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ABSTRACT Understanding how the human microbiome affects human health has
consequences for treating disease and minimizing unwanted side effects in clinical
research. Here, we present MetaMed (http://metamed.rwebox.com/index), a novel and
integrative system-wide correlation mapping system to link bacterial functions and
medicine therapeutics, providing novel hypotheses for deep investigation of microbe
therapeutic effects on human health. Furthermore, comprehensive relationships be-
tween microbes living in the environment and drugs were discovered, providing a rich
source for discovering microbiota metabolites with great potential for pharmaceutical
applications.
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The importance of human microbiota in therapeutic outcomes is well recognized.
Deciphering the effects of microbes on human health has become a challenging

issue in clinical research (1). Microbes affect the human body through various pathways,
such as by modulating host metabolism and immunity through the production of
metabolites and the release of bioactive components, thereby influencing health status
and disease occurrence and/or progression (1). Although the exact mechanism under-
lying such microbiota-host interactions is complex and remains largely underexplored
(2), linking microbe metabolites to existing drugs or small molecules by taking advan-
tage of the available annotation information on existing medicines will provide useful
guidance and novel hypotheses to decipher the effect of microbes on human health (3).

To this end, we introduced MetaMed (Metagenomics Medicine mapping system), a
novel and integrative system-wide correlation mapping system to link bacterial func-
tions and medicine therapeutics. In this system, a well-defined similarity score between
microbial metabolite entities and medicine entities is applied to link microbial functions
and existing medicine therapeutics. We provide comprehensive and solid evidence that
such a straightforward linking strategy can help to achieve accurate predictions of
microbial effects on the human body. Furthermore, such predictions also help to derive
hypotheses which will facilitate the discovery of microbiota metabolites with great
potential for pharmaceutical applications.

DEVELOPMENT OF MetaMed

If microbial metabolites and medicine molecules share similar structures and per-
turbation transcriptional profiles, they will likely have similar functions in the human
body. In our study, we first collected 1,157 microbe biosynthetic gene clusters (BGCs)
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as well as their metabolites from MIBiG (4) and 8,226 drugs from DrugBank (5). It should
be noted that MIBiG provides comprehensive annotations to indicate the laboratory
conditions for metabolites produced by microbes. Other information related to the
conditions of microbes producing certain metabolites in the human body is not
available yet. Therefore, MetaMed is designed to present the potential ability for
microbes to produce certain metabolites and encourage further investigations on
them.

We then defined a similarity score by considering both the molecular structure (6)
and perturbation transcriptional expression profiles (7) to connect microbe functions
with available drug annotation information (see Text S1 in the supplemental material).
We eventually obtained a total of 1,193,324 pairs for evaluating the potential connec-
tions between metabolites and drug entities, ranked by our well-defined similarity
score. We leveraged KEGG pathway annotations to justify our proposed MetaMed score
schema. We defined a metabolite and a drug sharing at least one disease-related KEGG
pathway as holding a similar function, and such drug-metabolite pairs are taken as the
positive samples in the benchmark, while the other metabolite-drug pairs which do not
share any disease-related KEGG pathways are taken as the negative samples. We ranked
all predicted drug-metabolite pairs by their MetaMed similarity scores and evaluated
the prediction precision above a certain MetaMed score threshold. As a result, the
precision is 100% when the MetaMed score is above 0.9 (32/32). The precision is 83%
when the MetaMed score is over 0.8 (45/54) and 48% when it is over 0.7 (95/199). The
precision drops to 34% when the MetaMed score is over 0.6 (41/735). These data
indicate that a higher MetaMed score represents a higher possibility to achieve reliable
metabolite-drug pair prediction results with similar drug-related functions as indicated
by the KEGG pathway annotations (see Fig. 2a). Taken together, our MetaMed similarity
score can effectively distinguish high-potential metabolite-drug linkages from negative
ones, which can be applied to identify metabolites with potential therapeutic effects
effectively.

We further correlated the microbe functions with related drug effects by integrating
various existing annotation information from MIBiG, LINCS, DrugBank, SIDER, etc. (8, 9)
(Fig. 1; Text S1), resulting in a systematic mapping system, MetaMed, including the
following links: microbe-drug, microbe-treatment indications, microbe-side effects, and
microbe-immune status transition.

