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Background: Epidemiological studies have investigated the associations of dietary iron,

copper, and selenium level with metabolic syndrome (MetS). However, their results

are conflicting. This meta-analysis of observational study was, therefore, employed to

investigate the associations above.

Methods: A comprehensive literature search was employed using PubMed, Web of

Science, Embase, and Scopus database up to October 2021 (no restriction was set for

the initiate time). The pooled relative risk (RR) of MetS for the highest vs. lowest dietary

iron, copper, and selenium level was estimated, respectively.

Results: A total of 14 observational studies (55,131 participants) were identified as

meeting the inclusion criteria. Specifically, 7 studies were related to the dietary iron

level. The overall multivariable adjusted RR demonstrated that the dietary iron level was

positively associated with MetS (RR = 1.27, 95% CI: 1.12–1.44; p < 0.001). With

regard to the dietary copper level, 7 studies were included for meta-analysis. The overall

multivariable adjusted RR showed that the dietary copper level was inversely associated

with MetS (RR = 0.85, 95% CI: 0.78–0.93; p < 0.001). In addition, 4 studies were

specified for the dietary selenium level. The overall multivariable adjusted RR indicated

that the dietary selenium level was inversely associated with MetS (RR = 0.77, 95% CI:

0.63–0.95; p = 0.01) as well.

Conclusion: Our results suggest that the dietary iron level is positively associated with

MetS, whereas a negative association between the dietary copper and selenium level and
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MetS is obtained. Further large well-designed prospective cohort studies are warranted

to elaborate on the issues examined in this study.

Keywords: dietary iron level, dietary copper level, dietary selenium level, metabolic syndrome, meta-analysis,

observational studies

INTRODUCTION

Elevated waist circumference, blood pressure, fasting blood
glucose, triglycerides, and decreased high-density lipoprotein
cholesterol (at least three of the five above metabolic
abnormalities) are considered as the presence of metabolic
syndrome (MetS) (1). MetS is a well-known attributable risk
to diabetes, stroke, and coronary heart disease epidemic (2–4).
Moreover, MetS increases the incidence of atherosclerotic
cardiovascular disorder and complication that decreases
longevity (5). However, the subjects suffering from MetS
are progressively growing worldwide and the current global
prevalence of MetS is between 11.6 and 62.5% (6). Although the
etiology of MetS is not well understood yet, dietary factors are
considered to be involved in MetS (7–11).

Micronutrients are important factors for cellular and
biochemical functions (release of energy for synthesis and
movement) (12). Iron, copper, and selenium are considered
to be significant micronutrients and their dietary sources are
meat, seeds, heme, tea, milk, nuts, cereals, eggs, fish, and so
on (13–18). Iron is one of the most abundant elements, which
plays a significant role in various cellular processes, such as iron-
dependent signaling, cellular respiration, DNA replication and
synthesis, nucleic acid repair, and energy metabolism (19–21).
Iron consumption, uptake, transfer, and storage are involved to
maintain iron homeostasis (22). However, excess iron leads to
inflammation and tissue damage, produces hydroxyl radicals
(Haber–Weiss–Fenton reactions), which cause oxidative damage
to cellular components (lipids, proteins, and DNA) (23, 24). On
the contrary, copper, a component of extracellular superoxide
dismutase (25), is essential for iron uptake and signaling in
eukaryotic organisms, energy metabolism, reactive oxygen
species, and detoxification (26). In addition, copper plays an
essential role in mitochondrial function and signaling involving
mitophagy, bioenergetics, and dynamics, which affect cell fate
by metabolic reprogramming (26). Selenium, also an essential
micronutrient, is necessary to maintain the different cellular
functions, such as signaling transduction pathways and immune-
endocrine function (18). Moreover, selenium incorporates
into selenoproteins and selenium-dependent enzymes (e.g.,
glutathione peroxidases), which are involved in intracellular
redox regulation and modulation (27). Since oxidative stress
and inflammation play a significant role in the pathophysiology
of MetS (28), the dietary iron, copper, and selenium level is
considered to be closely related to MetS.

A number of observational studies have been employed to
investigate the associations of the dietary iron, copper, and
selenium level with MetS (29–42). However, their results are
still conflicting. Thus, this meta-analysis of observational studies
is employed to further investigate the above associations. It is

hypothesized that the dietary iron level is positively associated
with MetS, whereas the dietary copper and selenium level is
inversely associated with MetS.

