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Decades of biochemical, bioinformatic, and sequencing data are currently being systematically compiled into genome-scale
metabolic reconstructions (GEMs). Such reconstructions are knowledge-bases useful for engineering, modeling, and comparative
analysis. Here we review the fifteenGEMs of archaeal species that have been constructed to date.They represent primarilymembers
of the Euryarchaeota with three-quarters comprising representative of methanogens. Unlike other reviews on GEMs, we specially
focus on archaea. We briefly review the GEM construction process and the genealogy of the archaeal models. The major insights
gained during the construction of these models are then reviewed with specific focus on novel metabolic pathway predictions
and growth characteristics. Metabolic pathway usage is discussed in the context of the composition of each organism’s biomass
and their specific energy and growth requirements. We show how the metabolic models can be used to study the evolution
of metabolism in archaea. Conservation of particular metabolic pathways can be studied by comparing reactions using the
genes associated with their enzymes. This demonstrates the utility of GEMs to evolutionary studies, far beyond their original
purpose of metabolic modeling; however, much needs to be done before archaeal models are as extensively complete as those for
bacteria.

1. Introduction

Since their discovery and classification in the late 1970s and
early 1980s [1–5] archaea have garnered considerable interest,
due in part to prevailing thoughts at the time that they
lived primarily in extreme conditions, a property that results
in unique cell physiology and metabolic characteristics [6].
Although the original classification of organisms was based
on only thirteen sequences with only four representatives of
archaea [2], the proposal of the three domains of life has
been tested time and time again [6–10] and holds up well.
Archaea have now been found to reside in essentially every
terrestrial environment, and the unique natural capability of
methane production among certain archaeal groups makes
this domain of life remarkably novel.

Despite the significant progress in sequencing archaeal
genomes, a systematic understanding of the metabolism of
archaea is still lacking. This is especially true for periph-
eral metabolic pathways and mechanisms of adaptation to
extreme environments [11]. It has often been noted that
the environmental niches dominated by archaea constitute
extremely stressful or even fatal homes for their bacterial
cousins; thus, they have evolved unique coping mechanisms
and optimized their metabolisms to salvage the energy that
would otherwise be left unused in the environment. It
has been proposed that adaptation to energy stress could
be the primary factor driving the evolution of archaea
[12]. The consequence would be that they have evolved
specialized tolerance and metabolic capabilities unique to
their environments which make them relatively inflexible to
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adaptation like their bacterial counterparts. It has been
proposed that this inflexibility possibly results in tighter
phylogenetic groups that directly represent less metabolic
diversity [12]. Indeed, the evidence seems to support this
hypothesis as only 89 genera of archaea have been identified
in contrast to the over 1,400 bacterial genera. This fact
should be exploitable by systems biology researchers as it
means that information gained by one member of a taxon
can largely be extended to other related members of the
taxa.

For this reason, systematic databases of the metabolic
properties of the archaea are highly desirable; the field of
systems biology is uniquely positioned to provide useful
insight into the diversity and evolution of metabolic capabili-
ties. To date, fifteen genome-scale metabolic models (GEMs;
one of the main products of systems biology research) have
been constructed for ten archaeal species. However, these
models represent primarily members of the Euryarchaeota
with almost three-quarters representatives of methanogens.
An examination of the phylogenetic tree demonstrates a lack
of well-curated metabolic reconstructions in many of the
archaeal taxa (see Figure 1).

Despite the limited representation, much can already
be learned from the GEM “knowledge-bases”. Here, we
review the GEMs constructed to date and the knowledge
gleaned from them. We begin by briefly reviewing the
construction process for GEMs and general predictionsmade
by metabolic models. We also give a historical perspec-
tive of the construction of the archaeal GEMs. We then
review the models and specific insights gained from model
constructions, including novel metabolic enzymes/pathways.
Finally, we demonstrate the utility of these metabolic models
to the study of evolution of diversity in archaea. We do
this by computing the conservation of reactions (based on
genetic association of the enzymes) across the archaea and
visualizing the extent of conservation on a comprehensive
map of the metabolism of the methanogen Methanosarcina
acetivorans.

2. Genome-Scale Metabolic Models (GEMs)

Metabolic networks are invaluable tools for qualitatively
understanding an organism’s metabolic behavior under
given conditions and have a long history of use in biology.
Systematic construction of metabolic models which couple
metabolic networks with genetic associations, reactions
that exchange metabolites with the environment, and the
organism’s biomass composition only began to take shape in
the mid-1990s when Fleischmann et al. [46] fully sequenced
the entire genome of the bacterium Haemophilus influenzae
Rd. Through comparative genomics they showed that
68% of the known E. coli proteins had homologs in the
H. influenzae Rd genome, enabling a hypothesis of which
metabolic pathways exist inH. influenzae Rd. Since then, the
pioneering work of Thiele and Palsson [47] has established
genome-scale metabolic models (GEMs) as the standard
computational tool with which to quantitatively study the
metabolic behaviors of organisms. In 2010, a well-established

workflow was published in an article detailing the best
practices for the model construction process [47].

A GEM can best be described as a knowledge-base
containing all the biochemical information describing an
organism’smetabolic network.They are typically presented as
Systems BiologyMarkup Language (SBML) [48] files that can
be queried to obtain information about individual reactions,
metabolites, and genes coding for the enzymes that catalyze
the reactions. Software such as MATLAB COBRA Toolbox
[49, 50] or COBRApy [51] that implement Constraint-Based
Reconstruction and Analysis (COBRA) methods can then
use the information within a GEM to compute predicted
metabolic behaviors of the organism subject to specified
environmental and physiological limitations [52]. Alterna-
tively, one can create independent analysis tools that simply
use GEMs to identify product synthesis pathways [53–56],
optimize bioprocessing efficiency [57, 58], predict metabolic
engineering targets [58, 59], and elucidate more complex
phenomena such as symbiosis in microbial communities [24,
60–63].

2.1. Model Construction and Predictions. Here, we will briefly
summarize the GEM construction process and highlight the
most important characteristics of GEMs that one typically
encounters. The de facto standard GEM construction proto-
col is that published byThiele and Palsson [47] and should be
referred to for standards within the field.

The construction process is divided into four broad
stages: (1) automated construction of a draft model, (2)
manual refinement of the draft model, (3) conversion of
the model into a mathematical model, and (4) quantitative
evaluation and refinement of the model. The first stage
involves identifying all the potential reactions and pathways
that the organism harbors based on its annotated genome.
This process can be automated as it is essentially a bioinfor-
matics problem requiring the comparison of the genomewith
databases that document known genes and their associated
metabolic enzymes and pathways (e.g., KEGG [64], Uniprot
[65], and BioCyc [66]). Many tools have been designed
to facilitate this process such as the RAVEN toolbox [67],
KBASE, PathwayTools [68], and the ModelSEED [69].