NOVEL FINDINGS AND HYPOTHESES PROVIDED BY MetaMed
Actinobacteria and Ascomycota are two phyla of microbes with metabolites

enriched with potential therapeutic effect on human health. To examine the global
landscape of the entity relationships in MetaMed, we first applied the similarity score as
a filter and organized the sets of drugs and microbial metabolites with a score cutoff
of 0.6 by applying our developed biclustering algorithm (QUBIC for qualitative biclus-
tering algorithm) (10) (Fig. 2b). QUBIC helps to clearly decipher the underlying pattern
of microbe-drug relationships simultaneously from two perspectives. We found that
microbes with similar phylum classes clustered together and correlated with certain
drug categories with similar therapeutic effects. It is clear that the phylum Actinobac-
teria is enriched to be a microbe cluster with certain therapeutic indications (Fig. 2b).
These clustered microbes with similar functional metabolites provide the most impor-
tant resources of lead compound discovery. In addition, an overview of all the predicted
connections above a similarity threshold (similarity score �0.6, Fig. 2c) is presented to
cluster these drugs and microbes by therapeutic class and microbe phylum. In total,
there were nine microbe categories at the phylum level (Fig. 2c). Our analysis revealed
that microbes in Actinobacteria produce molecules with functions similar to anti-
infective, antineoplastic, and immunomodulating drugs. This finding is consistent with
previous studies (11) reporting that Actinobacteria are efficient producers of new
secondary metabolites that exhibit a wide range of biologic activities, including anti-
bacterial, antifungal, anticancer, antitumor, and anti-inflammatory activities. In addition,
our analysis provided new clues for discovering potential bacterial lead producers with
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other therapeutic functions; e.g., microbes in Ascomycota and their enriched metabo-
lites are potential sources with functions similar to those of cardiovascular system,
anti-infective, antineoplastic, and immunomodulating drugs. We further defined the
microbe hubs based on interactions with the greatest number of drug types, which
were hypothesized to have the largest effects in humans. On the other hand, microbe
islands were defined on the basis of interacting with the lowest number of drugs
(Fig. 2d; Table S1).

Certain microbes generate secondary metabolites as potential resources for
new drug discovery. Based on the similarity cutoff of 0.9 for metabolite-drug pairs,
MetaMed obtains 156 meaningful microbe-drug linkages (Table 1; Table S2). Among
them, the similarity scores of 60 microbe-drug pairs were 1.0 (38.5%, 60/156), indicating
that those drugs were originally isolated from these microbes or that these microbes
can generate secondary metabolites that are exactly the same as the drugs. Of the 60
microbes, 41 (68.3%, 41/60) are already annotated to produce the corresponding drugs
in DrugBank, while the remaining 17 (28.3%, 17/60) are novel identifications annotated
to produce the corresponding drugs by MetaMed. For another 96 microbe-drug pairs,
their similarity score was lower than 1.0 while still maintaining similarity over 0.9.
Sixty-six of these microbes (68.8%, 66/96) are reported in the literature to have similar
therapeutic indications as those of the corresponding drugs (Fig. 3a, Table 1, and
Table S2). Our analysis reveals that these microbes can generate secondary metabolites
that are similar to the corresponding drugs. We recommend that users focus on such
pairs, since they are potential sources for new drug discovery.

MetaMed identifies microbes with disease treatment effects. Based on the 156
microbe-drug pairs identified, MetaMed directly predicts 117 microbes with disease

FIG 1 General pipeline for mapping microbe-medicine correlations. (a) Schematic overview of the data integration and processing steps.
(b) Schematic depiction of the matching algorithm and score distribution. Through the similarity score calculated by the compound’s
structure and gene expression profiles, a total of 1,193,324 microbe-drug pairs are presented in MetaMed. (c) A cartoon summary of the
methods and integrated databases in MetaMed.
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treatment effects (Table 1; Table S3) by leveraging the drug annotation information
(Fig. 1 and Text S1). Among them, 113 microbes exist in the environment, and they
cannot survive in the gut. Their metabolites, however, can be ingested as compound
treatments for the corresponding diseases. For certain microbial metabolites which are
not available for ingestion, future studies are needed to determine their ingestion
mechanisms. Among these 113 microbes, metabolites from 29 (25.7%, 29/113) are
already annotated with their disease treatment effects in DrugBank as these metabo-
lites are identical to the drugs. Another group of metabolites derived from 71 microbes