MATERIALS AND METHODS

Search Strategy
Our meta-analysis was performed according to the Preferred
Reporting Items for Systematic Reviews and Meta-analyses
(PRISMA) guidelines (43). The PubMed, Web of Science,
Embase, and Scopus electronic databases were searched up to
October 2021 (no restriction was set for the initiate time) by
using a combination of keywords that related toMetS (“metabolic
syndrome”), iron (“iron,” “Fe”), copper (“copper,” “Cu”), and
selenium (“selenium,” “Se”). No language restriction was set
in the search strategy. We screened the titles and abstracts of
all the articles and then read the full articles to identify the
eligible studies.

Study Selection
The titles, abstracts, and full texts of all the retrieved studies
were reviewed by two researchers independently. Disagreements
were resolved by discussions. The included studies were required
to meet the following criteria: (1) the study design is an
observational study; (2) the outcomes include the associations of
the dietary iron, copper, and selenium level withMetS; and (3) the
relative risk (RR) or odds ratio (OR) with 95% CI was reported.
The exclusion criteria were listed as follows: (1) duplicated
or irrelevant articles; (2) reviews, letters, or case reports; (3)
randomized controlled trials; and (4) non-human studies.

Data Extraction
The data were extracted by two researchers independently and
disagreements were resolved by discussions. The information
about the first author and year of publication, location,
age, gender, sample size, study design, adjustments, exposure,
category of exposure, effect estimates, and diagnostic criteria of
MetS was collected. The corresponding effect estimates with 95%
CIs for the highest vs. lowest dietary iron, copper, and selenium
level andMetS was extracted (adjusted for the maximum number
of confounding variables).

Quality Assessment
The Newcastle–Ottawa Scale (NOS) criteria for non-randomized
studies were employed to assess the quality of each included
study. The NOS is based on three broad perspectives: (1) the
selection process of the study cohorts; (2) the comparability
among the different cohorts; and (3) the identification of
exposure or outcome of the study cohorts. Disagreements
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FIGURE 1 | The detailed flow diagram of the study identification and selection in this meta-analysis.

with respect to the methodological quality were resolved by
mutual consultation.

Statistical Analyses
The RR for MetS was the outcome measure in this meta-analysis.
The I2 statistic, which measures the percentage of total variation
across studies due to heterogeneity, was examined (I2 > 50%
was considered as heterogeneity). If significant heterogeneity was
observed among the studies, a random-effects model was used;
otherwise, a fixed-effects model was accepted. Begg’s test was
employed to assess the publication bias (44). A p-value of <

0.05 was considered statistically significant. Moreover, subgroup
analysis for study design, diagnostic criteria of MetS, sample
size, exposure assessment, type of iron, and the population
was employed.

RESULTS

Study Identification and Selection
Figure 1 presents the detailed flow diagram of the study
identification and selection. A total of 1,793 potentially relevant
articles (PubMed: 236, Embase: 354, Web of Science: 477, and
Scopus: 726) were retrieved during the initial literature search.
After eliminating 749 duplicated articles, 1,044 articles were
screened according to the titles and abstracts and 751 irrelevant

studies were removed. Then, 182 reviews, case reports, or letters;
68 non-human studies; and 29 randomized controlled trial
studies were excluded, respectively. Eventually, a total of 14
studies were identified for this meta-analysis.

Study Characteristics
Table 1 presents the main characteristics of the included studies.
These studies were published between 2010 and 2021. Eight
studies were performed in Asian countries [Korea (31), China
(32, 35, 37, 39, 41), and Iran (33, 40)]. The other 6 studies
were conducted in Brazil (29, 38, 42), USA (30), Spain (36), and
Columbia (34), respectively. Except for the study by Bruscato
(only female) (29), both the male and female participants were
considered. The sample size ranged from 284 to 15,051 for a
total of 55,131. The dietary iron, copper, and selenium level
were assessed by a food-frequency questionnaire (FFQ) in 3
studies (35, 37, 40) and 24 h or 3-day recall method in 11
studies (29–34, 36, 38, 39, 41, 42). The criteria for MetS were
the National Cholesterol Education Program-Adult Treatment
Panel III (NCEP ATP III) (31, 32, 38–41), the International
Diabetes Federation (IDF) (29, 33, 37), and the American Heart
Association (AHA) (30, 35, 36) in 6, 3, and 3 studies, respectively.
Moreover, some other criteria (34, 42) were also employed for
adolescents.
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TABLE 1 | Characteristics of the individual studies included in this meta-analysis.