The manual curation stage of draft model refinement
is the most time-consuming—arguably the most critical—
portion of the process. All the reactions and pathways
identified in the first stage are evaluated to ensure a variety
of consistencies: experimental data should support their
existence in the organism, masses and charges need to be
balanced and consistent with reaction stoichiometries, and
reaction directionalities need to be consistent with ther-
modynamic data. Missing pathways are added at this stage
along with transport reactions responsible for the organism’s
influx and efflux of metabolites from the environment. The
most crucial features that make GEMs unique and enable
subsequent quantitative predictions are also established in
this stage, specifically, the biomass objective reaction, the
growth associated ATP maintenance reaction (GAM) and
the corresponding nongrowth associated ATP maintenance
(NGAM) reaction, and the Boolean gene-protein-reaction
associations (GPRs).
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Figure 1: Diversity of archaealmodels. A visualization of the diversity of archaeal genome-scalemetabolicmodels as related by phylogeny.The
figure is adapted from Elkins et al. [27] where themaximum-likelihood tree was constructed using 33 conserved ribosomal proteins and three
largest RNA polymerase subunits. Highlighted species indicate that genome-scale metabolic models have been constructed for that organism.
Although not shown in this adapted figure, aMethanobrevibacter smithiimodel within the Euryarchaeota has also been constructed. While
numerous models have been constructed for Euryarchaeota, the Crenarchaeota are severely underrepresented.

Quantitative prediction using GEMs is typically framed
as a linear programming problem in which one feature of
the model is optimized under a given set of constraints. This
feature is typically themodel’s biomass production rate (anal-
ogous to growth rate) which is described by a single pseudo-
reaction that produces a “biomass” pseudo metabolite by

consuming all the metabolites that the organism requires
to grow (e.g., individual amino acids, carbohydrates, lipids,
nucleic acids, vitamins, cofactors, ions, and trace metals).
Ideally, this reaction is constructed using the experimentally
characterized biomass composition of the organism. How-
ever, this data is often difficult to obtain, leaving curators
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to either estimate biomass compositions from the organism’s
genome or adopt the compositions available from other
organisms.

The GAM and NGAM reactions consume ATP. The
GAM reaction reflects the ATP consumption required for
the organism to grow whereas the NGAM reaction reflects
the organism’s basal ATP consumption required to survive
but not necessarily to grow (e.g., maintaining membrane
potential and redox balance). Since both reactions reflect
the organism’s energy requirements in the model, the choice
of stoichiometric coefficients for these two reactions greatly
influences the model’s growth predictions. Ideally, the sto-
ichiometric coefficients of these two vital reactions should
be determined from a chemostat experiment in which the
growth rate is tracked alongside ATP consumption (or some
fiducialmetabolite tracingATP consumption, e.g., as in [70]).
In practice, one will find that researchers often use a variety of
estimation schemes based on the experimental data at hand.
The most common alternative method for determining ATP
requirements involves matching the growth rate and growth
yield (grams dry mass per substrate uptake or efflux) data
from batch cultures grown in different media assuming a
specific biomass composition and stoichiometricmatrix (e.g.,
as in [19]). In absence of measurements for the NGAM, it is
often assumed to be some fraction of the GAM (for example,
2.5% the GAM reaction in the 2006M. barkerimodel by Feist
et al. [19]).

The GPRs are Boolean expressions containing the genes
that code for metabolic enzymes facilitating the reactions.
By piecing the genes together in series of AND and OR
operations, a GPR encodes which genes are necessary for
an enzyme to be synthesized by the cell and therefore
which genes are required for a metabolic reaction to exist.
Predictions of gene knockout effects are commonly computed
withGEMs.Not all reactions in themodel will haveGPRs due
to either the lack of experimental gene characterizations, the
use of nonphysical “gapfill” reactions [71], or the presence of
novel uncharacterized pathways hypothesized by the curator.

Once this manual curation is complete, one can proceed
to the third stage of converting the GEM into a quantitatively
predictive model. This is done by defining the “objective”
reaction to be optimized in the model and constraining the
flux ranges on all model reactions. These flux ranges must
reflect a specific growth condition to which the organism is
subject. During model construction, most internal reaction
fluxes will likely be unbounded, due to the relatively limited
biochemical and proteomics data available for most reactions
and organisms; it is the exchange reaction fluxes that must
be constrained to reflect the nutrient availability of the
organism’s environment. Exchange reactions are nonphysical
external reactions of the model that introduce compounds
into the system, thereby simulating the organism’s growth
environment. These constraints [72] will have to be applied
through COBRA-capable software. Once these model con-
straints have been set, flux balance analysis can be run to
predict the organism’s growth rate and the distribution of
fluxes through the metabolic network. The fourth stage is
validating these predictions with experimental growth data
and discrepancies rectified with iterative manual refinement

of the model. Numerous tools [67, 69, 73–78] have been
developed over the years to automate many stages of this
arduous construction process, allowing researchers to focus
their effort on the last stage of model refinement. Dias
et al. [73] provide a comparative review of these various
computational tools.

3. Genealogy of Archaeal GEMs

The genealogy of all the published archaeal GEMs to date is
shown in Figure 2 (see Table 1 for statistics about the vari-
ous models). The current archaeal GEMs can conveniently
be divided between methanogenic and nonmethanogenic
archaeal species with the former being the most developed
due to the ecological roles that methanogens play in the
global carbon cycle and their use in wastewater treatment
[79]. Although the very first archaeal GEM was developed
for Methanococcus jannaschii by Tsoka et al. [22] in 2003,
the majority of the later methanogen GEMs were derived
from a model for Methanosarcina barkeri (iAF692) which
was first constructed by Feist et al. [19] in 2006. This
inheritance stems from the fact that iAF692 was the first
manually curated methanogen GEM thoroughly verified
against experimental growth data. M. barkeri is also one
of the most metabolically diverse methanogens in the Eur-
yarchaeota kingdom, capable of consuming acetate, methy-
lamines, methanol, CO, and CO

2
/H
2
. Two models, iVS941

[15] and iMB745 [16], were independently constructed for
M. acetivorans and published in 2011 by the Maranas and
Price research groups, respectively. M. acetivorans is equally
diverse and similar in metabolism and thus inherited much
of the M. barkeri GEM characteristics. iMB745 was then
used as the base model from which to draft the more recent
methanogen GEMs, Methanobrevibacter smithii (iMsi385)
[24] and Methanospirillum hungatei (iMhu428) [21], both
of which were qualified as preliminary reconstruction for
use in larger microbial community studies. The most recent
M. acetivorans models include iMAC868 [17] and our own
iST807, which are both independent updates to iMB745. The
GEM for M. maripaludis (iMM518) was constructed in 2014
by Goyal et al. [23, 80] independent of the other methanogen
GEMs. This is not surprising given that by this time GEMs
construction had already been well established.

