaces using
a cost-effective dip-coating approach. The coatings were assessed in terms of morphology, chemical
composition, adhesion strength, interfacial bonding, and thermal properties. Additionally, cell
response to the variably coated Ti substrates was investigated using MC3T3-E1 osteoblast-like cells,
including assessment of cell adhesion, cell proliferation, and osteogenic activity through an alkaline
phosphatase (ALP) assay. The results showed that the incorporation of HAp NPs enhanced the
interfacial bonding between the coating and the alkali-treated Ti surface. Furthermore, the presence of
Mg and HAp particles enhanced the surface charge properties as well as cell attachment, proliferation,
and differentiation. Our results suggest that the deposition of a bioactive composite layer containing
Mg and HAp particles on Ti implants may have the potential to induce bone formation.

Keywords: magnesium and its alloys; hydroxyapatite; surface modifications; titanium implants;
corrosion analysis; biocompatibility; bioactivity

1. Introduction

Titanium (Ti) and its alloys are extensively used in orthopedic implants due to their
favorable corrosion resistance, biocompatibility, machinability, and load bearing capabil-
ity [1–3]. However, because of the bioinert nature of titanium, the osseointegration of Ti
implants is relatively slow and can be compromised in sites of limited bone quality and
quantity. Various methods of surface modification of Ti implants using physical, chemical,
and biochemical treatment methods have been previously established [1,2,4,5], with the
aim to enhance osseointegration of the Ti implants and promote their local bioactivity.
Previous studies have shown that good surface wettability enhances the attachment, prolif-
eration, and differentiation of osteoblasts and their precursors, leading to enhanced bone
healing [4,6–11]. Additionally, surface chemistry plays an important role in the early stages
of bone formation, with the greatest benefits derived from osteoconductive materials, such
as hydroxyapatite HAp (Ca10(PO4)6(OH)2). HAp has been widely used for bone tissue
engineering due to its excellent biocompatibility, bioactivity (chemical bonding ability
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with natural bone), slow in situ biodegradability, high osteoconductivity, osteoinductive
potential, non-toxicity, and immunomodulatory properties [12,13]. However, HAp coat-
ings are often problematic due to the low bonding strength of pure HAp coatings and Ti
substrates [1,10,14–21]. The difference in the thermal expansion coefficients of Ti and HAp
can cause delamination of the coating, leading to the failure of implants clinically.

Recently, magnesium (Mg) alloys or Mg coatings on metallic substrates were in-
troduced in medical applications [1,22,23]. Our recent publication [4] showed that the
incorporation of Mg particles into a biodegradable polymer not only enhanced the surface
wettability, but also improved cell attachment and proliferation. We thus speculated that a
composite polymer film composed of biodegradable metallic Mg particles and HAp NPs,
successfully deposited on alkaline-treated Ti surfaces using a simple and cost-effective
dip-coating method, is an efficient method to enhance the surface biocompatibility of Ti
implants and subsequently improve osseointegration. The incorporation of HAp NPs
within the polymer matrix may be capable of enhancing the interfacial strength between
the alkali-treated Ti substrate and the polymer matrix by promoting increased hydrogen
bonding and inducing superior adhesion. Previous studies have verified the strong interfa-
cial strength between sodium titanate hydrogel layers formed on alkali-treated Ti and HAp
particles [24–26]. In addition, HAp NPs present within the polymer matrix can become
entrapped in the microporosity of the alkali-treated Ti surface, thus establishing mechani-
cal interlocking with the Ti substrate. Furthermore, the incorporation of Mg particles in
a biodegradable polymer matrix is advantageous as the release of acidic byproducts of
polymer degradation can be compensated through the increase in pH facilitated by the
dissolution of Mg [27–30]. Barrère et al. [31] demonstrated that the existence of Mg in an
apatite (a phase of HAp) [13] coating of a titanium surface strengthened the adherence of
the coating through the Mg ions, promoting further apatite precipitation.