References Location Age

years

Gender Sample

size

Study

design

Adjustments Exposure Category of

exposure

Effect estimates Diagnostic

criteria of MetS

NOS

Bruscato

et al. (29)

Brazil >60 Female 284 Cross-

sectional

Age, smoking, years of

education, physical

activity and dietary

fiber.

24 h recall Iron IDF 7

Quartiles 1 1.00

Quartiles 2 0.65 (0.30, 1.38)

Quartiles 3 1.33 (0.63, 2.83)

Quartiles 4 0.72 (0.30, 1.72)

Otto et al. (30)US 45–84 Both 3,828 Cohort Energy intake, age,

sex, race-ethnicity,

education, study

center, alcohol intake,

physical activity, BMI,

fiber intake, cigarette

smoking, dietary

supplement use, the

ratio of polyunsaturated

fat intake: saturated fat

intake and antioxidant

intake

24 h recall Iron

Quintiles 1

Quintiles 2

Quintiles 3

Quintiles 4

Quintiles 5

1.00

1.07 (0.85, 1.36)

1.02 (0.80, 1.30)

1.28 (1.01, 1.63)

1.06 (0.81, 1.40)

AHA 8

Choi et al.

(31)

Korea >19 Both 5,136 Cross-

sectional

Age, energy intake and

alcohol frequency

24 h recall Copper

Male

NCEP ATP III 8

Quartiles 1 1.00

Quartiles 2 0.98 (0.70, 1.37)

Quartiles 3 0.85 (0.60, 1.20)

Quartiles 4 0.90 (0.60, 1.37)

Female

Quartiles 1 1.00

Quartiles 2 1.07 (0.80, 1.43)

Quartiles 3 1.02 (0.74, 1.40)

Quartiles 4 0.86 (0.58, 1.27)

Li et al. (32) China 18–65 Both 550 Cross-

sectional

Age and sex 3 days recall Copper NCEP ATP III 7

Quartiles 1 1.00

Quartiles 2 0.75 (0.45, 1.24)

Quartiles 3 0.65 (0.39, 1.07)

Quartiles 4 0.61 (0.36, 1.01)

Selenium

Quartiles 1 1.00

Quartiles 2 1.38 (0.89, 2.45)

Quartiles 3 0.81 (0.54, 1.49)

Quartiles 4 0.82 (0.46, 1.30)

Motamed

et al. (33)

Iran 35–65 Both 3,800 Cross-

sectional

Sex, age, physical

activity level, smoking,

past medical history,

energy intake and BMI

24 h recall Iron IDF 7

Quintiles 1 1.00

Quintiles 2 1.15 (0.90, 1.40)

Quintiles 3 1.24 (0.90, 1.50)

Quintiles 4 1.24 (1.00, 1.50)

Quintiles 5 1.12 (0.90, 1.40)

Copper

Quintiles 1 1.00

Quintiles 2 1.25 (1.00, 1.50)

Quintiles 3 1.33 (1.06, 1.60)

Quintiles 4 1.16 (0.90, 1.40)

Quintiles 5 1.15 (0.90, 1.40)

Selenium

Quintiles 1 1.00

(Continued)
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TABLE 1 | Continued

References Location Age

years

Gender Sample

size

Study

design

Adjustments Exposure Category of

exposure

Effect estimates Diagnostic

criteria of MetS

NOS

Quintiles 2 0.96 (0.70, 1.10)

Quintiles 3 0.85 (0.60, 1.04)

Quintiles 4 0.92 (0.70, 1.10)

Quintiles 5 0.78 (0.60, 0.90)

Suarez-

Ortegón et al.