FIG 2 Global landscape of the entity relationships in MetaMed. (a) Precision-score curve for MetaMed predictions. The precision-score plot shows the precision
above a certain MetaMed score justified by KEGG annotations. The x axis corresponds to 1 � MetaMed score. The y axis corresponds to the precision of
metabolite-drug pair predictions above a certain score. (b) Biclustering results of the microbes and drugs predicted by the similarity score (cutoff � 0.6).
Microbes are labeled by phylum, and single-letter codes for each drug follow the anatomic therapeutic classification system. Therapeutic classes include the
following: H, systemic hormonal preparations, excluding sex hormones and insulins; V, various; B, blood and blood-forming organs; P, antiparasitic products;
M, musculoskeletal system; L, antineoplastic and immunomodulating agents; G, genitourinary system and sex hormones; R, respiratory system; A, alimentary
tract and metabolism; D, dermatologicals; J, anti-infectives for systemic use; S, sensory organs; N, nervous system; C, cardiovascular system. (c) Circular layout
of the predicted connections between microbes and drugs (all connections with a similarity score of �0.6). Line widths correspond to the number of
interactions. The diagram is organized by sorting the microbes clockwise (drugs counterclockwise) in order of decreasing number of connections. Single-letter
codes for each drug follow the anatomic therapeutic classification system. (d) Subnetwork showing the microbe hubs and islands (rectangular nodes in the
center and periphery, respectively) and their predicted interactions with drug subsets (circles). Each rectangular node represents a single microbe in the phylum
(e.g., the upper center node labeled as Actinobacteria actually represents the microbe Streptomyces lusitanus, and the lower center node labeled as Ascomycota
actually represents the microbe Aspergillus fumigatus).
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(62.8%, 71/113) was also validated for disease treatment by literature-based evidence
(Table 1; Table S3). In total, there is evidence to support that the secondary metabolites
of 100 microbes (88.5%, 100/113) can be used to treat corresponding diseases.
MetaMed predicts that another two endogenous microbes, i.e., Bacillus coagulans and
Escherichia coli, which exist in the human gut, can treat irritable bowel syndrome (IBS)
with a high score of 0.92 and 1.0, respectively. These predictions were validated by two
clinical studies (12, 13). One study treated 44 IBS patients with either B. coagulans
(n � 22) or placebo (n � 22) (12). Significant alleviation (P � 0.01) in IBS symptoms, like
abdominal pain and bloating, was achieved in IBS patients compared with control
patients (Fig. 3b and c). Another clinical study revealed therapeutic effects of E. coli on
IBS, especially in patients with altered enteric microflora (13).

MetaMed identifies microbes with side effects. Based on these 156 identified
microbe-drug pairs, MetaMed predicts 18 microbes with side effects (Fig. 1, Text S1, and
Table S4). These microbes generally exist in the environment, and their secondary
metabolites may have side effects in humans. Among these 18 microbes, metabolites
from 5 microbes are already annotated with their side effects in SIDER (8) as these
metabolites are identical to the drugs. Another group of metabolites derived from two
microbes that are similar to drugs was also validated with potential side effects based
on published evidence. MetaMed predicts that Streptomyces toxytricini produces the
same side effects of oily stools, diarrhea, and dyspepsia. These predictions were
successfully validated in a recent study (14) in which the clinical drug usage of lipstatin
from S. toxytricini caused unpleasant side effects like oily stools, diarrhea, and dyspep-
sia. MetaMed also predicts that Streptomyces lividus has side effects on hearing, such as
hearing impairment, high-frequency deafness, tinnitus, and total deafness. Interest-
ingly, another study (15) also reported that lividomycin from S. lividus has side effects
on the inner ear and that care must be taken to prevent ototoxicity. The potential
mechanism of the side effects of these bacteria is that the secondary metabolites of
these two microbes are similar to drugs with similar side effects.