Therefore, the aim of the present study is to incorporate both Mg metal and HAp
NPs into a biodegradable polymer matrix and subsequently dip-coat a thin layer of this
composite onto Ti substrates to enhance their bioactivity. Herein, polyurethane polymer
(Pu) was utilized as a polymer matrix because it has a moderate degradation rate, good
biocompatibility and exhibits a natural self-healing property [32]. In the present study,
5 wt.% synthesized HAp NPs [33] and 10 wt.% Mg microparticles [4,12] were incorporated
into a PU polymer matrix before deposition through dip-coating onto alkali-treated Ti
substrates. The morphological properties, chemical composition, surface roughness, wet-
tability, adhesion strength, interfacial bonding, and thermal properties of the composite
coating layer were investigated. Furthermore, MC3T3-E1 osteoblast-like cell adhesion,
proliferation, and alkaline phosphatase (ALP) activity was studied in response to coated
and uncoated Ti substrates.

2. Materials and Methods

The present study used a commercially pure titanium (c.p. Ti) sheet (William Gregor
Ltd., London, UK), which was cut in a square shape with dimensions of 12 × 12 × 2 mm3.
The sample preparation included grinding, polishing, and cleaning, according to previous
publications [10,34–38]. Untreated samples were then etched in H2SO4:HCl:H2O = 1:1:1
volume ratio at 60 ◦C for 1 h to increase the surface roughness [39]. The hydrophilicity was
enhanced by subjecting the etched samples to alkaline treatment using the same procedures
as described elsewhere [35,36,39]. Briefly, the samples were immersed in 100 mL of an
aqueous solution of 5 M NaOH at 60 ◦C for one day. Before further analysis, the samples
were rained three times in distilled water and dried at 50 ◦C for 24 h at atmospheric
conditions [10]. A HAp nanopowder was prepared using a wet chemical procedure, as
described previously [4,12,33,40]. Further details on the preparation process of HAp is
shown in the Supporting Information. Scanning electron microscope (SEM) image and
X-ray Diffraction (XRD) profiles of the synthesized HAp powder are shown in Figure 1a,b.
The average diameter of the HAp particles was 120 ± 30 nm.
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Figure 1. Scanning electron microscopy (SEM) images and X-ray diffraction (XRD) patterns of:
(a,b) HAp, (c,d) Mg powders.

Coating process: Polymer solution containing 15 g of PU pellets (54,600 Da molecular
weight, Estane skythane X595A-11, Lubrizol Advanced Material, Inc., Co., Ltd., Seoul,
Korea) was dissolved in 100 mL dimethylformamide (DMF, Loba Chemie PVT. LTD.,
Mumbai, India). Mg powder with a purity of 99.9% (Kt, Sigma-Aldrich, St. Louis, MO,
USA) and particle size range from 40 to 140 µm (SEM morphology and the XRD profile of
the as-received Mg particles are shown in Figure 1c,d) was added into the PU solution at
10 wt.% (based on the PU weight contribution). Furthermore, 5 wt.% of HAp NPs, again
based on the PU amount, was added into the Mg-particles/PU suspension solution.

Prior to the dip-coating process, all treated and untreated samples were pre-heated
over a heating plate at 200 ◦C for 10 min to remove entrapped air and moisture from the
surface. After this preheating process, the samples were immersed in the prepared solutions
for about 30 s to facilitate wettability on the surface. Both dipping and withdrawing were
performed at the same speed (2.0 mm·s−1) by a dip-coating machine (EF-5100, E-Flex,
Bucheon, Korea), as displayed in Figure 2. The coated sheet was then hung in a vacuum
oven (10 mbar) at 40 ◦C for 12 h. The drying temperature was selected based on the
glass transition temperature of PU [41,42]. Due to the vertical orientation of the hung
sample, there was an outflow of solution from the substrate that could affect the thickness
of the coating film. However, previous studies have shown that the coating uniformity is
improved when the sample is dried in a vertical rather than horizontal orientation [43–45].
Four groups of samples (S0–S3) were prepared and investigated. Table 1 describes the
characteristics of the four groups. Characterization and cell culture experiment are shown
in the Supporting Information for further details.