(34)

Colombia 11–16 Both 1,311 Cross-

sectional

Age, BMI,

socioeconomic status,

and intakes of fat,

carbohydrates, protein

and ascorbic acid

24 h recall Copper

Males

Ferranti 7

Tertiles 1 1.00

Tertiles 2 /

Tertiles 3 0.84 (0.32, 2.19)

Females

Tertiles 1 1.00

Tertiles 2 /

Tertiles 3 0.77 (0.30, 1.82)

Wei et al. (35) China >18 Both 2,069 Cross-

sectional

Age, sex, cigarette

smoking, alcohol

drinking, nutritional

supplementary, activity

level, dietary energy

intake, fiber intake and

protein intake

FFQ Selenium

Quartiles 1

Quartiles 2

Quartiles 3

Quartiles 4

1.00

0.60 (0.43, 0.86)

0.82 (0.58, 1.17)

0.72 (0.46, 1.14)

AHA 7

Bulka et al.

(36)

Spain 18–74 Both 15,051 Cross-

sectional

Energy intake, age,

gender, and

Hispanic/Latino

background

24 h recall Copper

Below EAR

Normal

1.00

0.81 (0.69, 0.95)

AHA 8

Qu et al. (37) China 20–75 Both 9,108 Cross-

sectional

Age, sex, BMI, physical

activity, drinking, and

smoking

FFQ Copper IDF 8

Quartiles 1 1.00

Quartiles 2 0.95 (0.82, 1.11)

Quartiles 3 0.85 (0.74, 0.99)

Quartiles 4 0.81 (0.70, 0.94)

Zhu et al. (39) China >18 Both 3,099 Cross-

sectional

Age, sex, income,

physical activity level,

intentional physical

exercise, smoking

status, alcohol use and

dietary total energy

intake

24 h and 3 days

recall

Iron NCEP ATP III 8

Quartiles 1 1.00

Quartiles 2 1.37 (1.06, 1.78)

Quartiles 3 1.47 (1.11, 1.94)

Quartiles 4 1.59 (1.15, 2.20)

Vieira et al.

(38)

Brazil >18 Both 591 Cross-

sectional

Physical activity,

gender, alcohol

consumption,

household per capita

income, BMI,

high-sensitivity

C-reactive protein, age,

smoking status, race,

total energy intake,

misreporting, saturated

fat and vitamin C

intakes

24 h recall Iron

Quintiles 1

Quintiles 2

Quintiles 3

Quintiles 4

Quintiles 5

1.00

0.83 (0.36, 2.70)

1.34 (0.63, 2.84)

0.52 (0.26, 1.04)

1.14 (0.54, 2.40)

NCEP ATP III 7

Esfandiar

et al. (40)

Iran >18 Both 4,654 Cohort Age, sex, baseline BMI,

educational level,

smoking status, total

energy intake, fiber,

saturated fat, sodium,

vitamin C and

magnesium intakes

FFQ Iron

Quartiles 1

Quartiles 2

Quartiles 3

Quartiles 4

1.00

0.97 (0.79, 1.19)

1.10 (0.81, 1.49)

2.04 (0.97, 4.28)

NCEP ATP III 7

(Continued)
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TABLE 1 | Continued

References Location Age

years

Gender Sample

size

Study

design

Adjustments Exposure Category of

exposure

Effect estimates Diagnostic

criteria of MetS

NOS

Zhu et al. (41) China >18 Both 5,323 Cross-

sectional

Age, sex, region, years

of education, physical

activity level, intended

physical exercises,

smoking status, alcohol

use and daily energy

intake, zinc and

magnesium

24h and 3 days

recall

Iron

Quartiles 1

Quartiles 2

Quartiles 3

Quartiles 4

1.00

1.35 (1.10, 1.65)

1.47 (1.15, 1.88)

1.60 (1.21, 2.11)

NCEP ATP III 8

Batista et al.

(42)

Brazil 14–19 Both 327 Cross-

sectional

Sex, age, maternal

education, family

income, physical

activity, and alcohol

consumption

24 h recall Copper Cooks 7
Tertiles 1 1.00

Tertiles 2 1.49 (0.56, 4.09)

Tertiles 3 0.87 (0.28, 2.70)

Selenium

Tertiles 1 1.00

Tertiles 2 2.17 (0.66, 7.36)

Tertiles 3 0.81 (0.30, 2.19)

The Relative Risk of MetS for the Highest
vs. Lowest Dietary Iron Level
The overall multivariable adjusted RR showed that the dietary
iron level was positively associated with MetS (RR = 1.27, 95%
CI: 1.12–1.44; p < 0.001) (Figure 2). No substantial level of
heterogeneity was obtained among various studies (p = 0.097, I2