Nonmethanogenic archaeal GEM construction has been
largely dominated by the work from Dieter Oesterhelt’s
research group. In 2008, they released the first manually
curated GEM for Halobacterium salinarum R-1 (iOG478)
[13]. This was followed in 2010 by a new GEM for a haloal-
kaliphile, Natronomonas pharaonis (iOG654) [25], which
inherited significantly from theH. salinarummodel.The only
other nonmethanogenic archaeal GEM to our knowledge
was independently constructed in 2012 for the Sulfolobus
solfataricus by Ulas et al. [26].

Although archaea had been established since the 1980s
as the third domain of life by the pioneering work of Carl
Woese and collaborators [3–5, 7, 10], the lack of experimental
data on metabolic characteristics of various archaeal species
explains why so few GEMs have been constructed to date.
Nevertheless, this early stage of archaeal GEMs development
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Table 1:Model Statistics.The elementary units of genome-scale metabolic models are genes, metabolites, and reactions.These models consist
of (1) a metabolic network that describes the connections between metabolites through reactions (often organized by metabolic subsystem),
(2) gene-protein-reaction rules that map the gene dependencies of reactions, and (3) connection to their environment through exchange
transport reactions.

Organism Model Genes Metabolites Reactions Transport Subsystems Citation

H. salinarum iOG490 490 557 711 111 NA [13]
iOG478 478 545 664 97 NA [14]

M. acetivorans

iVS941 941 708 705 71 60 [15]
iMB745 745 715 818 69 30 [16]
iMAC868 868 707 839 91 31 [17]
iST807 807 733 759 70 30 [18]

M. barkeri iAF692 692 558 619 88 8 [19]
iMG746 746 718 815 74 31 [20]

M. hungatei iMhu428 428 639 721 41 29 [21]
M. jannaschii iTS436 436 510 609 1 113 [22]
M. maripaludis iMM518 518 605 570 49 117 [23]
M. mazei iSS85 NA 74 85 5 NA [6]
M. smithii iMsi385 385 582 525 35 NA [24]
N. pharaonis iOG654 654 597 683 88 NA [25]
S. solfataricus iTU515 515 705 718 58 65 [26]
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Figure 2: Genealogy of archaeal models. A diagram showing the evolution/genealogy of archaeal models since the reconstruction of M.
jannaschii in 2004. Each box represents a single metabolic model and includes the species name, the name of the model, and the percentage
of protein coding genes (where available) that are incorporated in the model. The sole representative of the Crenarchaeota kingdom [28] is
highlighted in orange.
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provides a ripe opportunity for the community to grasp the
core governing properties of archaeal metabolic networks
and perhaps adopt standardized model building practices in
order to facilitate more efficient communication of metabolic
information among researchers going forward.

4. Methanogen GEMs

4.1. Methanogenesis Framework. As the most defining met-
abolic pathway within methanogens, methanogenesis has
been well characterized by numerous biochemical studies
over the years. Therefore, the most significant and notable
differences between the methanogen models will be found
in the methanogenesis pathway and supportive pathways
producing novel cofactors for different substrates. The basic
framework is shown in Figure 3 where CO

2
is reduced to

methane in a series of steps. Although this basic framework is
well conserved amongmethanogens, the key difference lies in
the exergonic-endergonic reaction couplings in the pathway.
The first step of CO

2
reduction is an endergonic reaction

that oxidizes ferredoxin and produces formylmethanofu-
ran. In simple hydrogenotrophic methanogens that lack
cytochromes, this energy is typically recovered by themethyl-
H
4
MPT:CoM methyltransferase (Mtr) reaction and the het-

erodisulfide reductase (Hdr) reaction. Mtr expels Na+ ions in
the process of transferring the methyl group onto coenzyme
M (CoM) and thus establishes the electrochemical gradient
responsible for drivingATP synthesis. Electrons are extracted
from formate or H

2
by Hdr which then uses these electrons

to split the CoM-CoB heterodisulfide and reduce ferredoxin,
thus replenishing the ferredoxin pool that is required to
run the very first step of CO

2
reduction. This oxidation of

formate or H
2
to reduce the heterodisulfide and ferredoxin

is called the electron bifurcation reaction. This is in contrast
to cytochrome-containing methanogens which are almost
exclusively found within the Methanosarcinales. In these
substrate-diverse methanogens, the Hdr enzyme evolved to
harbor a cytochrome and can utilize methanophenazine as
another electron carrier. Instead of directly reducing and
replenishing the organism’s supply of ferredoxin, Hdr expels
hydrogen ions to establish a proton-based electrochemical
gradient that is used by a membrane-bound energy conserv-
ing hydrogenase (Ech) to regenerate the reduced ferredoxin.
This system is best exemplified by the M. barkeri model
(iAF692) in which the Ech reaction was of particular interest
during model construction because the ratio of protons
translocated to electrons extracted was unknown at the time.
Using experimental growth yield data, a stoichiometry of
1 proton/2e and GAM/NGAM of 70/1.75mmol/gDWT/hr
enabled the model to predict growth yields consistent with
experimental data for growth on methanol, acetate, H

2
/CO
2
,

and pyruvate. This Ech stoichiometry was later updated in
iMG746 to 2 protons/2e−. Although very closely related toM.
barkeri,M. acetivorans has significant differences as a marine
methanogen. Within methanogenesis, it substitutes Ech with
the ferredoxin:NAD+ oxidoreductase complex (Rnf) which
interestingly translocates sodium ions instead of hydrogen
ions [81]. This establishes a primarily Na+ dominated elec-
trochemical gradient and helps explain why M. acetivorans

inhabits a marine environment [40] in contrast to freshwater
M. barkeri [82]. Since M. acetivorans is not able to consume
CO
2
, it would not be carrying out the endergonic first step of

reducing CO
2
and thus justifies the absence of an Ech.