Table 1. Designation of sample groups used in this study.

Sample Designation Description

S0 Alkaline-treated Ti
S1 Plain PU film coated on alkaline-treated Ti
S2 Mg-particle/PU composite film coated on alkaline-treated Ti
S3 Mg- HAp/PU composite film coated on alkaline-treated Ti
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Figure 2. The dip-coating process and the considerable electrostatic intermolecular interaction between the polymer coating
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3. Results and Discussion

The XRD curves of the surface of Ti treated with 5 M NaOH solution at 60 ◦C for
24 h are displayed in Figure 3. A small peak with a broad signal on the 2-theta axis at
around 24◦ was observed. For the S0 group, outstanding peaks due to the α-phase of
Ti always existed in the diffraction patterns [46]. Broad, small, and low intensity peaks
were detected in the XRD profiles around the two-θ angle of 58◦, which was due to the
presence of an amorphous sodium titanate hydrogel layer with an atomic ratio similar to
the Na2TiO3 phase formed by NaOH treatment, as illustrated in previous studies, including
ours [33,46,47]. This is likely due to the significant chemical reaction that occurred after
the NaOH treatment of the commercially pure Ti surface. However, a previous study [46]
did not show the formation of a Na2TiO3 gel layer on the surface of Ti, which is in contrast
with the present study. This further verifies the well-optimized parameters for NaOH
treatment of Ti samples in the present work. The morphological properties and high surface
area of the Na2TiO3 formed layer (as shown in Figure 4a) are the reason for the obtaining
improvement in adhesion of the subsequent PU polymer coating, which will be discussed
later. SEM (Figure 4b) and XRD (Figure 3) observations suggested the presence of a new
layer of sodium titanate on the surface of S0, which is likely associated with enhanced
adhesion performance of the coated films [10]. Figure 5a,b shows the Mg microparticle and
HAp nanoparticle distribution within the PU matrix.
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Figure 3. X-ray diffraction profiles of the coated samples. The formation of Na2TiO3 gel layer at
two-theta with an angle of 58◦, incorporation of Mg microparticles and HAp NPs within PU film at
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Figure 5. Optical microscopy images showing the distribution of Mg particles (a) and Mg-particles/HAp (b) throughout
the PU layer.

The phase composition of the PU film coated on the untreated and treated Ti surfaces
was also investigated using the XRD technique. From the obtained results, it was found that
the formation of weak, broad peaks refer to the polymeric phase profile on the Ti surface
(see the left-hand side of XRD curves in Figure 3). In addition, the XRD of the composite
coated films (S2, S3) showed weak peaks at approximately 34◦, 36◦, 48◦, 57◦, indicating
the deposition of magnesium particles, and at about 32◦, indicating the deposition of HAp
particles [30]. SEM images (Figure 4) showed that the S2 group had a smooth and dense
morphology, while the S3 group had well-developed upright (columnar) morphological
structures, created on the alkaline Ti surface. The surface composition of the coated samples
was analyzed by EDS, as depicted in Figure 4d, f. From the EDS analysis, it was confirmed
that the Mg (Figure 4d) and HAp particles (Figure 4f) were successfully doped into the PU
polymer coating layers. The thickness of the measured coating layer ranged from 8.14 to
9.74 µm, as shown in Figure 6.
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Figure 6. SEM of the cross-section of the composite layer coating on the Ti surfaces, indicating the
coating thickness.