= 44.1%). No evidence of publication bias existed according to
the Begg’s rank correlation test (p = 1.000). Table 2 presents the
results of subgroup analysis. The above findings were confirmed
in cross-sectional (RR = 1.31, 95% CI: 1.13–1.52; p < 0.001),
Asians (RR= 1.44, 95% CI: 1.13–1.83; p= 0.003), the NCEP ATP
III (RR = 1.59, 95% CI: 1.30–1.93; p < 0.001), >1,000 sample
sized (RR = 1.34, 95% CI: 1.09–1.65; p = 0.006), 24 h or 3-
day recall method (RR = 1.25, 95% CI: 1.10–1.42; p < 0.001),
and non-heme iron (RR = 1.25, 95% CI: 1.08–1.46; p = 0.004)
studies, respectively.

The Relative Risk of MetS for the Highest
vs. Lowest Dietary Copper Level
The overall multivariable adjusted RR showed that the dietary
copper level was negatively associated with MetS (RR = 0.85,
95% CI: 0.78–0.93; p < 0.001) (Figure 3). No substantial level
of heterogeneity was obtained among various studies (p = 0.391,
I2 = 5.3%). No evidence of publication bias existed according to
the Begg’s rank correlation test (p = 0.754). Table 3 presents the
results of subgroup analysis. The above findings were confirmed
in > 1,000 sample sized (RR = 0.86, 95% CI: 0.78–0.94; p =

0.001) and adults (RR = 0.85, 95% CI: 0.78–0.93; p < 0.001)
studies, respectively.

The Relative Risk of MetS for the Highest
vs. Lowest Dietary Selenium Level
The overall multivariable adjusted RR showed that the dietary
selenium level was negatively associated with MetS (RR = 0.77,
95% CI: 0.63–0.95; p = 0.01) (Figure 4). No substantial level of

heterogeneity was obtained among various studies (p = 0.985,
I2 = 0.0%). No evidence of publication bias existed according to
the Begg’s rank correlation test (p = 1.000). Table 4 presents the
results of subgroup analysis. The above findings were confirmed
in Asians (RR = 0.77, 95% CI: 0.63–0.95; p = 0.02), the NCEP
ATP III/IDF (RR = 0.79, 95% CI: 0.62–1.00; p = 0.05), >1,000
sample sized (RR = 0.76, 95% CI: 0.61–0.96; p = 0.02), 24 h or
3-day recall (RR= 0.79, 95% CI: 0.62–0.99; p= 0.04), and adults
(RR= 0.77, 95% CI: 0.63–0.95; p= 0.02) studies, respectively.

DISCUSSION

A total of 14 observational studies were identified in the present
meta-analysis. The pooled results showed that the dietary iron
level was positively associated with MetS, whereas a negative
association between the dietary copper and selenium level and
MetS was obtained.

The pathophysiology of MetS is involved in oxidative stress
and inflammation. As a strong pro-oxidant, iron causes oxidative
stress and damage to pancreatic beta cells, which decreases the
synthesis and secretion of insulin, impairs insulin signaling,
and then alters the glucose metabolism (45, 46). Recently, iron-
mediated cell death (ferroptosis) has also been reported to
induce cardiomyocyte damage and plays an important role in
cardiovascular disorders-related pathology (47). On the contrary,
copper and selenium are important antioxidants that act against
oxidative stress (25, 27). Copper is served as a cofactor of the
copper/zinc superoxide dismutase, a protein located in both
the cytosol and the mitochondrial inner membrane space to
relieve the electron transport chain-generated reactive oxygen
species (26). Differently from other metals, selenium works by
incorporation into proteins by a cotranslational mechanism (as
part of the amino acid selenocysteine) (48). Most selenium
proteins participate in antioxidant defense and redox state
regulation, particularly the families of glutathione peroxidases

Frontiers in Nutrition | www.frontiersin.org 6 February 2022 | Volume 8 | Article 810494

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles


Ding et al. Iron, Copper, Selenium, and MetS

FIGURE 2 | Forest plot of meta-analysis: Overall multi-variable adjusted RR of MetS for the highest vs. lowest dietary iron level.

TABLE 2 | Subgroup analysis of metabolic syndrome (MetS) for the highest vs. lowest dietary iron level category.