4.2. Methanogen GEMs. The majority of methanogenic
GEMs available to date derive from the M. barkeri model
iAF692 and the M. acetivorans model iMB745. Both models
describe seven major metabolic subsystems: vitamins and
cofactor biosynthesis, amino acid metabolism, nucleotide
metabolism, central metabolism, lipid and cell wall biosyn-
thesis, and methanogensis. iMB745 inherited most of the
reactions in iAF692 but also incorporated various additional
pathways.Themost notable changes include amodification of
the methanofuran biosynthesis pathway based on homology
of enzymes to those from the same pathway in M. jan-
naschii, a modified electron transport chain reflecting the
aforementioned substitution of Rnf for Ech, and an updated
biomass reaction that incorporated new carbohydrate, lipid,
and nucleotide composition data. Although an attempt was
made to estimate the GAM purely from genomic data, the
model had to retain and optimize iAF692’s original value in
order to fit experimental growth data. The biomass reaction
was more systematically constructed in iMB745 than iAF692.
The general components of the biomass reaction (proteins,
RNA, DNA, lipids, carbohydrates, and trace components)
were taken from a typical bacterial cell instead of an average
methanogenic archaea cell, most likely due to the lack of
experimental data. This practice is quite common when
reconstructing archaeal GEMs and can have serious con-
sequences because the biomass composition has significant
influence over metabolic flux distributions throughout the
network. These computed flux distributions may be biased
by the use of bacterial biomass compositions rather than
archaeal biomass compositions (see Tables 2 and 3 for
biomass compositions from models).

iVS941 was developed and published independently from
iMB745 at the same time through homology comparisonwith
M. barkeri and an automated curation procedure published
by Suthers et al. [83]. The biomass reaction, which includes
the GAM parameter, is directly inherited from iAF692,
but the nucleotide compositions were modified to reflect
the differences in G/C content between M. barkeri and M.
acetivorans. The most recent models of the M. acetivorans
lineage are iMAC868 and our own iST807, both of which
are independently updated metabolic models. Although the
M. smithii iMsi385 and M. hungatei iMhu428 models are
indeed independent curations, we will not discuss them
here because they are directly inherited from iMB745 and
were qualified as preliminary draft models needing fur-
ther revisions. iMAC868 was constructed to incorporate an
engineered pathway that allowed for methane oxidation,
essentially enabling the model to grow on methane and thus
reversing the entire process of methanogenesis to produce
the growth substrates that M. acetivorans would normally
consume. Nevertheless, the model can still be used for simu-
lations of a wild-typeM. acetivorans and contains important
updates to iMB745. iMAC868 merged the information from
both iMB745 and iVS941 into a single model and corrected
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Figure 3: Methanogenesis pathway framework. (a)The basic structure of methanogenesis showing where the major growth substrates across
all methanogens enter the pathway. The simplest methanogens are only capable of growing on CO

2
/H
2
and/or formate while the most

complex methanogens are also capable of methylotrophic and acetotrophic growth. H
4
S/MPT stands for tetrahydrosarcinapterin (H

4
SPT)

and tetrahydromethanopterin (H
4
MPT). The former is found exclusively in Methanosarcinales whereas the latter is found in all other

methanogens. (b) The hypothesized methanogenesis pathways forM. hungatei (iMhu428) [21]. Although it cannot use acetate as an energy
source, the pathway to take up acetate is still present to shuttle it into gluconeogenesis. (c) The hypothesized methanogenesis pathway for
M. acetivorans (iST807) [29]. The conventional CO

2
reduction pathway is only run in reverse as this methanogen cannot metabolize CO

2
.

(d) The hypothesized methanogenesis pathway for M. barkeri (iAF692) [19] which bears great resemblance to that of M. acetivorans. The
major differences between the two organisms’ methanogenesis pathways lie in the electron transport chain (ETC). The specific pathways for
each methanogen follow the same topological structure as the general methanogenesis illustration. Red circles are metabolites while green
diamonds signify enzymatic reactions of the pathway.

Table 2: Cellular Molar Fractions. The composition of each Archaea’s biomass organized by major categories.

Molecule iOG490/iOG478 iVS941 iMB745/𝑖MAC868a/iST807 iAF692 iMG746 iMhu428 iMM518 iMsi385 iOG654 𝑖TU515b

Amino acids 0.894 0.869 0.889 0.858 0.852 0.889 0.662 0.904 0.908 NA
DNA 0.003 0.018 0.013 0.016 0.008 0.013 0.013 0.016 0.012 NA
RNA 0.086 0.090 0.076 0.102 0.100 0.076 0.080 0.077 0.066 NA
Lipids 0.015 0.009 0.008 0.009 0.009 0.008 0.277 0.002 0.013 NA
Carbohydrates NA 0.002 0.009 0.002 0.008 0.009 0.0004 NA NA NA
Soluble pool 0.001 0.013 0.006 0.013 0.016 0.006 0.0081 NA 0.001 NA
aThe iMAC868 model adopted the iMB745 biomass expression verbatim. bThe S. solfataricus paper does not detail the biomass components and the model
was not available to query. “Soluble pool” includes various vitamins, cofactors, and trace metals.
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Table 3: Biomass Compositions and Energy Requirements. Molar composition of each Archaea’s biomass for nuclei and amino acids.
Additionally, energy requirements for growth and persistence.

Moleculea iOG490/iOG478 iVS941 iMB745/𝑖MAC868b/iST807 iAF692 iMG746 iJH428 iMM518 iMsi385 𝑖OG654c 𝑖TU515d

