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Abstract
Simultaneous EEG-fMRI allows multiparametric characterisation of brain function, in principle

enabling a more complete understanding of brain responses; unfortunately the hostile MRI envi-

ronment severely reduces EEG data quality. Simply eliminating data segments containing gross

motion artefacts [MAs] (generated by movement of the EEG system and head in the MRI scan-

ner’s static magnetic field) was previously believed sufficient. However recently the importance

of removal of all MAs has been highlighted and new methods developed. A systematic compari-

son of the ability to remove MAs and retain underlying neuronal activity using different

methods of MA detection and post-processing algorithms is needed to guide the neuroscience

community. Using a head phantom, we recorded MAs while simultaneously monitoring the

motion using three different approaches: Reference Layer Artefact Subtraction (RLAS), Moiré

Phase Tracker (MPT) markers and Wire Loop Motion Sensors (WLMS). These EEG recordings

were combined with EEG responses to simple visual tasks acquired on a subject outside the MRI

environment. MAs were then corrected using the motion information collected with each of the

methods combined with different analysis pipelines. All tested methods retained the neuronal signal.

However, often the MA was not removed sufficiently to allow accurate detection of the underlying

neuronal signal. We show that the MA is best corrected using the RLAS combined with post-

processing using a multichannel, recursive least squares (M-RLS) algorithm. This method needs to be

developed further to enable practical utility; thus, WLMS combined with M-RLS currently provides

the best compromise between EEG data quality and practicalities of motion detection.
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1 | INTRODUCTION

Simultaneous EEG-fMRI is a multimodal technique that has been

widely exploited in the investigation of brain function. The combina-

tion of these modalities in simultaneous EEG-fMRI recordings has

shown great utility in the investigation of unpredictable brain

responses. Simultaneous EEG-fMRI has primarily been used to relate

electrophysiological and haemodynamic measures of brain activity

made during spontaneous changes in brain state (i) at rest

(e.g., Goldman, Stern, Engel, & Cohen, 2002; Laufs et al., 2003),

(ii) during sleep (e.g., Horovitz et al., 2008; Wilson et al., 2015) or

(iii) due to pathology, such as epilepsy (e.g., Salek-Haddadi, Mersch-

hemke, Lemieux, & Fish, 2002; Pittau, Dubeau, & Gotman, 2012; Mas-

terton, Jackson, & Abbott, 2013); or in single-trial responses to

sensory, motor or cognitive tasks (e.g., Debener et al., 2005; Eichele

et al., 2005; Ritter, Moosmann, & Villringer, 2009; Mayhew, Dirckx,

Niazy, Iannetti, & Wise, 2010; Mayhew, Ostwald, Porcaro & Bagshaw,

2013; Mullinger, Mayhew, Bagshaw, Bowtell, & Francis, 2014; Sada-

ghiani et al., 2010). This has provided new insight into the origin of

neural oscillations (e.g., Goldman et al., 2002; Laufs et al., 2003;
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Scheeringa, Koopmans, van Mourik, Jensen, & Norris, 2016), the origin

of haemodynamic responses and the role of neurovascular coupling

(e.g., Mayhew et al., 2013; Mullinger, Mayhew, Bagshaw, Bowtell, &

Francis, 2013; Mullinger, Cherukara, Buxton, Francis, & Mayhew,

2017). In addition it has been shown that simultaneous EEG-fMRI can

provide greater specificity regarding the temporal sequence (Eichele

et al., 2005; Mayhew, Li, & Kourtzi, 2012) of activity in responsive

brain areas, compared with that provided by standard analysis of

single-modality neuroimaging data.

The benefits of simultaneous EEG-fMRI are therefore clear, but

technical challenges still hamper its use. These challenges primarily

relate to the EEG data quality, which is severely affected by the hos-

tile electromagnetic environment inside an MRI scanner. There are

three main artefacts which are induced in the EEG data: (1) the gradi-

ent artefact (GA), caused by the switching of magnetic field gradients

that are required in MRI (Yan, Mullinger, Brookes, & Bowtell, 2009);

(2) the pulse artefact (PA), related to the cardiac cycle and related pul-

satile blood flow, thought to be induced by head motion and blood

movement in the large static magnetic field of the MRI scanner (Yan,

Mullinger, Geirsdottir, & Bowtell, 2010); (3) motion artefact

(MA) caused by voluntary or involuntary head motion which results in

the movement of the conductive paths of the EEG system and head in

the static magnetic field (Jansen et al., 2012). In addition to these

effects other sources such as the helium pumps, ventilation, and lights

can add additional noise into the EEG data acquired in the MRI envi-

ronment (Mullinger, Brookes, Stevenson, Morgan, & Bowtell, 2008),

but these effects can usually be overcome by switching off these

noise sources.

While considerable effort has been applied to removing the GA

and PA via reduction of the strength of the artefacts produced during

acquisition (e.g., Bonmassar et al., 2002; Chowdhury, Mullinger, &

Bowtell, 2015; Chowdhury, Mullinger, Glover, & Bowtell, 2014; Jorge,

Grouiller, Gruetter, van der Zwaag, & Figueiredo, 2015; LeVan et al.,

2013; Luo, Huang, & Glover, 2014; Maziero et al., 2016; Mullinger,

Chowdhury, & Bowtell, 2014; Mullinger, Yan, & Bowtell, 2011; Solana

et al., 2014; Steyrl, Krausz, Koschutnig, Edlinger, & Muller-Putz, 2017)

and application of post-processing methods (e.g., Abreu et al., 2016;

Acharjee, Phlypo, Wu, Calhoun, & Adali, 2015; Allen, Josephs, &

Turner, 2000; Allen, Polizzi, Krakow, Fish, & Lemieux, 1998; Bonmas-

sar et al., 2002; Brookes, Mullinger, Stevenson, Morris, & Bowtell,

2008; De Munck, van Houdt, Goncalves, van Wegen, & Ossenblok,

2013; Iannotti, Pittau, Michel, Vulliemoz, & Grouiller, 2015; Krishnas-

wamy et al., 2016; Luo, Huang, & Glover, 2014; Niazy, Beckmann, Ian-

netti, Brady, & Smith, 2005; Xia, Ruan, & Cohen, 2014), until recently,

little attention had been given to removing the MA. This is because it

was thought that the identification of gross MAs, via data inspection,

followed by removal of confounded data segments, produced EEG

data of high enough quality to use in EEG-fMRI data analysis pipelines

(Allen et al., 1998). However, recent studies have highlighted the

problems of this approach, showing that small MAs remain which can

dominate the EEG signals of interest, even when stringent post-

processing pipelines to remove MAs are employed (Fellner et al.,

2016; Jansen et al., 2012). The greatest problem is that the MA is

entirely unpredictable both temporally and in spatial topology (Fellner

et al., 2016; Jansen et al., 2012; Jorge et al., 2015; Masterton, Abbott,

Fleming, & Jackson, 2007; Maziero et al., 2016). MAs can produce

physiologically plausible patterns of EEG activity (Fellner et al., 2016)

that may be temporally correlated with BOLD responses (Fellner

et al., 2016; Jansen et al., 2012), making improved MA correction

strategies vital for the advancement of EEG-fMRI application in

neuroscience.

The problem of MA contamination in EEG data is now well

accepted and has resulted in the development of a number of differ-

ent methods for removing the MAs from EEG data through the moni-

toring of head movement. An early approach (Bonmassar et al., 2002;

Hill, Chiappa, Huanghellinger, & Jenkins, 1995) involved detecting and

correcting MAs using a piezoelectric sensor that was attached to the

head. This approach has not been widely adopted, perhaps due to the

need for a piezoelectric device which does not create MRI artefacts,

and which is not detrimentally affected by GAs. In addition the piezo-

electric sensor is sensitive to all head movements including rigid body

translations which do not necessarily generate EEG MAs.