Stratification Number of studies Pooled RR 95% CI P-value Heterogeneity

All studies 7 1.27 1.12, 1.44 P < 0.001 P = 0.01; I² = 44%

Study design

Cross-sectional 5 1.31 1.13, 1.52 P < 0.001 P = 0.12; I² = 45%

Cohort 2 1.34 0.72, 2.47 P = 0.35 P = 0.10; I² = 62%

Race

Asian 4 1.44 1.13, 1.83 P = 0.003 P = 0.10; I² = 53%

American 3 1.04 0.81, 1.32 P = 0.77 P = 0.69; I² = 0%

Diagnostic criteria of MetS

NCEP ATP III 4 1.59 1.30, 1.93 P < 0.001 P = 0.75; I² = 0%

Other 3 1.08 0.91, 1.27 P = 0.37 P = 0.62; I² = 0%

Sample size

<1,000 2 0.94 0.53, 1.66 P = 0.83 P = 0.43; I² = 0%

>1,000 5 1.34 1.09, 1.65 P = 0.006 P = 0.06; I² = 56%

Exposure assessment

FFQ 1 2.04 0.97, 4.29 / /

24 h or 3 days recall 6 1.25 1.10, 1.42 P < 0.001 P = 0.10; I² = 45%

Type of iron

Heme iron 5 0.98 0.79, 1.22 P = 0.88 P = 0.04; I² = 61%

Non-heme iron 5 1.25 1.08, 1.46 P = 0.004 P = 0.18; I² = 36%
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FIGURE 3 | Forest plot of meta-analysis: Overall multi-variable adjusted RR of MetS for the highest vs. lowest dietary copper level.

TABLE 3 | Subgroup analysis of MetS for the highest vs. lowest dietary copper level category.

Stratification Number of studies Pooled RR 95% CI P-value Heterogeneity

All studies 7 0.85 0.78, 0.93 P < 0.001 P = 0.39; I² = 5%

Study design

Cross-sectional 7 0.85 0.78, 0.93 P < 0.001 P = 0.39; I² = 5%

Cohort / / / / /

Race

Asian 4 0.87 0.78, 0.97 P = 0.01 P = 0.10; I² = 49%

American 3 0.81 0.69, 0.95 P = 0.008 P = 1.00; I² = 0%

Diagnostic criteria of MetS

NCEP ATP III/IDF 4 0.87 0.78, 0.97 P = 0.01 P = 0.10; I² = 49%

Other 3 0.81 0.69, 0.95 P = 0.008 P = 1.00; I² = 0%

Sample size

<1,000 2 0.64 0.40, 1.02 P = 0.06 P = 0.57; I² = 0%

>1,000 5 0.86 0.78, 0.94 P = 0.001 P = 0.35; I² = 10%

Exposure assessment

FFQ 1 0.81 0.70, 0.94 / /

24 h or 3 days recall 6 0.87 0.78, 0.98 P = 0.02 P = 0.35; I² = 10%

Population

Adults 5 0.85 0.78, 0.93 P < 0.001 P = 0.14; I² = 41%

Adolescents 2 0.82 0.46, 1.46 P = 0.50 P = 0.99; I² = 0%

Frontiers in Nutrition | www.frontiersin.org 8 February 2022 | Volume 8 | Article 810494

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles


Ding et al. Iron, Copper, Selenium, and MetS

FIGURE 4 | Forest plot of meta-analysis: Overall multi-variable adjusted RR of MetS for the highest vs. lowest dietary selenium level.

TABLE 4 | Subgroup analysis of MetS for the highest vs. lowest dietary selenium level category.