dAMP 0.0025 0.0360 0.0234 0.0331 0.0327 0.0232 0.0370 0.0331 0.027 NA
dCMP 0.0049 0.0234 0.0175 0.0215 0.0212 0.0176 0.0196 0.0215 0.016 NA
dGMP 0.0025 0.0234 0.0175 0.0215 0.0212 0.0176 0.0173 0.0215 0.016 NA
dTMP 0.0051 0.0360 0.0237 0.0331 0.0327 0.0236 0.0376 0.0231 0.027 NA
AMP 0.0618 0.0012 0.143 0.1846 0.1782 0.1152 0.1795 0.2222 0.155 NA
CMP 0.131 0.1637 0.115 0.1379 0.1361 0.1008 0.1780 0.1379 0.086 NA
GMP 0.131 0.2637 0.101 0.2222 0.2193 0.1200 0.1609 0.2222 0.086 NA
UMP 0.0619 0.1767 0.120 0.1489 0.1469 0.1440 0.1877 0.1489 0.155 NA
Ala 0.345 ± 0.08 0.5621 0.388 0.5621 0.5546 0.3906 0.5853 0.5621 0.557 ± 0.005 NA
Arg 0.211 ± 0.044 0.3237 0.253 0.3237 0.3194 0.2520 0.2805 0.3237 0.378 ± 0.022 NA
Asp 0.431 ± 0.094 0.2638 0.301 0.2638 0.2603 0.3024 0.2805 0.2638 0.913 ± 0.080 NA
Asn 0.099 0.2638 0.253 0.2638 0.2603 0.2520 0.2805 0.2638 NA NA
Cys 0.033 0.1002 0.07 0.1002 0.0989 0.0693 0.0915 0.1002 0.056 NA
Glu 0.72 ± 0.22 0.288 0.450 0.2880 0.2842 0.4473 0.3170 0.288 1.074 ± 0.135 NA
Gln 0.125 0.288 0.143 0.2880 0.2842 0.1449 0.3170 0.288 NA NA
Gly 0.29 ± 0.053 0.6704 0.408 0.6704 0.6615 0.4095 0.4695 0.6704 0.561 ± 0.049 NA
His 0.133 ± 0.026 0.1037 0.094 0.1037 0.1023 0.0945 0.0976 0.25 0.104 ± 0.009 NA
Ile 0.137 ± 0.031 0.3179 0.415 0.3179 0.3137 0.4158 0.2683 0.3179 0.272 ± 0.012 NA
Leu 0.251 ± 0.052 0.493 0.534 0.4930 0.4865 0.5355 0.5182 0.493 0.471 ± 0.029 NA
Lys 0.115 ± 0.023 0.3755 0.370 0.3755 0.3705 0.3717 0.3292 0.3755 0.219 ± 0.017 NA
Met 0.05 0.1682 0.132 0.1682 0.1660 0.1323 0.1341 0.1682 0.028 ± 0.012 NA
Phe 0.111 ± 0.022 0.2027 0.251 0.2027 0.2000 0.2520 0.1829 0.2027 0.242 ± 0.018 NA
Pro 0.111 ± 0.022 0.2419 0.225 0.2419 0.2387 0.2268 0.2073 0.2419 0.358 ± 0.034 NA
Pyl NA NA NA/NA/0.0808 NA NA NA NA NA NA NA
Ser 0.22 ± 0.053 0.2361 0.390 0.2361 0.2330 0.3906 0.2683 0.2361 0.332 ± 0.016 NA
Thr 0.181 ± 0.036 0.2776 0.307 0.2776 0.2739 0.3087 0.2927 0.2776 0.415 ± 0.011 NA
Trp 0.052 0.0622 0.060 0.0622 0.0614 0.0567 0.0061 0.0622 0.076 NA
Tyr 0.048 ± 0.023 0.1509 0.210 0.1509 0.1489 0.2079 0.1585 0.1509 0.166 ± 0.028 NA
Val 0.25 ± 0.057 0.4631 0.387 0.4631 0.4570 0.3906 0.4085 0.4631 0.480 ± 0.061 NA
GAMe NA 70.0 65.0 70.0 65.0 47.0 29.8 50 30 ± 4c 24.86
NGAMf 2.0 1.75 2.5 1.75 2.0 0.6 0.4 NA 2.0c 1.9
aUnless otherwise noted the units of the biomass coefficients are in units of mmol/gDCW. bThe iMAC868 model adopted the iMB745 biomass expression
verbatim. cThe model was formulated in units of mol/OD-L. dThe S. solfataricus paper does not detail the biomass components and the model was not
available to query. eGrowthAssociatedMaintenance (GAM) has units of mmol ATP/gDCW. fNongrowth AssociatedMaintenance (NGAM) has units of mmol
ATP/gDCW/hr.

numerous charge and mass imbalances within the electron
transport chain. 64 GPRs were also updated with the most
recent M. acetivorans gene annotations. The biomass, GAM,
and NGAM requirements remained the same as those from
iMB745. In iST807, we updated iMB745 by revising the
methanofuran biosynthesis pathway with the most recent
experimental data from M. jannaschii [84–87], adding 13
new reactions and 62 new genes, and revising the biomass
reaction to utilize charged tRNAs instead of free amino acids.
Among the new additions are reactions to enable pyrroly-
sine biosynthesis during methylamine growth, methyl-3-
mercaptopropionate metabolism, and o-phosphoserine con-
version to cysteine after aminoacylation. Being able to uptake
the various media components (Wolfe medium [88]) in

which M. acetivorans is typically grown is crucial for accu-
rately simulating the organism’s metabolism. Many of the
reactions required to emulate this are eithermissing or turned
on in iMB745 and iMAC868. Cysteine is an important media
component usually added with the purpose of quenching any
oxygen in the methanogen’s growth environment, but no one
to date has verified whether this media component is also
metabolized. Since unconstraining its uptake within iMB745
caused erroneously high growth rates, the cysteine uptake
reaction was shut off and this was inherited by iMAC868
along with the variousmissingWolfemedia uptake reactions.
iST807 fluxes this by incorporating uptake reactions for all
the components of the Wolfe medium that have use in the
metabolic network, including cysteine which is constrained
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Figure 4: Growth characteristics of M. acetivorans models. The models were simulated using experimental growth substrate uptakes
of MeOH:20, Acetate:7, and CO:11.6mmol/gDCW/hr. Since experimental TMA uptake rates were not available, it was set to
6.77mmol/gDCW/hr across all the models. This value was determined by fitting iST807 to experimental growth rates on TMA. iVS941
gave unrealistically large growth yields and therefore the values were omitted from the growth yield plot for a clearer display of the other
models’ performances. iVS941 also did not predict any methane production under the given growth conditions. Experimental growth rates
are from [30–40]. Experimental growth yields are from [40–42]. Experimental CH

4
production rates are from [33, 42–44].

to a nongrowth-limiting value that maximizes the model’s
agreement with the experimental growth rates shown in
Figure 4.