Masterton et al. proposed an alternative method of monitoring

head motion by measuring the voltages induced in a four carbon wire

loops affixed to the EEG cap (Masterton et al., 2007). They showed

that this method worked well for smaller head movements, but failed

to remove the MAs in a subject making larger head movements of up

to 10 mm in extent. They also showed, through simulation, that they

could satisfactorily recover a 10 Hz sinusoidal signal (produced using a

signal generator) from data confounded by MAs due to real head

motion, using their wire-loop MA correction method. Van der Meer

et al. (2016) recently employed a similar carbon wire loop set-up to

show that artefacts related to the cardiac cycle and helium pumps

could be better corrected using the wire loop method than was possi-

ble using three conventional post-processing approaches. However,

this study did not consider the efficacy for correcting MAs due to

head motion. Jorge et al. (2015) adapted this method to use the leads

and electrodes on a standard EEG cap to form wire loops, making

implementation easier with a standard EEG system. They employed

the same multi-channel recursive least-squares (M-RLS) algorithm

used by Masterton et al. (2007) to fit the data from the wire loops to

the EEG channel data and correct the individual channels. This work,

however, involved exclusion of segments of data recorded during

gross movements, only assessing the efficacy of the method for

removing the PA and smaller ongoing MAs.

In contrast, the reference layer artefact subtraction (RLAS)

approach, which was introduced by Chowdhury et al. (2014), uses an

entirely separate set of electrodes that are connected to a scalp-

shaped conducting layer to capture all artefacts including the MA. The

signals measured from the electrodes on the reference layer are sub-

tracted from the signals measured at the scalp electrodes to eliminate

the artefacts (Chowdhury et al., 2014). This method has been

extended by Steyrl et al. (2017), who produced a double-layer cap in

which the electrodes used to monitor motion are connected via a

series of conductive tubes, rather than a continuous layer. Using this

system, they showed that least-mean squares adaptive filtering of the

reference layer signals to the scalp layer produced superior perfor-

mance to the simple subtraction used in the original RLAS implemen-

tation (Steyrl et al., 2017).
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Moiré Phase Tracker (MPT) markers (Maclaren et al., 2012) have

also been used to capture head motion for the purpose of EEG MA

correction (LeVan et al., 2013; Maziero et al., 2016). A camera in the

bore of the magnet tracks the motion of the marker with six degrees of

freedom and a sampling rate of approximately 80 Hz, sufficient to cap-

ture head motion. The first implementation of this approach focused

on the removal of the PA only (LeVan et al., 2013). However, subse-

quently, Maziero et al. investigated the efficacy of MPT for removing

MAs (Maziero et al., 2016). The original motion parameters, along with

their derivatives (velocities) and derivatives squared were fed into a

general linear model to correct the MAs in the EEG data. This approach

to MA correction has been tested in experiments in which head move-

ments produced up to 10 mm of translation, 6� of rotation and

50 mm/s marker velocity. The results show that a large proportion of

the MA can be removed with this technique (Maziero et al., 2016).

While all of these methods have shown success in removing the

MA, it is currently unclear which is most effective. Hermans et al. (2016)

performed a comparison of the performance of the double-layer refer-

ence device (Guger Technologies OG Graz, Austria) and the carbon wire

loops approach (Masterton et al., 2007). They found that the two

methods showed comparable performance for removal of PA and

MA. However, a direct quantitative comparison of the two methods was

difficult as data were recorded in separate sessions using different EEG

caps with different electrode designs. Comparison of the correction of

MAs is particularly challenging with this set-up, since producing identical

head motion in two sessions is impossible, even for an experienced per-

son. This is relevant because the induced MA is affected by the rate,

direction, and amplitude of movement as well as the head orientation in

the MRI scanner. Furthermore, the methods described above employ dif-

ferent algorithms for fitting the motion metrics to the EEG data. While it

has been shown that underlying neuronal signals are present after MA

correction using all methods, it is unclear whether over-fitting of the data

is occurring, especially in the cases where adaptive filtering is employed

(Jorge et al., 2015; Masterton et al., 2007; Steyrl et al., 2017). Such over-

fitting may attenuate the neuronal signals of interest. However, to our

knowledge, an evaluation of MA correction techniques using true neuro-

nal signals as the gold standard to be recovered, has not been possible in

previous studies as the actual form of the neuronal signals has been

unknown.

Here, we aim to provide a quantitative assessment of the relative

merits of the three main methods which have been proposed for MA

correction of EEG data namely, use of: wire loop motion sensors

(WLMS) (Jorge et al., 2015), the reference layer approach (RLAS)

(Chowdhury et al., 2014) or MPT markers (Maziero et al., 2016). We

aim to assess the efficacy of removal of the MA as well as the ability

of each method to retain the underlying neuronal signal using exactly

the same data in testing the three different approaches. We aim to

use this assessment to provide guidance on the relative merits of the

methods for MA correction in future studies.

2 | METHODS

All EEG data were acquired using a 32 channel BrainAmp MR ampli-

fier (Brain Products, Munich, Germany), using a 5 kHz sampling rate,

and frequency range of 0.016–250 Hz, with a 30 dB roll-off per

octave at high frequency. MA recordings were made inside a 3 T

Achieva MRI system (Philips Medical Systems, Best, The Netherlands).

All data acquired on the human subject was done with approval of the

local ethics committee and the study was conducted in accordance

with the Helsinki Declaration. The subject gave written, informed

consent.

Data for this study were acquired in two stages: (i) the EEG MAs

and data for all accompanying motion-monitoring methods were

acquired on a head-shaped phantom in the MRI scanner; (ii) EEG

data were acquired on a human subject outside the MRI environ-

ment to provide a gold standard recording of underlying neuronal

activity.

The standard EEG signal, SR, recorded during simultaneous EEG-

fMRI, can be represented by:

SR ¼ Sneuronal + Sartefact + noise ð1Þ

where, Sneuronal is the neuronal signal of interest and Sartefact is the

artefact signals caused by the MRI environment (normally this

includes GA, PA and MA, but here Sartefact only comprises MAs). Noise

represents interference other than the GA, PA and MA, and the intrin-

sic electrical noise. The EEG data from the phantom and subject were

summed together, separately for each electrode. This provided an

EEG dataset containing neuronal signals confounded by MA, where

the underlying neuronal signals to be recovered after MA correction

were known.

2.1 | Data acquisition

2.1.1 | MA recordings

MAs were recorded on a head-shaped phantom made of 4% kappa

carrageenan in deionised water (95.5%) containing 0.5% NaCl, such

that the phantom had similar conductive properties to the human

head (Yan et al., 2009). A phantom was used to ensure that only the

Sartefact signal was recorded in the MRI environment. Hardware for all

three motion-detection and correction methods to be tested (WLMS,

RLAS and MPT) were applied to the phantom simultaneously.

A schematic of the EEG cap and associated motion tracking hard-

ware can be seen in Figure 1. In detail, EEG data were recorded using

a custom-made RLAS EEG cap with nine scalp Ag/AgCl MRI-

compatible electrodes (EasyCap GmbH, Herrsching, Germany) at

locations Fp1, Fp2, Fc5, Fc6, Cp5, Cp6, O1, Oz and O2. The refer-

ence electrode was positioned at Cz with the ground electrode at

Pz. These electrode locations were chosen to provide an even cover-

age of the head locations where MAs are likely to be largest due to

the area of the conductive loops formed by the reference electrode

lead (at Cz), the head, and the recording electrodes. Leads (starquad

cables [Van-Damme Cable]) were bundled together where they left

the EEG cap at the pole, producing a lead arrangement similar to that

used in standard EEG caps. The scalp electrodes of the RLAS system

were connected to the phantom using conductive gel and then sealed

to provide electrical isolation from the reference layer. To implement

the WLMS method: additional electrodes were attached to the sur-

face of the insulating layer, at electrode locations F5, F6, T7 and T8,

as used previously (Jorge et al., 2015). A separate reference electrode
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(to which the WLMS electrodes were re-referenced during post-

processing [see below]), was positioned just in front of the RLAS ref-

erence electrode between Fz and Cz, and connected electrically to

the scalp. Wire bridges were formed in an identical manner to that

described in Jorge et al. (2015) to connect electrodes F5, F6, T7 and

T8 to the corresponding reference electrode, thus forming four wire

loops for MA detection. All of the WLMS electrodes were then insu-

lated from the rest of the EEG set-up using Polyvinyl Chloride (PVC)

insulation tape. Conductive gel was placed into each of the RLAS ref-

erence layer electrodes and the conductive reference layer (made

from hydrogel [Katecho, Inc., IA, USA]) applied. This reference layer

covered a similar area to that of the insulating layer and extended

under the chin region. It was tightly fitted to the phantom to prevent

movement of this layer (or the WLMS) relative to the EEG electrodes.