TABLE 1 Summary of selected connections between microbes and drugs

MetaMed prediction

Score � 1.0 0.9 < score < 1.0 Total

Predicted
DrugBank
validated Predicted

Literature
validated Predicted Validated

No. of microbe-drug
linkages

60 41 96 66 156 107

No. of microbes with
disease treatment effects

45 29 72 71 117 100

FIG 3 Validation of the MetaMed prediction results. (a) Most of the microbe-drug pairs can be validated by DrugBank or published literature. The first bar
indicates that 60 pairs have a similarity of 1.0. The second bar indicates that 96 pairs have a similarity of �1.0. (b) Validation results of the effect of B. coagulans
on IBS. The x axis corresponds to treatment weeks. The y axis corresponds to the mean abdominal pain scores and mean bloating scores. (c) Validation results
of the effect of B. coagulans on IBS. The x axis corresponds to treatment weeks. The y axis corresponds to the mean bloating scores.

Opinion/Hypothesis

September/October 2019 Volume 4 Issue 5 e00413-19 msystems.asm.org 5

https://msystems.asm.org


MetaMed predicts microbes with effects on immune transition. MetaMed also
predicts 82 microbes with effects on immune transition in human health (Table S5)
leveraging recently published information on the drug-immune transition (9) (Fig. 1
and Text S1). Among them, 81 microbes exist in the environment, and they cannot
survive in the human gut. The metabolites of these 81 microbes, however, can be taken
as compounds with potential effects on the corresponding immune transition. Metab-
olites from 35 microbes (43.2%, 35/81) are already annotated with their impact on
immune transitions (9) as these metabolites are identical to the drugs. For the only
endogenous microbe identified by MetaMed, i.e., Bacillus coagulans, which exists in the
human gut, MetaMed predicts that the microbe can increase CD4� T cells in the spleen.
Interestingly, one recent clinical study (16) demonstrated that administering B. coagu-
lans significantly (P � 0.001) increases the population of CD4� Foxp3� T cells in the
spleen.

Linking endogenous microbe alteration information with drug therapeutics
serves as a potential strategy for drug combination prediction. Alterations of
endogenous microbes also affect disease treatment, and we further pointed out that
linking endogenous microbe alteration information with drug therapeutics is a poten-
tial method for predicting the appropriate combination drugs for treating disease. We
demonstrated this hypothesis by the following two cases. (i) Recently, two studies
reported the involvement of gut microbes in regulating the efficacy of anti-CTLA-4 and
anti-PDL1 cancer therapy (17, 18). The outgrowth of Bacteroides fragilis was associated
with the efficacy of CTLA-4 blockade in the treatment of melanoma patients with
ipilimumab (17). Although this is a correlation study, it is reasonable to speculate that
the metabolites of B. fragilis help to improve the treatment efficacy of CTLA-4 blockade
with ipilimumab. In our study, MetaMed found that glucosamine 1-phosphate
(score � 0.73, ranking first among all B. fragilis metabolites) and sodium stibogluconate
(score � 0.70, ranking second among all B. fragilis metabolites) have high similarity
scores with B. fragilis metabolites. Interestingly, some studies report that sodium
stibogluconate can be used to augment the blockade of CTLA-4 by ipilimumab (19).
The potential immunotherapy effect of glucosamine 1-phosphate awaits further vali-
dation, although its potential immunosuppressive effects and anticancer activity were
reported elsewhere (20, 21). (ii) We also analyzed the differentially expressed microbes
in human disease from metagenome-wide association study (MWAS) data (22, 23).
Enterobacteriaceae was the only bacterial family exhibiting highly increased expression
in two similarly sized subgroups of women who had type 2 diabetes (T2D) with (n � 20)
or without (n � 33) metformin treatment (Fig. 4a), and Escherichia coli was the most
abundant genus in this case (Fig. 4b). In MetaMed, E. coli was identified to be correlated
with T2D treatment effects, which is consistent with the MWAS result. MetaMed further
identified that linaclotide is the drug most similar to E. coli metabolites (score � 1.00).
We speculate that this drug could be a potential drug combination candidate for
treating T2D, although no reports have been published to date. We investigated the
next most similar drug, i.e., lixisenatide, which is similar to E. coli metabolites with a
similarity score of 0.68. Surprisingly, this drug is reported to reduce blood glucose levels
in patients with T2D (24) and is administered with metformin to improve treatment for
T2D (25). In summary, this evidence, although limited, indicates that information linking
clinical treatment-induced changes in endogenous microbes with drug annotation by
MetaMed is a promising method for predicting combination drug effects.