From the methanogenic GEMs geneology, it is clear that
most of the methanogenic GEMs are inherited from iMB745
despite the fact that iVS941 was independently published at
the same time. This inheritance trend is most likely due to
the more complete model documentations and availability of
a readily testable GEM provided for iMB745 in contrast to
iVS941. Given that metabolic modeling for archaea is still a
developing effort, this practice of providing poorly assembled
GEM files that are ill-prepared for quantitative assessment
is still, unfortunately, common in the field. In order to
alleviate this problem, we provide in the supplementary

information (in Supplementary Material available online at
https://doi.org/10.1155/2017/9763848) of this review all the
currently available M. acetivorans models standardized to
use BIGG IDs (http://bigg.ucsd.edu/data access) and proper
compartment tags such that the models can be conveniently
handled within COBRApy. We also compare their growth
characteristics as shown in Figure 4 to give a sense of how
well these models perform with respect to each other and
experimental data. We chose to focus on these models from
this species because they are often used as templates for the
reconstruction of many other methanogens.

iVS941 predicts unrealistic growth rates, growth yields,
and no methane efflux, which indicates the model’s defi-
ciency. This growth characteristic assessment shows that,

https://doi.org/10.1155/2017/9763848
http://bigg.ucsd.edu/data_access


10 Archaea

besides proper documentation, iMB745 also demonstrates
better predictive ability over iVS941 and thus serves as a
more reliable parent model for M. acetivorans. This is also
evidenced by the predictive performances of iST807 and
iMAC868 which are updated versions of iMB745. Across
all growth substrates and growth characteristics, iMAC868
predictions showed a median deviation of 36% from exper-
imental values. In contrast, iST807 demonstrated only a
median deviation of 12% which is a marginal improvement
over the 14% median deviation of iMB745. Although these
statistics may seem to suggest that iMB745 and iST807 are
more reliable models overall, it is important to keep in
mind that growth predictions are heavily dependent on each
model’s allowed uptake reactions and their respective rates.
In this assessment, each model’s uptake reactions were set
to the defaults that were provided within their respective
publications. The uptake rate for the growth substrate being
tested was uniformly set to the experimental value across
all the models, and all other major growth substrate uptake
reactions were turned off.

5. Nonmethanogen GEMs

5.1. Halobacterium salinarum. While only four GEMs have
been developed for only three nonmethanogenic archaea,
they provided significant insight into the metabolism and
growth of the organisms. A reconstruction of the halophilic
archaeum Halobacterium salinarum R-1 capable of growing
on 15 different carbon/energy sources was developed by
the group of Dieter Oesterhelt [13]. During construction, a
novel pentose phosphate pathway (PPP) for the generation of
ribulose-5-phosphate (R5P) was predicted and later verified.
It was known that different archaea used different pathways
to produce R5P (e.g., nonoxidative PPP, reverse ribulose-
monophosphate pathway, and oxidative PPP). H. salinarum
was missing all or portions of these pathways. An alternate
pathway using the partial Entner-Doudoroff (ED) pathway
was connected to the partial oxidative branch of the PPP by a
semiphosphorylated 6-phosphogluconate.This pathway thus
described why the organism retained parts of the oxidative
PPP and part of the ED pathway even though it is incapable
of growing on sugars. During the reconstruction the authors
also noted that shikimate production was incomplete and
thus proposed that hexose and L-aspartate-4 semialdehyde
were used, consistent with 13C labeling data from trypto-
phan degradation. Additionally, draft pathways for synthesis
leucine, isoleucine, and valine could be generated in the
model.

To calibrate the model, they measured the amino acid
composition and content using experiments and found that
protein mass constitutes 49% of the dry mass, much less
than in the other archaea. Using dynamic simulations with
experimentally measured uptake rates for amino acids they
predicted internal fluxes from which they drew a number
of conclusions. Most strikingly, only 15% of amino acid
carbons ended up in biomass with the majority being used
to produce energy in the TCA cycle. They found that all
amino acids were simultaneously used, though arginine,

aspartate, leucine, and isoleucine were taken upmost quickly,
even the essential amino acids methionine, lysine, isoleucine,
leucine, and valinewhich the cells are incapable of producing.
Using flux balance analysis, they found that H. salinarum
primarily produces isoprenoid lipids using leucine (∼10%)
while isoleucine was primarily degraded entering the TCA
as acetyl-CoA and succinyl-CoA. Valine was the only amino
acid that was primarily incorporated into biomass. Because
the uptake rate of amino acid far outpaced the biomass
incorporation they hypothesized that degradation pathways
for all amino acids exist and proposed six enzymes to facilitate
some of these reactions. However, it was only later that they
determined the biosynthetic pathways for aromatic amino
acids which they shared in common with M. jannaschii;
during the discovery they used the metabolic model to
identify uptake rates in auxotrophs [89]. Most impressively,
they predicted, and later experimentally verified, that argi-
nine is interconverted to ornithine during its degradation
and is excreted to the environment early in growth, only
to be taken up later as a source of arginine. Overall, they
suggested that the greedy consumption of all available amino
acids results in the “blooms” observed in the wild [13] and
indicates that the metabolic pathways that have evolved are
such that the organism can eat as quickly as possible to
outgrow competitors.

Themodel was later updated to include a refined descrip-
tion of the respiratory chain as well as phototrophic growth
leading to additional insights into metabolism [14]. Several
key differences in the oxidative phosphorylation pathway
compared to bacteria andmitochondria were proposed. First,
because complex I is missing the NADH oxidation subunits,
it uses another energy carrier. Second, that halocyanin carries
electrons from complex III to complex IV rather than
menaquinone. Finally, that ATP synthase has a stoichiometry
of 10 protons per ATP, which is much higher than in most
organisms.

By fitting uptake rates of amino acids to aerobic growth
experiment measurements, they identified isoleucine,
leucine, and valine as the preferred energy sources,
while others such as alanine, proline, and ornithine had
distinct periods of different uptake rate [14]. Thus, the
organism hierarchically uses metabolites to maximize
growth rate. They also predicted significant overflow of
alanine, acetate, and succinate. Interestingly, they identified
that arginine fermentation essentially revives cell growth,
after which amino acid degradation and photosynthetic
growth become dominant. They found that even during
anaerobic phototrophic growth, the organism breaks down
amino acids to obtain energy, even though they were
incapable of deriving the maximal energy from respiration.
Interestingly, they could identify that the network structure
of amino acid degradation could describe why alanine was
produced, specifically, as an overflow pathway during serine
consumption. This is in contrast to aerobic growth where
serine and alanine consumption appear to coincide with one
another, likely due to the fact that pyruvate can be funneled
into the TCA cycle. Overall, the studies of H. salinarum led
to the conclusion that the organism evolved its metabolic
behavior to maximize growth during blooms, which can
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occur sporadically with many years in between [13, 14]. It
was suggested that they use this as a strategy to outcompete
other organisms that feed on available nutrients and build up
enough of a population that they can survive long periods of
starvation [14].

5.2. Natronomonas pharaonis. The metabolic network for
the polyextremophile (high salt concentration and alkaline
pH) Natronomonas pharaonis was developed [25] using the
reconstruction for H. salinarum. The network is significantly
larger, with nearly 30%more genes associated with reactions,
mostly due to additional amino acid and carbon degradation
pathways. As N. pharaonis is capable of growth on a single
carbon source the reconstruction complements that for H.
salinarum which requires a complex broth for growth. For
this reason, the reconstructions could be used to investigate
questions regarding themetabolic objective of halophiles that
are subject to different evolutionary pressures and answer
questions about optimality of energy production.