Finally, the MPT marker was attached to the phantom via toothpicks

inserted into the forehead region of the phantom to simulate the rigid

coupling of the MPT marker to the head that is usually achieved by

mounting it on a bite-bar (Maziero et al., 2016).

The phantom was placed in the MRI scanner inside a 32-channel

head RF coil (as is typically used for EEG-fMRI recording) and all EEG

electrodes (for RLAS and WLMS systems) were connected to the EEG

amplifier via a cable bundle that ran through the length of the bore

(~1.5 m) terminating in a breakout box. The amplifier sat outside the

bore of the magnet on a table, and the cable bundle was attached to a

cantilevered beam (Chowdhury et al., 2015) to isolate it from scanner

vibrations. In separate recordings an investigator induced four types

of motion, comprising small and large nodding and shaking move-

ments, which are the gross movements most typically encountered in

standard EEG-fMRI experiments (nodding corresponding to a rotation

of the phantom about a left–right axis and shaking corresponding to a

rotation about a head-foot axis). These movements were repeated

continually in a cyclical fashion with an average frequency of

0.8 � 0.2 Hz, for the time periods shown in Table 1 while data from

the EEG scalp electrodes, the RLAS reference electrodes and the

WLMS were recorded with BrainVision Recorder (v 1.2, Brain Prod-

ucts GmbH, Gilching, Germany). The MPT marker position was

recorded using an MR compatible camera (Metria Innovation Inc., Mil-

waukee, USA) at sampling rate of approximately 80 Hz. No MRI

acquisition occurred during these recordings, and the helium pumps

were turned off (Mullinger, Castellone, & Bowtell, 2013) to minimise

other sources of noise and so to provide as far as possible recording

of pure MAs. To synchronise the data from the EEG and MPT record-

ings, a marker was output to both recording computers by the MRI

scanner at the start and end of each recording period.

Due to the complexity of the set-up in which three different

motion recording methods were recorded simultaneously, it was

important to assess the consistency of results. Therefore, two data-

sets were recorded with this set-up on two separate days, with the

equipment being removed from, and then reapplied to, the phantom

between sessions.

2.1.2 | Neuronal recordings

Additional data were recorded from a human subject outside the scan-

ner to allow subsequent assessment of the effect of MA artefact cor-

rection on a “gold standard” neuronal signal (Sneuronal, Equation 1).

Data were collected using a standard 32-channel MR-compatible

BrainCap (EasyCap GmbH, Herrsching, Germany). This EEG cap con-

tained electrodes of identical composition (i.e., Ag/AgCl MRI-

compatible ring electrodes) to those in the RLAS cap. 31 of the elec-

trodes followed the extended 10–20 system, with a reference elec-

trode positioned between Fz and Cz, while an additional channel for

electrooculography was connected to an electrode placed under the

left eye.

To allow the ability to recover both oscillatory and evoked

(event related potentials [ERPs]) neuronal responses to be tested,

data were acquired on a single subject using two different paradigms.

The subject was requested to sit in a comfortable chair and relax

with a computer screen in front of them on which stimuli were

presented.

The first paradigm was designed to modulate the oscillatory alpha

rhythm (8–13 Hz). Data were acquired with the room lights off and a

fixation cross on a grey background presented on the screen. The sub-

ject was cued to open and close their eyes (alternating) when they

heard an auditory tone (1 kHz for 0.5 s) presented every 30–35 s,

along with a visual instruction on the screen. A marker was placed in

the EEG recording each time that the subject was cued to open/close

their eyes. Five cycles of eyes open/closed (EOEC) data were

acquired. This paradigm lasted approximately 6 min 20 s.

FIGURE 1 A schematic of the setup of the phantom used to record

EEG MAs and simultaneously to collect motion data with the RLAS
and WLMS systems and the MPT marker [Color figure can be viewed
at wileyonlinelibrary.com]

TABLE 1 The RMS amplitude of the translational displacements of

the MPT and recording length of each of the movement types for
each of the datasets

Dataset Motion
RMS amplitude
(mm)

Recording
length (s)

1 Small nod 1.0 37

Small shake 0.9 107

Large nod 2.6 40

Large shake 3.1 107

2 Small nod 1.9 868

Small shake 1.3 889

Large nod 7.3 871

Large shake 5.9 876
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The second paradigm was designed to generate ERPs to allow

assessment of the preservation of these signals at a single trial level,

as well as in the average. Visual evoked potentials (VEPs) were gener-

ated by a single presentation of a 2 Hz radial checkerboard (i.e., a

checkerboard presented for 0.5 s followed by contrast reversed ver-

sion for 0.5 s). A rest period (grey screen with fixation cross) of 4–6 s

(randomly jittered) was then provided before the next pair of checker-

boards were presented. The subject was instructed to fixate on the

cross presented at the centre of the screen at all times. A total of

120 blocks were presented resulting in 240 VEPs in total. A marker

was placed in the EEG file from the presentation computer at every

checkerboard stimulus presentation. This paradigm lasted approxi-

mately 13 min 40 s.

2.1.3 | Data combination

The neuronal data was processed on its own to provide a “gold stan-

dard” of expected neuronal activity for each paradigm. In addition, the

neuronal EEG data from each paradigm was added to the correspond-

ing EEG channels for each of the MA EEG datasets, for small/large

amplitude head nod/shake. This resulted in a total of four datasets

(corresponding to each motion type) for each of the two MA record-

ing sessions and the “gold standard” dataset.

2.2 | Data analysis

All processing was carried out in BrainVision Analyser 2.0 (Brain Prod-

ucts GmbH, Gilching, Germany) and MATLAB (The MathWorks Inc.,

Natick, USA). All data recorded with the EEG amplifier were down-

sampled to 500 Hz and filtered 0.02–80 Hz (8th order, zero-order

Butterworth filter) with a 50 Hz notch filter. MPT data were collected

at 81.1 � 13.4 Hz, this inconsistency in sample rate was due to limita-

tions in hardware causing random small delays to frame sampling.

However, a time stamp was provided with each frame sample, provid-

ing precise information on acquisition time and allowing the MPT data

to be resampled to a constant frequency of 80 Hz before being up-

sampled to 500 Hz to match the sample rate of the EEG data. EEG

data and MPT data were temporally aligned using the time stamp

markers inserted in the datasets at the beginning and end of data

acquisitions.

All data were visually inspected to ensure high data quality had

been recorded on each channel. As a result, Fc5 had to be excluded

from MA dataset 1, with no channels excluded for MA dataset 2. To

ensure equivalence in comparing MA correction methods, only neuro-

nal signals from electrodes [Fp1, Fp2, Fc6, Cp5, Cp6, O1, Oz and

O2]/[Fp1, Fp2, Fc5, Fc6, Cp5, Cp6, O1, Oz and O2] were combined

with MA datasets 1/2, respectively. To provide an estimate of the

magnitude of movement for each of the MA datasets the root mean

squared (RMS) displacement (estimated as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2 + y2 + z2 Þ

q
, where x, y

and z represent the change in the MPT position parameters relative to

the initial position) was calculated.

MA correction was then performed on each of the datasets that

had been generated using the following methods.

2.2.1 | RLAS

For data collected using the RLAS system (Chowdhury et al., 2014),

reference-layer EEG channels were re-referenced to the electrode

paired with the scalp reference electrode that was used as the refer-

ence for all channels during the recording. Data for each channel were

then baseline-corrected by subtraction of the mean signal across

all time.