CONCLUSIONS

It should be noted that MetaMed utilized metabolites produced by microbial BGCs
from MIBiG as the data source, which may lead to the exclusion of certain known drugs
produced by microbes without BGC information and the experimental annotations of
the corresponding microbe metabolites. For all 93 drugs reported to be produced by
microbes in DrugBank, MetaMed identified 41 among them. Despite the limited anno-
tations of MIBiG for BGCs, the MIBiG database provides comprehensive experimental
annotations on how microbial BGCs produce certain metabolites under certain condi-
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tions, which is the primary concern of our study here. A microbe may have the genomic
ability to produce a drug, but it happens only under certain treatment or laboratory
conditions. Since the MIBiG database presents comprehensive annotations of the
laboratory conditions for metabolites produced by certain microbes curated from
published literature, it was selected as our data source. Other databases (26, 27) collect
many more microbes however lack such annotations. Therefore, we believe that
MetaMed, which is built based on the experimental validated annotations of microbe
metabolites collected from the MIBiG database, can provide a valuable and reliable
resource to the whole community.

To facilitate a comprehensive exploration of the systematic mapping of the micro-
biota functions with medicine annotations, we built the web system MetaMed V1.1
(http://metamed.rwebox.com/index) to allow users to browse various microbe func-
tions and medicine annotation linkage information, as well as to calculate such linkages
directly from personalized metagenomics sequencing data (Metapipe, https://github
.com/adamtongji/metapipe). Novel findings and hypotheses can be obtained by anal-
ysis of such linkages, while future directions will be explored to investigate the
causation between them by experimental study (28). In summary, MetaMed provides
the first attempt to link microbiota functions with medicine therapeutics, providing
novel perspectives and hypotheses for deep investigation of microbe therapeutic
effects on human health. The aim of our study is to present a novel computational
strategy to decipher microbe effects on human health, and we validated the identified
relationships with only known literature evidences. We encourage to perform future
experimental validation and investigations on these derived hypotheses or predicted
results. Such knowledge will undoubtedly foster the successful application of nutri-
tional microbiota-based therapeutics, enabling optimization of the efficacy of
microbiota-interacting drugs in humans and facilitating the discovery of microbiota
metabolites with great potential for pharmaceutical applications.

Availability of data. The data for correlation between microbes and drug, microbial
information, and drug annotation are available at http://metamed.rwebox.com/index.
The code for calculating such linkages between microbes and drug directly from
personalized metagenomics sequencing data is available at https://github.com/
adamtongji/metapipe.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/

mSystems.00413-19.

FIG 4 Validation of the MetaMed prediction of E. coli treating human T2D by MWAS. (a) E. coli at the genus level was significantly increased
in the metformin group. The x axis corresponds to different microbes in the family, and “other” means that they cannot be identified at
the family level. The y axis corresponds to the metagenomic read count. The P value of Enterobacteriaceae between read counts by taking
the metformin group (red box plots) and read counts by taking the placebo group (blue box plots) is labeled at the top of the two box
plots. (b) Most of the microbes in Enterobacteriaceae are E. coli. “Other” means the abundance is lower than 0.1%.
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TEXT S1, PDF file, 0.2 MB.
TABLE S1, XLSX file, 0.01 MB.
TABLE S2, XLSX file, 0.02 MB.
TABLE S3, XLSX file, 0.03 MB.
TABLE S4, XLSX file, 0.1 MB.
TABLE S5, XLSX file, 0.1 MB.
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