The authors measured the amino acid content to define
the biomass composition and found, similar toH. salinarum,
that it made up about 75% of organic mass [13, 25]. Perhaps
the high protein content helps to compensate for the high
osmolarity in which the organisms are grown. Using the
model, predictions about aerobic growthwere obtained;most
importantly is that at very high (>7 : 3) and low (<3 : 7)
acetate to oxygen consumption ratios the organism was
incapable of growth. Using experiments, they identified an
acetate:oxygen ratio of about 1 : 2 and an ATP maintenance
cost of ∼30 𝜇mol/ΔOD⋅mL. A wide range of maintenance
energies and acetate:oxygen ratios gave near optimal growth,
indicating that growth of N. pharaonis is robust to envi-
ronment and the biological objective is to maximize growth
and energy production [25]. They found that the carbon
incorporation was actually quite low (∼35%). Finally, using
arguments about respiratory exchange ratio (e.g., the ratio
between CO

2
production and oxygen consumption) the

authors were able to demonstrate that about 10% of carbon is
neither incorporated in biomass nor respired, suggesting that
the organism uses some form of overflow metabolism [25].
While they did not make any suggestions, there are a number
of likely suspects such as succinate or pyruvate which could
act as available nutrients for other organisms.

5.3. Sulfolobus solfataricus. The final nonmethanogen model
developed for an archaeon is for the hyperthermoacidophile
Sulfolobus solfataricus [26]. The model and organism are
remarkable among the archaea represented here in that they
grow optimally at a pH of 3.5 and temperature of 80∘ and con-
sume 35 different carbon sources.The thermostability of their
enzymes is of interest to bioengineers and makes the organ-
ismattractive for bioreactor design.Their unique abilities give
them an edge in the hot-springs where they are found and
allow them to consume a plethora of degraded organic mass.
The final reconstruction consists of 706 reactions associated
with 515 genes and conveys the ability to consume all 35 car-
bon sources.Themodel was calibrated with growth and non-
growth associated maintenances of 24.68mmolATP/gDCW

and 1.9mmolATP/gDCW/hr, respectively, to match experi-
ments. Interestingly, the GAM is the smallest of any archaea
while the NGAM ismoderate. Unfortunately, themodel itself
was not available and thus the biomass composition used in
the study could not be compared with the others to identify
the source of this low cost for growth (see Table 2). The
authors of the study chose a phosphate/oxygen ratio of 0.5
as the final fit parameter of their model; this low value was
due to the fact that the archaeon uses inefficient cytochrome
complexes SoxABCDand SoxEFGHIM for respiration.Using
these parameters, the model incorporates about 25% of
carbon while respiring the rest.

During the model reconstruction, the authors identi-
fied the fact that S. solfataricus uses a reverse ribulose-
monophosphate pathway (RRMP) instead of the pentose
phosphate pathway. Specifically, they found that the organism
was missing a transaldolase and thus they allowed accumu-
lation of sedoheptulose 7-phosphate. They found that accu-
mulation of sedoheptulose 7-phosphate in their simulated
media accounted for ∼3% of all carbon atoms and thus is a
significant portion of the overall carbon available for biomass.
Simulations indicated that on glucose growth about 22%
of carbon flux was fed into the RRMP pathway while the
rest was metabolized to pyruvate via the Entner-Doudoroff
(ED) pathway to be subsequently used in TCA cycle. Flux
variability analysis of the metabolic model demonstrated
that both the semiphosphorylative and nonphosphorylative
branches of the ED pathway were possible and indicates that
further studies are required to understand the growth of
the organism. Similarly, the TCA cycle showed significant
variability, primarily due to the glyoxylate shunt. Finally,
variability in the production of amino acids such as histidine,
tryptophan, alanine, and glutamate indicates different routes
of synthesis.

Because a related organism Sulfolobus sp.VE6 could grow
autotrophically fixing bicarbonate, the authors searched for
the hydroxypropionate-hydroxybutyrate cycle.They found 11
of the 16 enzymes and performed BLAST searches to identify
putative homologs of the 5 remaining enzymes. Thus, they
predicted that S. solfataricus is able to grow autotrophically
and suggested that experiments should be performed. It is
important to note, however, that autotrophic growth of S.
solfataricus had already been verified by Zillig et al. [90].
During autotrophic growth, the model predicted that the
TCA cycle was little used with flux flowing from succinyl-
CoA through malate to form pyruvate which could be used
in gluconeogenesis. Additionally, hydrogen sulfide was fixed
to provide a sulfur source, and in fact it produces energy
allowing the simulated organism to growmuch more quickly
than on glucose; however, this is likely due to the lack of an
uptake rate on H

2
S. Regardless, this gives a hint about the

possibility of syntrophic interactions with sulfate reducing
bacteria.

The authors went on to compare the growth of the
organisms on the 35 different carbon sources. To do this
they fixed the carbon uptake rate and compared biomass
flux. Overall, the organism grew significantly faster when
growing on glycerol and propanol and marginally better on
oligosaccharides. They also grew significantly more slowly
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on carbon sources than on compounds that enter the TCA
cycle at points other than 2-oxoglutarate. Gene deletion
assays indicated that over 50% of all single gene knockouts
were nonlethal and an additional ∼25% allowed limited
growth, suggesting S. solfataricus is metabolically versatile.
Although S. solfataricus is naturally a thermophile and
therefore likely possesses a large repertoire of thermostable
enzymes, it has been suggested [91] that thermostability
does not necessarily guarantee thermoactivity. Therefore, S.
solfataricus’ metabolic versatility is potentially advantageous
in high-temperature environments, allowing the organism to
circumvent the potential issues of decreased enzyme catalytic
activity and higher mutation rates. Overall, these results
suggest that S. solfataricus can preferentially consume certain
carbon sources and regulate alternative pathways to support
beneficial symbiotic relationships. Alternatively, one can also
argue that S. solfataricus can take advantage of its metabolic
versatility to outcompete other organisms.