The simplest artefact correction method then consisted of a sub-

traction of the signal from the reference layer electrode directly

overlaying each of the scalp layer electrodes, as previously imple-

mented (Chowdhury et al., 2014). Given the known discrepancy

between the MAs induced on the scalp and reference layers

(Spencer, Smith, Chowdhury, Bowtell, & Mullinger, 2018), a simple

linear fit of each reference electrode signal to the corresponding

scalp electrode signal was also performed. This fitting was performed

with a least-squares fit, which was non-adaptive over the time-

course, minimising the chance of over-fitting and consequent

removal of neuronal signals of interest. An adaptive fit was also

implemented on these data using the M-RLS algorithm, originally

applied to WLMS data by Masterton et al. (2007). The implementa-

tion of the M-RLS algorithm and specific parameters used are

described in the WLMS section, below.

2.2.2 | MPT

The MPT data were used to perform MA correction as described by

Maziero et al. (2016). Briefly, MPT data were low-pass filtered with an

11 Hz cut-off frequency, and the derivatives (velocities) and deriva-

tives squared (modelling non-linearities related to velocity) were cal-

culated. This gave a total of 18 MA measures, which were input into a

general linear model design matrix and fitted to the EEG data from

each scalp channel. After MA correction, the EEG data were filtered

0.5–40 Hz [matching the procedure used in Maziero et al. (2016)]

before further qualitative and quantitative analysis. The M-RLS fitting

algorithm was also implemented using these MPT data (without the

11 Hz low-pass filter) in conjunction with the scalp EEG data (see

WLMS section for parameter details).

2.2.3 | WLMS

The WLMS data from channels F5, F6, T7 and T8 were first re-

referenced to the reference electrode created for the WLMS

(Figure 1). The M-RLS algorithm as described and implemented by

Masterton et al. (2007) was employed using the WLMS data (filtered

0.02–80 Hz) to provide the estimates of the motion, as previously

described by Jorge et al. (2015). The algorithm was initialised with the

following parameters: adaptability factor (λ) = 1–10−8; initial filter

weights (ω(0)) = 0 and initial inverse correlation matrix (P(0))

=1 × 10−3 I (where I is the identity matrix). The filter length and

down-sampling factor were optimised by exploring a range of filter

lengths between 0 and 35 samples [in increments of 1, where 35 had

been used previously (Jorge et al., 2015; Masterton et al., 2007)] and

down-sampling factors between 1 and 15 [in increments of 1, where

2 had been used previously (Jorge et al., 2015; Masterton et al.,

2007)]. This optimisation was done using 2 min 20 s of EOEC neuro-

nal data combined with the small-amplitude, head nod MA data. These
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data were then corrected with M-RLS using each of the filter lengths

and down-sampling parameters for each channel of neuronal data.

The correlation between the original neuronal signal and the artefact

corrected signal, as well as the ratio of the root-mean square ampli-

tude of the original to corrected signal was assessed for each combi-

nation of filter length and down-sampling factor to determine the best

combination of parameters (see also “Quantitative Assessment of data

quality” section below).

The WLMS data with the M-RLS fitting algorithm performed very

well in correcting MA from the EEG data. Therefore, to explore

whether this performance was due to the WLMS data accurately cap-

turing the MA, or the M-RLS algorithm providing excellent fitting of

motion data to the EEG data, the use of the M-RLS algorithm with

other measures of motion was also evaluated. The RLAS reference

layer measures of motion artefact (9 motion signals) and subsequently

the MPT (original, derivatives and derivatives squared, giving

18 motion signals) were input into the M-RLS algorithm in place of

the WLMS measures of motion artefact, using the same parameters in

the algorithm as used for the WLMS M-RLS correction. All motion

measures when input into the M-RLS had a 0.02–80 Hz filter applied

rather than the specific filtering parameters for the different correc-

tion methods that are outlined in the sections (“RLAS” and “MPT”)

above.

2.3 | Assessing MA correction

2.3.1 | Oscillatory (EOEC) neuronal data

These data were segmented into eyes-open and eyes-closed epochs

of 28 s duration (omitting the first and last second of the trial to avoid

periods contaminated by eye movement and the auditory cue). Data

epochs were Fourier transformed and averaged over eyes-open and

closed segments separately. The difference between these averaged

power spectra (eyes-closed to eyes-open) was calculated to reveal a

peak in the alpha band of the pure neuronal data recorded on the

occipital electrodes (O1, Oz and O2). The same process was carried

out for each movement type (small/large amplitude head nod/shake)

and MA correction method to qualitatively assess the efficacy of the

correction methods at revealing the underlying neuronal activity from

the MAs.

2.3.2 | VEP neuronal data

These data were segmented into 450 ms epochs relative to the onset

of each checkerboard and baseline correction over the entire time

window applied. The mean VEP measured at each electrode was then

found and the electrode eliciting the largest VEP (P100-N150 peak-

to-peak amplitude) was chosen for further interrogation. Plots of this

mean VEP response for the original neuronal data and after correction

of each type of MA (small/large amplitude head nod/shake) with each

correction method were created, to allow visual comparison of the

average responses. In addition, the data from all the trials were plotted

in stack plots where colour indicated the voltage at each time point

and trial to allow visual assessment of single trial responses for each

correction method.

2.3.3 | Quantitative assessment of data quality

Three metrics were calculated to provide a quantitative assessment

of the relative performance of each MA correction method for each

movement type over all EEG channels. These metrics were derived

for the oscillatory (EOEC) and evoked (VEP) data, separately. They

were calculated over the entire time-courses of the paradigms

rather than only for the epochs that were used in the qualitative

analyses.

The Pearson’s correlation coefficient between each channel of

the corrected data and its corresponding “gold standard” (i.e., the

neuronal data before MA had been added) was calculated. This pro-

vided a measure of how well each method retained the shape of the

original waveform. To assess whether the amplitude of the signal had

also been retained, the ratio of the RMS calculated on the gold stan-

dard data to the RMS of MA-corrected signals was also calculated.

Finally, an estimate of the signal-to-noise ratio (SNR) was calculated

using:

SNR¼ RMS Sneuronalð Þ
RMS Scorrected−Sneuronalð Þ

� �
ð2Þ

where, Sneuronal is the gold standard neuronal signal (as used in

Equation 1) and Scorrected is the MA corrected signal (which in an ideal

case would be identical to Sneuronal but otherwise any signal is

assumed to be remaining MA, i.e., noise).

For each of these metrics the mean and standard deviation over

channels was evaluated for each of the datasets.

3 | RESULTS

3.1 | Data quality and alignment

Good temporal alignment of the MPT and EEG data (and other motion

measures) was achieved, as shown in Figure 2. The effect of the

small-amplitude head nods can be seen clearly as a MA in the EEG

scalp channels (Figure 2, black traces) as well as in the motion detec-

tion methods (RLAS: red traces; WLMS: green traces; and MPT: purple

traces). Note that the apparent temporal differences between the

MPT traces and other data, occur because the MPT data represent

measurements of displacement (translation and rotation), whereas the

EEG MA relate to the rate of change of position (i.e., velocity), (orange

traces).