The thermal stability of the plain PU coating and the composite coating was inves-
tigated using thermogravimetric analysis (TGA), as shown in Figure 6. It appeared that
the addition of the Mg particles (Figure 7) improved the thermal stability of the PU as
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compared to the plain PU (Figure 6, S1). Additionally, the TGA thermogram indicated
a similar single step degradation pattern for both S2 and S3. The char yield was higher
for S3, which was due to the presence of the inorganic component of HAp. The glass
transition temperature for the S3 group, at 50 ◦C, was marginally higher than that of the
S2 group, potentially due to greater secondary interactions and the presence of an addi-
tional metal salt. This increase can reasonably be attributed to the coordinated interaction
between oxygen and metals/metal ions. The melting point, around 167 ◦C, appeared to
be influenced by the diol component or due to an ordered urea hydrogen bond formation.
This may occur due to formation of amine in the presence of residual water/moisture.
Finally, the peak around 320 ◦C indicated degradation. The improvement in degradation
temperature in the composite groups is due to the excellent thermal stability of the Mg
microparticles capsulated within the PU polymer matrix. In addition, the differential
scanning calorimetry (DSC) scans (Figure 7) illustrate a slight shifting of the endothermic
peaks and heating enthalpies of the coating groups, which is correlated with the melting
of PU hard segments [48]. This might suggest typical interactions between the crystalline
regions of PU and the Mg particles that enhance the stabilization of the dynamic thermal
properties of the composite films.
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It has been widely reported that coatings can easily delaminate due to a weak adhesion
strength, significantly affecting the performance and stability of such coated biomedical de-
vices [49]. In medical device development, adhesion stability between the metal substrate
and coating is, therefore, vital to the successful use of implant. The degree of adhesion
between the polymer layer and Ti substrate depends intimately on the stability and subse-
quently longevity of coatings. In the present study, the crosscut (known as tape) adhesion
test was conducted to investigate the samples’ coating adhesion quality. Table 2 demon-
strates the mean of the adhesion performance measurements. Interestingly, as expected, the
S2 and S3 groups showed superior adhesion performance (5B, Table 2). It is assumed that
the increased surface hydrophilicity (wettability) and the morphological changes caused
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by the alkali treatment improved the interfacial strength between the PU molecules and
the treated Ti substrates.

Table 2. Cross-cult adhesion test results of Mg particles/PU and HAp-Mg particles/PU composite coatings formed on
alkali-treated Ti (assessed by ASTM (D3359, 2010), a standard protocol).

Samples Rating of Extent of Adhesion as per
ASTM (D3359, 2010) Percent Area Removed * Surface Appearance after Adhesion

Testing

S2 5B 0% (none)
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are detached.

The degree of surface roughness and charge (wettability) directly influence coating
adhesion, with increased surface polarity and roughness resulting in increased reactivity
between the substrate and coating. For example, we observed that very fine needle-like
hairs were produced on the alkali-treated Ti (inset of Figure 1a). The high surface area of
these features appeared to directly improve the adhesion of the deposited PU film [10]. The
incorporation of HAp NPs and Mg microparticles into the PU film did not show negative
effects on the adhesion performance of the deposited composite film, but instead also
improved the adhesion strength.

It is well-known that the adhesion properties between a polymer coating and a metallic
surface involves either physical or chemical bonding. In this case, chemical bonding
involves a chemical interaction between the deposited PU molecules and species on the
alkali-treated Ti surface. Indeed, the surface polarity of the Na2TiO3 gel layer formed on the
Ti is higher than the untreated Ti surfaces, where the surface comprises an inert amorphous
titanium dioxide film. The conversion of the Na2TiO3 gel layer to titanium-hydroxide (Ti-
OH) after contact with an aqueous environment (such as water vapor) has been reported in
our previous work [39], showing that this type of reaction is thermodynamically reasonable.
The presence of OH on a treated Ti substrate may confer interesting properties to the Ti
surface. For instance, the alkali-treated Ti surface may conduct as a base when in contact
with a PU film. It is therefore suggested that the PU film, which has an acidic group,
might strongly interact with the Na2TiO3 gel layer. These properties make this treatment
a very attractive method to enhance the performance of polymer coatings. In fact, this
kind of interaction may directly enhance the adhesion strength, as it has been illustrated
that electrostatic force develops at the interface between materials that possess different
electronic band structures [50]. Thus, the adhesion strength/bonding is strong in the case
of the deposition of PU film on the active treated Ti surface.