Stratification Number of studies Pooled RR 95% CI P-value Heterogeneity

All studies 4 0.77 0.63, 0.95 P = 0.01 P = 0.99; I² = 0%

Study design

Cross-sectional 4 0.77 0.63, 0.95 P = 0.01 P = 0.99; I² = 0%

Cohort / / / / /

Race

Asian 3 0.77 0.63, 0.95 P = 0.02 P = 0.93; I² = 0%

American 1 0.81 0.30, 2.19 / /

Diagnostic criteria of MetS

NCEP ATP III/IDF 2 0.79 0.62, 1.00 P = 0.05 P = 0.88; I² = 0%

Other 2 0.73 0.49, 1.10 P = 0.14 P = 0.83; I² = 0%

Sample size

<1,000 2 0.82 0.50, 1.34 P = 0.42 P = 0.98; I² = 0%

>1,000 2 0.76 0.61, 0.96 P = 0.02 P = 0.76; I² = 0%

Exposure assessment

FFQ 1 0.72 0.46, 1.13 / /

24 h or 3 days recall 3 0.79 0.62, 0.99 P = 0.04 P = 0.99; I² = 0%

Population

Adults 3 0.77 0.63, 0.95 P = 0.02 P = 0.93; I² = 0%

Adolescents 1 0.81 0.30, 2.19 / /

and thioredoxin reductases (48). Copper deficiency is associated
with the increased high-density lipoprotein (HDL) cholesterol
level in rats (49) and blood cholesterol levels in humans (50).

Similarly, selenium is also considered to prevent high-fat diet-
induced hyperglycemia and liver damage in rats (51) and type
2 diabetes mellitus and cardiovascular disease in humans (52).
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The above may significantly account for the major findings of
this study.

Ferritin, a ubiquitous intracellular protein, is important in the
regulation of iron homeostasis (53). Similarly, a meta-analysis
of the observational study suggested that the increased ferritin
level is positively associated with MetS (54). Moreover, iron
chelation therapy (reduce serum ferritin level) was associated
with improved serum glucose and HDL levels (55). The
phlebotomy with a reduction of body iron could significantly
improve cardiovascular risk and glycemic control in patients with
MetS (56). The above findings are decent supplements to ours.

Heme iron exists in most animal foods, whereas the rest in
animal or plant food is non-heme iron (57). Non-heme iron
is absorbed less efficiently than heme iron (∼5% non-heme
iron and 25% heme iron are absorbed from diet) (41). The
epidemiological data indicate that the effect of heme and non-
heme iron on MetS may vary from the regional variety (39, 40)
and heme iron alone cannot reflect the iron status (58, 59).
Indeed, our results with regard to heme and non-heme iron are
quite different. The specification of the iron subtype should be
considered in further study.

Interestingly, our findings are only confirmed in the NCEP
ATP III/IDF diagnostic criteria and> 1,000 sample-sized studies.
It is speculated that MetS diagnostic criteria or sample size
may influence the results of this study. Moreover, the negative
relationship between the dietary iron and selenium and MetS
is only specified in the 24 h or 3-day recall method and adult
population. Although the number of studies for FFQ and
adolescents is limited, the recall method might be precise to
reflect the issues and some age-related differences with the dietary
pathology of MetS cannot be fully excluded. In addition, the issue
of race should also be noted. The corresponding findings only
exist in Asians, but not in Americans (with regard to the dietary
iron and selenium). Our results suggest that the potential effect
of racial variation should not be ignored either.

Our findings can be incorporated into the daily lives of
subjects suffering from MetS. The programs to build awareness
with collaboration between physicians and nutritionists should
be encouraged in the future. For example, reinforce the dietary
education in MetS subjects: avoid the dietary iron overdose
or copper/selenium deficiency. Nevertheless, the toxicity of
excess copper intake should also be emphasized. Excess copper
intake is reported to induce oxidative stress, damage to the
mitochondrial, contributes to apoptosis, DNA damage, and
inflammatory responses (60, 61). Therefore, careful validation
by randomized controlled trial/prospective cohort study is still
needed before its clinical application.

This study has several strengthens. To begin with, this is the
first meta-analysis of observational studies on the associations

of the dietary iron, copper, and selenium level with MetS. In
addition, the included studies are analyzed based on the adjusted
results and large samples. Moreover, the limited heterogeneity
level may reflect the decent reliability of our results. Finally, our
findings might provide significant information to better consider
the dietary effects on MetS.

The limitations of this study should also be acknowledged.
First, only 2 prospective cohort studies were identified totally due
to the limited relevant literature (causal relationships could not
be obtained). Second, the classification of exposure varies greatly
among individuals. Third, the adjusted factors and definition of
MetS were not uniform. Forth, one included study has combined
the data for the dietary iron and red meat as a whole (40). These
limitations may weaken the significance of this study.

CONCLUSION

Our results suggest that the dietary iron level is positively
associated with MetS, whereas a negative association
between the dietary copper and selenium level and MetS
is obtained. Further large well-designed prospective cohort
studies are warranted to elaborate on the issues examined in
this study.
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