The RMS of the motion for each of the datasets and movement

types is shown in Table 1. As expected, the RMS values for the small

movements were always substantially smaller than those for the large

movements. However, the amplitude of the movements varied con-

siderably between datasets, despite the experimenters visually moni-

toring the MPT marker displacement during data acquisition. This

clearly illustrates the difficulty in maintaining a similar degree of

movement across separate acquisitions, making it difficult to draw

comparisons between the efficacy of different methods, when the

movement data from different systems are not acquired

simultaneously.
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3.2 | M-RLS optimisation

The data that were used to ascertain the optimal filter length and

down-sampling factor parameters are shown in Figure 3. These plots

clearly demonstrate the effects of both parameters on the correlation

with the gold standard neuronal signal and the ratio of the RMS of the

amplitude of the corrected signal to the gold standard. Variation of

the down-sampling factor has the most significant effect on these

measures over the parameter space explored. High values of both

these metrics indicate better performance within the scale range

shown (note: if the RMS ratio exceeded 1 then this would indicate the

MA correction was removing neuronal signals, which is obviously

undesirable). There are practical benefits to limiting the filter length

since the M-RLS algorithm’s execution time scales as the square of

the filter length. We therefore chose a filter length of 15 and a down-

sampling factor of 3. These values gave the largest correlation value

(Figure 3a) and a value of the RMS ratio which was 99.0% of the

FIGURE 2 A 7 s segment of neuronal data (from the VEP paradigm) corrupted with MA from small amplitude head nods (black traces), with the

corresponding channels detecting motion using different methods: RLAS – Red channels (from the reference layer); WLMS – Green channels
(channels from the wire loops) and MPT – Purple channels (showing translations and rotations in approximately the MR scanner’s reference frame
where pitch denotes nodding action and roll denotes shaking action). The orange lines depict the variation with time of the temporal derivatives
of the MPT measurements. RLAS and WLMS data are displayed after re-referencing to their relevant reference. Note time between black vertical
lines is 1 s [Color figure can be viewed at wileyonlinelibrary.com]
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maximum value which occurred at a filter length of 32. The effect of

the adaptability factor (λ) was also considered, as this parameter could

also affect the performance of the M-RLS algorithm: when the fitting

weights change too quickly overfitting will result, while too slow

changes will leave significant residual artefact in the MA-corrected

EEG data. However, within the range considered here (1–10−4 to

1–10−12), the filter length was found to have a far greater effect on

the EEG data quality than the adaptability factor, as shown in Sup-

porting Information Figure S1. Therefore, the previously used value of

λ = 1–10−8 (Jorge et al., 2015; Masterton et al., 2007) was employed,

along with a filter length = 15 and down-sampling factor = 3, in all

subsequent analyses using M-RLS. An illustration of how the filter

weights vary across reference layer leads and change over time for

the small nod of the second dataset is shown in Supporting Informa-

tion Figure S2.

3.3 | Qualitative assessment of the oscillatory
(EOEC) data

Figure 4 shows an alpha signal increase between 8 and 13 Hz was

induced when the subject closed their eyes. This increase was easily

visible when no MAs were present in the data and provides a “gold

standard” power spectrum which can be compared with the MA cor-

rupted data after MA correction.

Figure 5 shows the effect of adding the MA to the neuronal data

without any correction (row i) and after each type of correction (rows

ii to vii). As expected the large nod (column b) and large shake (column

d) produce much greater artefacts over a broad frequency range than

the corresponding smaller movements (columns a and c). Whilst MAs

were largest for frequencies below 5 Hz, the artefacts at higher fre-

quencies still dominate the neuronal signals of interest in the alpha

band and surrounding frequency range for all movement types, mak-

ing the neuronal alpha signal impossible to identify in the raw, MA-

corrupted data (Figure 5 row i, compared with Figure 4). Figure S3

shows the residual artefacts remaining after subtraction of the neuro-

nal data shown in Figure 4 from the data in Figure 5.

The variation in the efficacy of the different correction methods

was considerable, as revealed in Figure 5 rows ii–vii. The M-RLS

fitting approach (rows iii, vi and vii) outperformed the other methods

of post-processing correction, regardless of the method used for

motion signal detection (i.e., RLAS, WLMS or MPT). The worst MA

correction was provided by the MPT marker with the alpha power sig-

nal unclear after MA correction for all movement types (rows ii and

iii). The best MA correction appears to be achieved by using the RLAS

motion measures combined with the M-RLS fitting algorithm (row vi).

With this combination, the original alpha band signal was clearly visi-

ble after MA-correction for the small-amplitude head movements and

there was evidence of its presence for the large amplitude head move-

ments, especially for the nodding motion, although considerable arte-

fact was still present. Using the WLMS data it was also possible to

recover the alpha signal for the small nod movement, but not the

other movement types (Figure 5, row vii). The second dataset, where

larger movements were generated (Table 1) produced similar results

(see, Supporting Information Figures S4 and S5).

FIGURE 3 The effect of the filter length and down-sampling factor on (a) the correlation between the gold standard (original) signal and the

corrected signal and (b) the ratio of the RMS of the original and corrected signal. These plots show the average of each metric over all EEG
channels using 2 min 20 s of neuronal data (from the VEP paradigm) with MA-data from the small-amplitude head nods added and subsequently
corrected [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 4 The difference in the average power spectra from

electrode O1 for the eyes-open and eyes-closed conditions
(generated from FFT’s of open/closed responses), measured outside
the MRI environment. Yellow shading denotes area under the
spectrum to aid visualisation. This plot provides a gold standard for
comparison with MA corrected data (see Figure 5) [Color figure can
be viewed at wileyonlinelibrary.com]
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FIGURE 5 The difference in the average power spectra from electrode O1 for eyes-open and eyes-closed conditions (generated from FFT’s of
open/closed response) where MAs have been added, row i, and subsequently corrected with different methods, rows ii to vii. MA data and
motion recordings used for this figure are from dataset 1. Note the different scales in the spectra plotted in rows i and ii compared with rows iii
to vii and Figure 4. Yellow shading denotes the area under the spectrum to aid visualisation. See Supporting Information Figure S4 for
corresponding plots for dataset 2 [Color figure can be viewed at wileyonlinelibrary.com]
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It should be noted that even with the best correction, that is

afforded by RLAS combined with M-RLS, considerable artefact is still

present in the power spectra at frequencies below 5 Hz (Figure 5 and

Supporting Information Figure S4, row vi c.f. Figure 4). In addition, the

MA correction appears to perform better in both datasets for head

nod (Figure 5 and Supporting Information Figure S4, columns a and b),

rather than head shake (Figure 5 and Supporting Information

Figure S4, columns c and d) movements.

3.4 | Qualitative assessment of the VEP data

The effect of the different MA correction methods on the average VEP

for the four different movements is shown in Figure 6. The blue line

shows the average VEP measured from electrode O1, from the record-

ing outside of the MRI environment (i.e., the “gold standard” response).

The effect on the average VEP of adding the different MAs to the gold-

standard data is shown in Figure 6, row (i). Since the MAs were not time

or phase locked to the visual stimulus presentation a considerable pro-

portion of the MA is removed through the averaging process such that,

even with no MA correction, an average VEP (averaged over 240 trials)

is clearly revealed for small amplitude head movements (columns a and

c). However, artefact is still clearly present despite the extensive averag-

ing, and this dominates for the larger movements (Figure 6 row i, col-

umns b and d). Furthermore, it is important to consider the ability to

detect the true VEP amplitude on a single trial basis as this is the type of

metric often used to inform the GLM used in fMRI analysis when per-

forming EEG-fMRI (e.g., Debener et al., 2005; Eichele et al., 2005; May-

hew, Porcaro, Ostwald, & Bagshaw, 2010). Figure 8, row i, shows that

compared with the original neuronal signal, shown in Figure 7, the single

trial VEPs cannot be recovered from the raw MA-corrupted data as the

yellow strip at approximately 100 ms and blue strip at approximately

150 ms (the P100 and N150) visible in Figure 7 cannot be seen in the

MA-corrupted data in Figure 8. Thus MA correction methods need to

be considered for recovering VEPs, as well as oscillatory responses.

Using the MPT motion data for correction removes some of the

MA (Figure 6, rows ii and iii), however, considerable residual artefact

means there is still not a good correspondence between the original

average VEP and the MPT MA-corrected data. Furthermore, it is still

not possible to see the single trial VEPs in the stack plots when using

MPT MA correction (Figure 8, rows ii and iii). In agreement with our

finding for the oscillatory responses, the best recovery of the original

neuronal signal is achieved using the RLAS motion measures with the

M-RLS fitting algorithm (Figures 6 and 8, row vi). Using this method, the

average VEP shows excellent correspondence with the original data for

all movement types, revealing only small discrepancies compared with

the original response for the larger amplitude head movements. This

finding is also borne out by the single trial responses (Figure 8). The

presence of the VEP in the average and single trial responses is relatively

clear for the larger amplitude head movements. The correction using

WLMS data with the M-RLS fitting also provide good correspondence

of the averaged VEP after MA correction for small amplitude head

movements. However, greater differences using this correction

approach are seen on the single trial data (Figure 8, row vii compared

with Figure 7). Similar findings to these were obtained for dataset 2 in

which the MAs were larger (Supporting Information Figures S4 and S5),

although larger residual MAs remained after all correction methods due

to the increased MAs incurred.