6. Comparison of Metabolic Capabilities

Well-curated metabolic models function as comprehensive
databases of the knowledge about organisms; thus, they are
potentially useful tools for studying evolution and diversity
of metabolism. Three properties of the metabolic models are
of particular utility for comparative studies: (1) metabolic
models connect gene function with metabolic function via
their gene-protein-reaction rules, (2) the metabolic network
is topologically defined by metabolites and the reactions
that interconvert them, rather than the genes that facilitate
those interconversions, and (3) metabolic networks coupled
with modeling techniques allow for the identification of
function redundancy/degeneracy.Thefirst of these properties
allows direct comparison of gene content based on metabolic
function and the application of traditional evolutionary
tools (e.g., bioinformatics and phylogenetic approaches).The
second of these properties allows networks to be compared by
function rather than gene content; for example, the network
could be used to identify convergent evolution. The final of
these properties could be used to provide insight into the
selective pressures of the organism; specifically, duplicated
functionalitymight suggest a critically important function for
the organism.

To demonstrate the utility of metabolic models to evo-
lutionary analyses we computed the conservation of genes
facilitating metabolic reactions. An ITEP database [45] of
221 archaea, including each of the organisms in Table 1, was
constructed using the default parameters. Briefly, ITEP is a
software toolkit for examining microbial pan-genomes that
provides functionality for constructing a BLAST database
and querying protein family prediction, ortholog detection,
and analysis of functional domains. Among its capabilities is
assessing the GPRs of a metabolic model for each reaction
and determine whether or not the homologs exist in another
organism. The GPRs from the M. acetivorans model iST807
were used as input to the db evaluateReactionsFromGpr.py
function to assess the conservation in other organisms. The
“or” option to the function was used to assess whether any

genes for each M. acetivorans reaction existed in the other
archaea. Doing this for each organism, we computed the
extent of conservation for each reaction (e.g., the fraction
of organisms in which the reaction had conserved genes).
The results can be seen in Figure 5. Given the broad
comparison of many archaea against the well-curated model
for M. acetivorans, it is not surprising that the extent of
conservation is relatively low (blue) across the network.
Nevertheless, it is interesting to note that the most visible
conservation (red) occurs within Nucleotide metabolism,
coenzyme synthesis-related reactions, and various amino
acid biosynthesis reactions.This suggests that the underlying
transcription and translation machinery of archaea are fairly
similar.

Categorizing the homologous genes by metabolic subsys-
tem as annotated in iST807 computed by ITEP lends more
specific insight into conservation of metabolism in these
archaea (see Figure 6). Amino acid biosynthetic pathways
are generally highly conserved (labeled in blue if Figure 6).
Proline and cysteine biosynthesis are notable exceptions.
None of the proline biosynthesis genes annotated in M.
acetivorans were found in type I methanogens, H. salinarum
or S. solfataricus. Additionally, all genes annotated as syn-
thesizing serine or glycine are missing in S. solfataricus. This
could indicate either an incorrect annotation in the model
or multiple proline biosynthetic pathways in metabolism.
Biosynthesis of methanofuran, a cofactor in methanogenesis,
is surprisingly well conserved beyond the methanogens.
Notably nitrogen metabolism is the least similar among the
archaea as other have previously identified [92]. Although
this analysis leads to rather qualitative statements, it demon-
strates how information from metabolic reconstructions can
be used to compare differences between metabolism and
study evolution and conservation of metabolic pathways. A
similar analysis was performed with the GPRs from each
of the metabolic models. The aggregate statistics from this
analysis can be seen in Figure 7(a) where the count of reac-
tions with a particular conservation level is shown. Similar
to what was seen forM. acetivorans there appear to be mostly
reactions that are highly conserved (low reaction uniqueness)
or very lowly conserved (high reaction uniqueness). This
is not a surprising observation as it has long been known
that metabolic networks have a bowtie topology [93] and
are generally scale-free networks [94]. Cross comparison
between each of these conservation predictions in fine detail
is beyond the scope of this review; however, we feel we have
demonstrated the utility of using metabolic reconstructions
as a tool to compare metabolism.

7. Conclusions

We have presented an overview of genome-scale metabolic
models and discussed the defining metabolic features among
the few GEMs available for archaea. In these discussions, we
have also highlighted some much-needed improvements to
model building practices in order to facilitate the develop-
ment of archaeal models. By using the gene-protein-reaction
associations in these archaeal GEMs, we also demonstrate
the invaluable utility of these metabolic models as they can
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Figure 5: Conservation of metabolic reactions. A map showing the extent of conservation for the reactions of the M. acetivorans model
iST807 (as encoded in the gene-protein-reaction associations (GPRs) of the model). Nodes represent either a metabolite or reaction and
edges indicate the dependencies between reactions andmetabolites. Reactions on the blue end of the spectrum are facilitated by enzymes that
are conserved in relatively few of the 221 archaea in the database while reactions in red are facilitated by highly conserved enzymes. Reactions
with thin grey lines are not associated with genes. To assess conservation, the db evaluateReactionsFromGpr.py functionality of the ITEP
software [45] was used. It computes homologous genes to those in the GPRs of each reaction in iST807.The ITEP function was executed with
the “or” option enabled to identify whether any of the enzymes (or enzymatic subunits) annotated as facilitating the reactions were encoded
in the organism.

be extended beyond flux analysis to gain significant insight
into evolutionary patterns among organisms. Visualizing the
known archaeal metabolic models on a phylogenetic tree (see
Figure 1) leads to the conclusion that model development
in the community thus far has mostly focused on Eur-
yarchaeota, leaving the Crenarchaeota largely unexplored.
Although models do not yet exist for members of the
Archaeoglobi, Thermoplasmata, and Thermococci classes,
all other major Euryarchaeota classes have at least one
representativemodel.This is not to underestimate the impor-
tance of further developing these Euryarchaeota models as
Archaeoglobi have some of the most diverse metabolisms of

any Euryarchaeota, capable of chemolithotrophy by reduc-
tion of sulfates, thiosulfates, nitrates, and heterotrophy via
reduction of sulfates via organic compounds [95]. However,
the paucity of GEMs for the Crenarchaeota is a major
impediment for a comprehensive study of evolution and
diversity in archaea. GEMs are invaluable tools to help
guide the exploration and comparison of the great metabolic
diversity of energy conservation in these organisms which
are capable of sulfate reduction both chemolithotrophi-
cally and heterotrophically (members of the Desulfococ-
cales), nitrate reduction (members of Thermoproteales)
hydrogen oxidation, and sulfur reduction (members of the
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Sulfolobales) [95]. The existence of diverse energy conserva-
tion pathways will likely comewith diverse electron transport
chain and transport systems. Understanding these unique
characteristics will be paramount in understanding growth
in extreme conditions and syntrophy amongmicroorganisms
as well as for engineering communities for biotechnology
applications.
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