This phenomenon can be discussed in light of the large number of free ends on
the chain of PU, as it has been well discussed in our previous report as well [4], which
provide a large number of free carboxyl groups for electrostatic interactions with the
alkali-treated titanium surface, as shown in Figure 2. To support our hypothesis, Fourier-
transform infrared spectroscopy (FTIR) analyses were used to investigate the molecular
level interaction between the film coatings and substrates, as shown in Figure 8. A PO4

3−
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peak (566 cm−1) was present in the S3 group, similar to the one present in HAp. As is the
case with biological HAp, peaks for carbonate (1411 and 1136 cm−1) were also present in
the S3 group sample. The wide peak around 3361 cm−1 for the S1 and S2 groups were due
to the presence of both hydrogen bonds and a free –NH functional group. After the addition
of HAp, there was an increase in absorption due to the H-bonded –NH. The peak around
3500 cm−1 indicated the presence of –OH groups, which remained broad due to hydrogen
bonding. The peak around 2927 cm−1 indicated –CH stretching. The sharp peak around
1136 cm−1 indicated the presence of the free –C=O group of S0, which reduced upon the
addition of Mg (S1-Mg). When HAp was added, the peak again increased, indicating a
shifting of interaction from Mg (with –C=O), to Mg with HAp. The peak around 1100 cm−1

indicated the presence of an ether linkage, while a peak for Mg(OH)2 was also present at
510 cm−1 in both S2 and S3 group samples [51].
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The evaluation of cell/biomaterial interactions through the assessment of in vitro
cytotoxicity test is one of the most fundamental initial tests for developed biomaterials [52].
Furthermore, the successful attachment of cells is an important part of this process and
can strongly affect the subsequent cellular and tissue response. Figure 9 shows the cell
morphology after three and five days of cell culture. The obtained images show the
differential interaction of the cells with the different surfaces (some focusing issues arose
from partial film detachment during the fixing, staining and dehydration processes).
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For the S0 group, only a few, after three days of culture and after five days poorly
spread cells were observed, no additional changes in cell morphology were noticed
(Figure 9). The coating remained intact throughout the culture period. In the S2 and
S3 groups, there were similarly no defects, detachments, or other degradations in the
coating after 5 days of culture (Figure 9b–f), and a clear cellular spreading was observed,
particularly in group S3. These results suggest that the S3 group had the most cytocompati-
ble characteristics among the tested groups (Figure 9e,f). The S0 group possessed a higher
surface roughness (1.110 ± 0.015 µm) than the S2 group (0.611 ± 0.020 µm), which would
typically indicate that it should have superior performance in terms of cell migration,
spreading. However, the S2 group surface also possessed a lower stiffness than the S1
surface, and indeed previous studies [53] showed that cell migration and focal adhesion
are regulated by substrate flexibility. A study by Pelham and colleagues [54] found that
cell spreading/migration could be guided by surface topography and physical interactions
between the cell and the materials’ substrate. Their study concluded that changes in tis-
sue rigidity and flexibility could play an important role in controlling cell spreading and
migration. Additionally, cell spreading, and focal adhesions were affected by a change in
mechanical properties of the extracellular matrix (ECM), which influenced cytoskeletal
stiffness in vitro [52]. Ti-based implants possess a high stiffness that is responsible for the
commonly problematic stress shielding phenomenon (i.e., there is a poor integration of
the Ti implant with surrounding host tissues). Overall, it appears that the PU coating of
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alkali-treated Ti surfaces may regulate the adhesion and interactions of osteoblastic cells
and the substrate.