3.5 | Quantitative assessment of data

The quantitative assessment of the relative performance of the MA

correction methods is provided in Figure 9 for dataset 1 and Support-

ing Information Figure S8 for dataset 2. Topographical representations

of the different methods’ performance measures for dataset 2 are

shown in Supporting Information Figures S12–S14, along with maps

of the RMS magnitude of the recorded MA (Supporting Information

Figure S11). For all three metrics, a larger value illustrates better effi-

cacy of MA correction. The first row shows the correlation of the dif-

ferent MA corrected responses with the original “gold standard”

dataset. This clearly shows that RLAS M-RLS provides the best motion

correction for these data in terms of the correlation measure. Figure 9

indicates that this finding holds when considering all channels distrib-

uted over the head, not just the channel showing the clear occipital

response to each task, as shown in Figures 5–8. Interestingly the MPT

correction methods showed a reduction in the correlation of the cor-

rected signal with the original signal (light blue) compared with the

non-corrected MA corrupted data (dark blue) for some movement

types, particularly for the EOEC dataset. This observation held for

both MA datasets (Figure 9 and Supporting Information Figure S8)

and suggests that the MA correction using the MPT in these cases has

a negative effect on the EEG data quality.

The RMS ratios (Figure 9 and Supporting Information Figure S8,

row ii) also show that the best performance was achieved with the RLAS

M-RLS correction. Optimal performance would result in an RMS ratio of

1 which would show the amplitude of the responses from the original

data and MA corrected data were identical. The reduced RMS ratio

amplitude observed with all MA correction methods tested, shows the

RMS of the signal after correction was still larger than the original neu-

ronal signal. This finding strongly suggests that residual MA remained,

which is in agreement with the qualitative assessments described above.

In general, all MA correction methods reduced the amplitude of the

overall signal compared with no MA correction, suggesting an improve-

ment in signal quality over all electrodes was normally achieved.

The largest difference between correction approaches was seen

in the SNR metric (Figure 9 and Supporting Information Figure S8,

row iii) where the RLAS M-RLS and WLMS M-RLS methods clearly

showed large improvements compared with all other methods for all

movement types. A high degree of variability in this measure over

electrodes was seen for both datasets (Supporting Information

Figure S9) since in the frontal electrodes the neuronal signal was very

small compared with the occipital electrodes due to the nature of the

visual stimuli used.

4 | DISCUSSION

4.1 | MA correction performance

All methods performed better (i.e., the magnitude of the residual MA

was smaller) for the smaller head movements than for the larger
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movements. This is likely to be due primarily to the reduced magni-

tude of the MA induced by these smaller movements. Although, it is

also likely that the large MAs are not corrected as well by fitting pro-

cedures, such as M-RLS, because the artefact morphology changes

faster (more rapid movement through the static magnetic field) and as

a result the weights of the fitting do not adapt sufficiently quickly, as

previously discussed (Jorge et al., 2015). For these large amplitude

head movements our results show residual MA is present in the EEG

data regardless of which MA correction method employed. Therefore,

the reduced performance of the MA correction cannot be solely due

to the faster changing artefacts. Although the MA correction is not

perfect for larger MAs, by acquiring motion data, separate from the

FIGURE 6 The mean VEP measured from electrode O1, averaged over 240 trials. The mean gold standard VEP is shown by the blue line with the

red lines showing responses with addition of MAs from dataset 1 (row i) and after MA correction using each of the methods (rows ii to vii). Similar
results for the MAs from dataset 2 are shown in Supporting Information Figure S6 [Color figure can be viewed at wileyonlinelibrary.com]
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EEG data containing the neuronal activity, it should be possible to

visually inspect the motion and EEG data together to identify when

residual MAs are present, and thus to decide which data segments

must be excluded even after MA correction. Thus, such monitoring

will provide a method by which to overcome limitations faced in previ-

ous simultaneous EEG-fMRI studies where MAs were present, for

example, Jansen et al. (2012); but effected data could not be removed

due to a lack of information regarding the temporal occurrence of

the MA.

Qualitatively, data recorded from electrode O1 showed that MA

correction methods performed best for the artefact induced by a head

nod. When considering the quantitative analyses for the small ampli-

tude head movements, the movements were very similar in amplitude

for the nod and shake in dataset 1, which is borne out by the similar

metrics calculated for the two movement types before any correction

(Figure 9, dark blue bars). The correlation and RMS ratio also show

similar performance for these data when the best correction method,

RLAS M-RLS, was used. However, an increase in the SNR measure for

the nod relative to the head shake was observed, suggesting improved

MA correction for a head nod (Figure 9, row iii, orange bars). When

considering dataset 2 where the small amplitude head shake was con-

siderably smaller than the nod (RMS difference = 0.6 mm), the best

MA correction method (RLAS M-RLS) showed worse performance for

all three metrics for the shake than the nod motion (Supporting Infor-

mation Figure S8, orange bars). A similar pattern is seen for the large

movements in dataset 1 (Figure 9), but the discrepancy in the size of

head movement for the large amplitude nod and shake movements of

dataset 2 (Table 1) means that the correction of the MA for head

shake was found to be superior (Supporting Information Figure S8).

Together these results suggest a slightly improved performance in

correcting the artefact induced by a head nod than a head shake. This

movement type is likely to be the most common form of gross head

movement generating MAs in EEG-fMRI studies as it is the easiest

movement for a subject to make when the head is inside the RF head

coil. Furthermore a large component of the pulse artefact is believed

to be caused by a nodding motion (Yan et al., 2010), which may

explain the considerable success of all the tested methods at removing

the pulse artefact (Jorge et al., 2015; LeVan et al., 2013; Masterton

et al., 2007).

The difference in performance of the MA correction for a head

nod and shake is interesting as analysis of a simple model of the head

as a sphere with the EEG leads following lines of longitude suggests

that head shake should induce no MA, as the flux linked by the effec-

tive wire loops formed by the leads and head does not change (Yan

et al., 2010). Although this analysis is based on a very simplistic model,

which does not correspond to more complex wire paths in a real EEG

cap, it may suggest that a greater proportion of the MA is induced in

the leads, rather than the cap and head, for a head shake than a head

nod. If this is the case, the RLAS M-RLS system may outperform other

methods because the starquad cable used in the construction of the

cap ensures identical artefacts are induced on the reference layer

wires as those on the scalp layer wires. Related effects may explain to

some extent the relatively poor performance of the MPT marker

method: measurements of the movement of a single marker attached

to the head do not capture movements of the EEG leads that are not

fully correlated with the head movement. From our analyses thus far,

it is unclear as to whether the superior performance of the RLAS M-

RLS over the WLMS M-RLS method for MA correction (Figure 9 and

Supporting Information Figure S8) is due to: (i) the number of MA

detection channels used (9 in the case of RLAS and only 4 in the case

of WLMS); or (ii) the RLAS system better capturing the MA induced

(either through the reference layer better mimicking the scalp or due

to the starquad cable better capturing the MAs induced in the leads

linking the electrodes and amplifier) than is possible with the four

wires of the WLMS system.

To test which of these factors explained the differences

observed between methods (Figure 9 and Supporting Information

Figure S8 orange: RLAS M-RLS; yellow: WLMS M-RLS) the RLAS M-

RLS MA correction was also performed using only 4 reference chan-

nels. The RLAS channels closest to the WLMS channels were chosen

(Fc5, Fc6, Cp5 and Cp6). This additional analysis was only carried

out on dataset 2, since recordings from all of these channels were

not available in dataset 1. The results are shown in Figure 10. Cru-

cially, the reduced channel RLAS M-RLS fit regardless of number of

reference channels outperformed the WLMS method over all EEG

channels for all movement and data types and for all metrics of MA

correction performance (Figure 10). This result suggests that the

superior performance of RLAS M-RLS was not solely due to the

number of channels of the RLAS system. It appears that the geome-

try/conductance of the reference layer or the use of the starquad

cable to match the MAs induced in the wires emanating from the

scalp and reference layer electrodes also plays an important role

and warrants further development (see “Future of motion monitoring

for MA correction” section below).

Generally, the RLAS M-RLS fitting performed similarly for most

movement types when using 4 channels compared with 9 channels.

Surprisingly, for the small amplitude head nod the reduced channel

RLAS M-RLS system outperformed the full 9 channel MA correction.

On visual inspection of the corrected data it appears that this differ-

ence in performance was driven by too large a weighting given to

channels over the occipital cortex, which were relatively insensitive to

FIGURE 7 The “gold standard” neuronal VEP signals measured from

electrode O1 for each individual trial (y-axis) over the 450 ms period
following stimulus onset (x-axis). Colour illustrates the voltage
measured at each time point and in each trial, with the P100 and
N150 peaks clearly visible (yellow and blue strips, respectively) on the
vast majority of trials [Color figure can be viewed at
wileyonlinelibrary.com]
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the head nod (with a right–left topography (Yan et al., 2010)). How-

ever, these occipital channels contained some high frequency artefact

components which drove their weightings for the MA correction and

appeared to reduce the weightings of the channels used in the

reduced channel system, resulting in the difference in performance

observed. Therefore, if head nods were the only movement then a

reduced channel RLAS reference layer system may be beneficial.

However, head shakes will induce larger artefacts over frontal and

occipital electrodes (anterior–posterior MA topography) and therefore

distributing the reference layer electrodes over the scalp surface is

likely to be advantageous for overall correction of MA due to types of

movements.

FIGURE 8 The VEP signals measured from electrode O1 for each individual trial (y-axis) over the 450 ms period following stimulus onset (x-axis),

with the MAs from dataset 1 added (row i). Rows ii–vii show the VEP responses that are revealed after each of the MA correction methods has
been applied. Colour illustrates the voltage measured at each time point and in each trial. Similar results for the MAs from dataset 2 are shown in
Supporting Information Figure S7 [Color figure can be viewed at wileyonlinelibrary.com]
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4.2 | Retaining neuronal signal

When any fitting procedure is used to remove a noise source (in this

case the MA) there is always the possibility that overfitting may occur,

particularly when the underlying neuronal signal and the noise source

are correlated over the timescale that the fitting is performed. Such

overfitting would be particularly problematic in the case of

simultaneous EEG-fMRI where single trial features of the EEG

response, such as ERP amplitude (e.g., Debener et al., 2005; Eichele

et al., 2005; Mayhew, Porcaro, et al., 2010) or variability in oscillatory

power (e.g., Goldman et al., 2002; Laufs et al., 2003; Mayhew, Por-

caro, et al., 2010, 2013; Mullinger et al., 2013, 2014; Scheeringa et al.,

2016) are commonly used to inform modelling of the fMRI signals. If

FIGURE 9 Comparison over all electrodes of the relative performance of the different methods for correcting MA from EEG data, averaged over

all electrodes. Comparisons are made for the evoked (VEP), left column, and oscillatory (EOEC), right column, data. Metrics are derived for the
neuronal response data combined with the MA data from dataset 1. Results with no MA correction are shown in dark blue and compared with
each of the MA correction methods (see legend). Row (i) shows the results of the correlation analysis; row (ii) shows the results from the RMS
ratio analysis and row (iii) shows the outcome of the SNR analysis. Bars show the mean result over all electrodes on which MA data were
recorded, while error bars denote the standard deviation of these metrics over electrodes. Standard deviations of SNR are shown separately in
Supporting Information Figure S9. Similar results for MA dataset 2 are shown in Supporting Information Figure S8 [Color figure can be viewed at
wileyonlinelibrary.com]
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amplitudes are artificially reduced non-systematically (e.g., during

periods with no movement, where the lack of MA means the fitting is

biased to neuronal signals, but not during periods of subject

movement) measurement of single trial amplitudes would be inaccu-

rate, potentially leading to incorrect inferences being drawn from

EEG-fMRI studies.

FIGURE 10 Comparison over all electrodes of the relative performance of RLAS M-RLS using all available reference layer channels (9), WLMS M-

RLS and RLAS M-RLS using selected reference layer channels (4: Fc5, Fc6, Cp5 and Cp6) for correcting MA from EEG data. Comparisons are
made for the evoked (VEP), left column, and oscillatory (eyes open/closed [EOEC]), right column, neuronal response data combined with the MA
data from dataset 2. Row (i) shows the results from the correlation analysis, row (ii) the results from the RMS ratio analysis and row (iii) the
outcome of the SNR analysis. Bars show the mean result over all electrodes on which MA data were recorded, while error bars denote the
standard deviation of these metrics over electrodes. The standard deviation of the SNR was large due to the lack of neuronal signal on frontal
electrodes and is, therefore, shown in a separate plot (row iv) [Color figure can be viewed at wileyonlinelibrary.com]
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Previous studies, in which motion metrics were fitted to EEG

scalp data, have shown that neuronal signals are recoverable

(Chowdhury et al., 2014; Jorge et al., 2015; LeVan et al., 2013; Mas-

terton et al., 2007; Maziero et al., 2016; Steyrl et al., 2017). However,

the ability to obtain the true underlying signal and the accompanying

trial-by-trial variations of these responses could not be assessed in

these studies, since the precise form of the underlying neuronal sig-

nals was not known (since the neuronal and MA signals were acquired

in the same acquisition). Masterton et al. (2007), characterised the

ability to recover a simulated 10 Hz oscillatory signal and showed that

their wire loop motion detection method combined with the M-RLS

fitting was able to recover this signal. However, a pure 10 Hz oscilla-

tion only roughly approximates true neuronal activity, which contains

features over a broad frequency range as well as ERPs, both of which

can have very similar temporal profiles to short MAs. Thus, the over-

fitting of motion metrics to the MA corrupted EEG neuronal data is

conceptually likely.

Our results suggest that none of the tested MA correction

methods that exploited data fitting steps resulted in significant

removal of neuronal signals. This is reflected by the fact that the cal-

culated RMS ratio never exceeded a value of 1 (Figure 9 and Support-

ing Information Figure S8, row ii). Perfect correction of the MA would

result in an RMS ratio of 1, with a value greater than 1 meaning that

there was a reduced signal amplitude after correction compared with

the “gold standard” neuronal signal, providing strong indication of

over-fitting. An RMS ratio > 1 was not observed for either the evoked

or oscillatory responses (Figure 9 and Supporting Information

Figure S8). Although removal of neuronal signal (i.e., over-fitting)

whilst MA remained could result in the RMS ratio <1 (the RMS ratio

we observed), the qualitative analysis performed does not support this

scenario as the source of our findings. The average evoked potentials

after MA correction either closely followed the gold standard signal in

terms of amplitude of the response or were generally larger than the

gold standard signal (Figure 6 and Supporting Information Figure S6),

indicating no over-fitting of the neuronal signal. The only exception to

this is the WLMS M-RLS correction of a large amplitude head shake

data (Figure 6, row vii). However, as all other uses of M-RLS with the

different motion metrics did not result in a smaller amplitude signal,

we believe this result is unlikely an effect of overfitting, and more

likely due to residual MA causing partial cancellation of the VEP.

As discussed, the trial-by-trial variability of ERPs is often mea-

sured during simultaneous fMRI. Such variability is evident in Figure 8

and Supporting Information Figure S7 and there appears to be no sys-

tematic difference (i.e., reduction/increase) in the VEPs after MA cor-

rection compared with the gold standard responses (Figure 7). When

considering, the best MA correction method tested (RLAS M-RLS), the

difference between the MA-corrected data and the gold standard is

minimal especially for the case of the small movements (see Support-

ing Information Figure S10). The lack of any structure across trials in

the residual signal shown in Supporting Information Figure S10, indi-

cated that overfitting was not a problem in this best-case scenario

and that the remaining differences between the MA corrected data

and the gold-standard data (shown in Supporting Information

Figure S10) is residual MA and noise in the EEG data. Inspection of

the qualitative results for the oscillatory responses reveals a similar

pattern, with no obvious decreases in the alpha band responses after

MA correction (Figure 5 and Supporting Information Figure S3) com-

pared with the gold standard (Figure 4).