Results of the MTT-assay confirmed that cell proliferation occurred over the 3 and
5 days of cell culture (Figure 10a). On day 3, it was observed that the S0 samples showed
less cell proliferation than the S2 and S3 samples. After 5 d of culture, all groups showed a
significant increase, and maintained over 80% viability. It has previously been reported
that the formation of sodium titanate on the surface of Ti implants that are implanted in
the body may have a harmful effect on cellular response because of the excessive release of
sodium ions and the formation of narrow pore spaces [55]. We also observed that the Na+

ions released from the alkali-treated Ti surfaces had a negative effect on cell proliferation,
despite the surface having an increased hydrophilicity [2]. However, the biocompatibility
of the material was improved after coating, particularly with the S3 group samples, which
performed the best of all of the groups.
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after 8 and 14 d of culture; cells were seeded on coated alkaline treated Ti samples (n = 3, * indicates p ≤ 0.05).

Alkaline phosphate (ALP) is an early marker of osteoblast differentiation. We observed
a clear increase in ALP activity after 8 and 14 d of culture, with ALP activity showing
a significant increase in group S3 by day 14 (Figure 10b). Overall, the best outcomes in
terms of cell proliferation and differentiation were observed in group S3. This observation
indicates that there is a positive correlation between Mg2+ ion release into the media and
an increase in osteogenic response.

The effect of Mg2+ ions on bone growth and bone formation was recently investi-
gated [56]. The studies of the role of Mg2+ ions in accelerating bone formation have showed
that the ions not only enhance bone adhesion and bone healing but also aid in the regulation
and acceleration formation of bone marrow cells through the enhancement of BMP-receptor
recognition, Smad signaling pathways, and/or the upregulation of neuronal calcitonin
gene-related polypeptide (CGRP) [57,58]. The stimulation of bone formation by Mg2+ ions
has been widely reported including ours, primarily through enhancing the activity of
osteoblast, including adhesion/attachment, growth, and differentiation of these cells [30].
Mg2+ ions are actively involved in the process minerals formation to control bone forma-
tion and resorption [23]. Accordingly, the hypothesis that the S3 samples would increase
MC3T3-E1 proliferation and differentiation compared with S0 samples, is accepted. Finally,
it appears that coatings of both plain PU and PU doped with metallic Mg particles in a
thin film deposited on a Ti implant are safe and effective in an in vitro cell culture model.
Using a HAp/Mg/PU film coating on the Ti implants also further increased the level of
osteoblast cell proliferation and differentiation, benefiting from the synergistic effects of
both Mg and HAp. We have planned future work to investigate the microenvironment
of the coated implants more comprehensively, and furthermore plan to conduct in vivo
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studies where we evaluate the coating durability, and the osteogenesis, osteoinduction,
and osseointegration of these implants.

4. Conclusions

In this study, alkali-treated Ti substrates were coated with thin films of PU, PU with
Mg particles, and PU with Mg and hydroxyapatite (HAp) particles using a dip-coating
technology. The coatings were stable and did not delaminate from the implant surfaces.
The use of dip-coating technology allowed us to create novel composites, introducing
biologically compatible metal particles (Mg) and HAp onto alkali-treated Ti in a short
time using a facile process. The morphology of the modified Ti surface interacted very
favorably with the HAp NPs, increasing the adhesive strength between the substrate and
the coating. Additionally, the surface charge (wettability) of the HAp NPs appeared to
improve the interfacial strength by interacting with the sodium titanate gel layer formed
on the treated Ti substrates. The HAp/Mg/PU group achieved the most positive effects in
terms of enhancing preosteoblast adhesion, proliferation, and differentiation, which can
be attributed to the bioactivity and biocompatibility of both the HAp particles and Mg2+

ions released from the metal particles. Overall, our results suggest that HAp/Mg/PU
coated alkali-treated Ti is highly suitable as a biodegradable and bioactive orthopedic
implant material.
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