Therefore, from these investigations we conclude that over-fitting

of the data was not a problem for the motion metrics and fitting algo-

rithms tested here. This is somewhat surprising given the large num-

ber of weightings involved in some of the M-RLS filters, where the

number of weights is given by (2 × l + 1) × m (where l is the filter

length and m is the number of motion channels). In the case of the

RLAS M-RLS filter this amounts to a total of 248 weightings (for

8 channel system) applied at each time point of the dataset. A filter

length of 15 and down-sampling factor of 3, as used here, results in

filter length of 0.186 s ([({2 × l} + 1) × dsf/f], where dsf = down-

sampling factor, and f = sampling frequency of EEG data) which is iter-

atively applied to each sample point of the EEG dataset. Such a filter

might be expected to result in overfitting due to its short duration. In

addition, the adaptability factor could also result in overfitting if the

weights are allowed to change too rapidly and therefore care must be

taken in choosing this and how it interacts with the filter length

(Supporting Information Figure S1). While no over-fitting was

observed here, this does not guarantee that over-fitting will not occur

if different parameters are used in the fitting procedure, or an increase

number of motion channels are used, see “Future of motion monitoring

for MA correction” section.

4.3 | Limitations of study

Since the purpose of this study was try and recover a known neuronal

signal related to a task, the MA and neuronal signals were entirely

recorded independently. However, in true EEG-fMRI data it is possible

that some neuronal signals may be time-locked to the MAs, especially

neuronal signals that are related to the planning and execution of

movement (Jansen et al., 2012). Here, we did not assess the ability of

the different motion correction methods to recover neuronal signals

related to motion in the presence of correlated MAs. This issue might

be addressed in future work by analysing signals produced by record-

ing such neuronal signals outside the scanner and then overlaying

temporally correlated MAs recorded from a phantom. In general how-

ever, unless the investigation of neuronal activity due to movement is

the goal of a study, it may not be a problem if such movement-related

neuronal activity is removed during any MA correction procedure.

It is well known that head movement also produces changes in

the magnitudes and morphology of GA due to changes in head posi-

tion with respect to the applied gradients (Yan et al., 2009; Mullinger

et al., 2011) and GA correction methods have been shown to be appli-

cable to data affected by movements of the extent considered here

(Chowdhury et al., 2014; Moosmann et al., 2009). Significant changes

in head angulation also produce changes in the form of the pulse arte-

fact (Yan et al., 2010). Since the recordings of neuronal signals used

here were made outside the scanner and no gradient waveforms were

applied while the measurements were made on the phantom inside

the scanner, we cannot assess the effect of movements on the GA

and PA. Of the methods for correcting MAs that were assessed here,

only RLAS (Chowdhury et al., 2014) is designed specifically also to

remove GA and PA, but further work is needed to assess the
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performance of the RLAS M-RLS approach (that gave the best reduc-

tion of MAs) in attenuating these other artefacts. It is likely that infor-

mation from the wire loops and MPT recordings could also be used to

inform the process of GA and PA reduction – for example, by indicat-

ing when movement is sufficient to require the generation of new

templates for average artefact subtraction – and further work in this

area is also required if the full benefits of EEG-fMRI are to be realised.

4.4 | Future of motion monitoring for MA correction

The lack of overfitting observed here may not be the case if a larger

number of motion metrics are recorded. This might be a relevant fac-

tor when a larger number of EEG reference layer channels are

included in a full RLAS system and use of the RLAS M-RLS approach

would require further investigation in such a setup. Furthermore,

given the effect of the reduction in channels when using the RLAS

system in combination with M-RLS fitting (Figure 10), the efficacy of

MA correction may not be increased by adding a larger number of ref-

erence layer channels.

Users must also consider that the optimal parameters used here

for M-RLS may not be optimal if the motion data is acquired with a

different sampling frequency or is subjected to filtering that is differ-

ent to that used here. For example, the down-sampling factor of

3, which we found to be optimal (Figure 3) is likely to produce the

best results as it effectively reduces the maximum frequency present

in the data to approximately 83 Hz (sampling rate [500]/down-

sampling factor [3] /2 [3]). However, as the motion data were also fre-

quency filtered to 80 Hz in this study, no information is lost for the

purpose of M-RLS. Therefore, the motion channels still contain all of

the low frequency MA signal, but have had the high frequency signals,

(which here were primarily white noise, but which could be gradient

artefact in true simultaneous EEG-fMRI recordings) removed.

Some consideration must also be given to the computation time

required for fitting using M-RLS to be performed. This particularly

important for studies that require real-time MA correction, for exam-

ple to provide neural feedback to the subject performing a task. The

time for the M-RLS fitting procedure increased by a factor of m3

(where m = number of motion channels), using the computer pro-

grammes implemented in this study (time dependence on m was

determined from experimentally measuring computing time for differ-

ent m values; for example, it took 100 s to process a 60 s dataset with

9 motion channels). This time factor was therefore a considerable hin-

drance for fitting the MPT data using M-RLS, where 18 motion met-

rics were used. However, it should be possible to significantly reduce

the processing time for MA correction through streamlining the imple-

mentation of the M-RLS algorithm. Two approaches which could be

combined, are the use of a lower level computing language for exam-

ple, C++ (Masterton et al., 2007) (rather than MATLAB used here) for

implementation of the algorithm and to exploit the benefits of general

purpose graphical processing units (GPGPUs) in parallelising the pro-

cessing. Such implementations were beyond the scope of this investi-

gation and require work in the future to test feasibility.

In thinking about the implementation of MA correction it is also

important to consider the experimental practicalities. The MPT-

marker approach is arguably the easiest to implement, but it appears

to perform considerably worse than the other methods for correcting

MA and therefore is unlikely to become the method of choice. WLMS

as implemented here (and in Jorge et al., 2015)) is more practical than

RLAS, or the originally proposed wire loops (Masterton et al., 2007) to

set up, as a standard EEG cap can be used with very little modification

and minimal additional hardware. While this method does require the

loss of a few EEG channels (4 in the case tested here) for monitoring

brain activity this is a relatively small proportion of the channels available

(commonly 64 for standard EEG-fMRI). At the moment therefore, given

the lack of commercial availability of a true RLAS system and the slightly

inferior performance of WLMS M-RLS compared with RLAS M-RLS,

WLMS may currently be the method of choice for recording MA to use in

MA correction. However, given the superior performance of RLAS M-RLS

a more user-friendly adaptation of this set-up should be developed. As

mentioned previously it may be the performance of the solid reference

layer which more accurately characterises the MA or it may be the pres-

ence of the starquad cable in capturing MA from the leads that is the cru-

cial aspect of the RLAS system. It is clear therefore that to provide the

best possible MA correction, further investigation is required.

5 | CONCLUSIONS

Here, we have provided a quantitative comparison of the relative

merits of different, previously proposed, methods for correcting

motion artefacts induced in EEG data during simultaneous fMRI. Head

motion is known to induce large artefacts in EEG data during simulta-

neous fMRI therefore finding the best possible method to remove the

MAs is important. We assessed the relative performance of different

MA correction methods by simultaneously acquiring motion informa-

tion with three methods [RLAS (Chowdhury et al., 2014), MPT

markers (Maziero et al., 2016) and WLMS (Jorge et al., 2015)] along

with EEG data. The EEG data were acquired on a realistic head phan-

tom such that only MAs and other (primarily white) noise were

recorded. These EEG data were combined with neuronal EEG data

acquired on a human subject outside of the MRI environment. The

MAs were then corrected using motion information collected from

each of the different methods in conjunction with number of previ-

ously described analysis pipelines (Chowdhury et al., 2014; Masterton

et al., 2007; Maziero et al., 2016; Spencer et al., 2018). We showed

that the MA was best corrected using the RLAS motion information

combined with a multichannel recursive least squares (M-RLS) fitting

algorithm. All methods retained the neuronal signal of interest, but for

several of the methods the MA was not removed sufficiently to allow

accurate detection of the underlying neuronal signal.
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